
NASOQ: Numerically Accurate Sparsity-Oriented QP Solver

KAZEM CHESHMI, University of Toronto, Canada
DANNY M. KAUFMAN, Adobe Research, USA
SHOAIB KAMIL, Adobe Research, USA
MARYAM MEHRI DEHNAVI, University of Toronto, Canada

Quadratic programs (QP), minimizations of quadratic objectives subject to
linear inequality and equality constraints, are at the heart of algorithms
across scientific domains. Applications include fundamental tasks in geome-
try processing, simulation, engineering, animation and finance where the
accurate, reliable, efficient, and scalable solution of QP problems is criti-
cal. However, available QP algorithms generally provide either accuracy or
scalability – but not both. Some algorithms reliably solve QP problems to
high accuracy but work only for smaller-scale QP problems due to their
reliance on dense matrix methods. Alternately, many other QP solvers scale
well via sparse, efficient algorithms but cannot reliably deliver solutions at
requested accuracies. Towards addressing the need for accurate and efficient
QP solvers at scale, we develop NASOQ, a new, full-space QP algorithm
that provides accurate, efficient, and scalable solutions for QP problems. To
enable NASOQ we construct a new row modification method and fast imple-
mentation of LDL factorization for indefinite systems. Together they enable
efficient updates and accurate solutions of the iteratively modified KKT
systems required for accurate QP solves. While QP methods have been pre-
viously tested on large synthetic benchmarks, to test and compare NASOQ’s
suitability for real-world applications we collect here a new benchmark set
comprising a wide range of graphics-related QPs across physical simulation,
animation, and geometry processing tasks. We combine these problems with
numerous pre-existing stress-test QP benchmarks to form, to our knowl-
edge, the largest-scale test set of application-based QP problems currently
available. Building off of our base NASOQ solver we then develop and test
two NASOQ variants against best, state-of-the-art available QP libraries –
both commercial and open-source. Our two NASOQ-based methods each
solve respectively 98.8% and 99.5% of problems across a range of requested
accuracies from 10−3 to 10−9 with average speedups ranging from 1.7× to
24.8× over fastest competing methods.

CCS Concepts: • Mathematics of computing → Quadratic program-
ming; Solvers; Computations on matrices; • Computing methodolo-
gies → Physical simulation.

Additional Key Words and Phrases: Sparse Linear Algebra, Sparse Row Mod-
ification, Quadratic Programming, Contact Simulation, Mesh Deformation,
Optimization

ACM Reference Format:
Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri
Dehnavi. 2020. NASOQ: Numerically Accurate Sparsity-Oriented QP Solver.
1, 1 (May 2020), 17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Solving a quadratic program (QP) is a core numerical task critical
in domains spanning geometry processing [Dvorožňák et al. 2018;

Authors’ addresses: Kazem Cheshmi, kazem@cs.toronto.edu, University of Toronto,
Toronto, Ontario, Canada; Danny M. Kaufman, kaufman@adobe.com, Adobe Research,
Seattle, Washington, USA; Shoaib Kamil, kamil@adobe.com, Adobe Research, New
York, New York, USA; Maryam Mehri Dehnavi, mmehride@cs.toronto.edu, University
of Toronto, Toronto, Ontario, Canada.

2020. XXXX-XXXX/2020/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Sýkora et al. 2014; Zhu et al. 2018], animation [Jacobson et al. 2011;
Righetti and Schaal 2012], physical simulation [Barbic 2007; Erleben
2013], robotics [Pandala et al. 2019], machine learning [Agrawal et al.
2019; Amos and Kolter 2017], engineering, and design [Fesanghary
et al. 2008]. Unfortunately, available QP solvers are often neither
accurate nor robust enough for many applications [Kaufman et al.
2008; Smith et al. 2012; Yao et al. 2017; Zheng and James 2011; Zhu
et al. 2018], necessitating heuristics, approximations and/or multiple
failsafe backups to succeed.

A long-standing challenge then has been to provide a single, uni-
fied QP solver that is 1) accurate, 2) efficient, and 3) scalable. By
accurate we mean that the QP solver converges to all reasonable
requested accuracies; by efficient we mean that it converges rapidly
in wall-clock time; and by scalable we mean that it efficiently con-
verges across both large- and small-sized QP instances. As we show
in Section 6, available QP solver libraries generally succeed for
some subsets of QPs, while often failing or becoming impractically
slow to achieve success for others. To make matters worse, in many
cases, given the algorithms employed, it is not possible to predict
in advance when a QP method will succeed or fail per QP problem
instance [Zheng and James 2011].

The key challenge for solving a QP is in identifying an active set
[Fletcher 2013]. An active set is a subset of a QP’s linear inequality
constraints that are treated as equalities at optimality. All other
inequalities can then effectively be safely ignored. If an active set is
found, a QP problem instance then reduces to solving a much easier
QP subject to just its active constraints set as equalities.

Algorithms for solving large-scale QPs generally treat the entire
constraint set as approximately “active” with barrier terms penal-
izing all constraint violations simultaneously. This allows the ap-
plication of large-scale, general-purpose sparse linear solvers, but
generally comes at the cost of uncertainty in the active set and
degraded solution accuracy. On the other hand, to address accuracy,
many other QP algorithms employ active-set methods. These are a
range of methods that iteratively explore and test active-set pro-
posals. Details vary across methods but in all cases each iteration
requires solving large numbers of reduced QPs. Each reduced QP
is solved subject to a different set of proposed active constraints
treated as equalities. In turn, solving these many reduced QPs accu-
rately and efficiently is the computational crux of active-set methods.
This amounts to solving at each instance an indefinite linear system
for equality constrained optimality conditions – a Karush-Kuhn-
Tucker (KKT) system [Boyd and Vandenberghe 2004; Fletcher 2013].
Current solutions employed rely either on accurate linear solvers
that work well for small systems but are too expensive for repeated
solves of new large, sparse problems, or else rely on less expensive

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

but also less accurate methods for solving linear systems that once
again unacceptably reduce accuracy [Stellato et al. 2020].
To address these issues we construct the Numerically Accurate

Sparsity-Oriented QP Solver (NASOQ), a new, general-purpose,
active-set algorithm for the accurate, efficient, and scalable solution
of QPs. NASOQ is built upon three core contributions:

• LBL: a new LDL factorization algorithm for the fast, accu-
rate factorization and update of sparse symmetric indefinite
systems including those that arise in KKT problems;

• SoMod: a new sparsity-oriented row modification method
that enables fast factorization for KKT matrix changes via
efficient updates of previously computed factors; and

• Two new QP solvers that extend the Goldfarb-Idnani (GI)
active-set strategy [Goldfarb and Idnani 1983] by application
of LBL and SoMod to enable user-exposed trade-offs between
speed and accuracy for large and sparse QP problems.

SoMod is a new algorithm designed to enable the rapid and accu-
rate solutions of the many successively-updated KKT systems en-
countered during active-set QP solves. At start of QP solves, SoMod
performs an initial symbolic analysis of a KKT system containing
all constraints, then utilizes this information for both the initial
factorization (which includes only the equality constraints) as well
as subsequent factorizations (which include proposed active sets).
By precomputing symbolic information, SoMod enables efficiently
updating the factorization when constraints are added or removed
from the proposed active set.
To compute each initial indefinite factorization for SoMod, we

construct LBL, a novel implementation of the LDL factorization
using Load-Balanced Level Coarsening [Cheshmi et al. 2018] for
parallelization. LBL provides state-of-the-art performance for solv-
ing indefinite KKT systems while enabling precomputation of the
required symbolic analysis for subsequent factorization updates.
With these building blocks in place we construct and analyze

NASOQ via a pair of new active-set QP algorithms. To consistently
evaluate NASOQ with both prior and future QP methods we also in-
troduce a new benchmark set composed of both practical, real-world
stress-test QPs taken from a wide range of geometry, simulation,
and design applications as well as prior QP benchmarks [Jacobson
et al. 2011, 2018; Levin 2019; Maros and Mészáros 1999; Segata 2019;
Weidner et al. 2018]. As we demonstrate in Section 6, across a range
of requested accuracies in this benchmark NASOQ obtains consis-
tent accuracy by converging for 99.5% of benchmark problems while
the best convergence across competing state-of-the-art solvers is
94%. At the same time NASOQ remains most efficient by provid-
ing an average speedup of 1.7×–24.8× across requested accuracy
ranges compared to the fastest competing times across compared
QP solvers. Please see Section 6 for details of our analysis.

2 PROBLEM STATEMENT AND PRELIMINARIES
We focus on the solution of convex quadratic programming problems
to find the linearly constrained minimizers of quadratic energies. In
full generality our problem then is

min
x

1
2 xTHx + qT x s.t. Ax = b, Cx ≤ d (1)

where the unknown minimizer x ∈ Rn is constrained by linear
equality constraints Ax = b and inequality constraints Cx ≤ d .
Note that in many cases we may have only inequality or equality
constraints. However, in the following, without loss of generality,
we consider the full mixed case. Here the symmetric matrix H is,
either by construction or standard user regularization [Golub and
Van Loan 2012; Schenk and Gärtner 2006], a positive-definite matrix.
The QP in (1) is then strictly convex. In applications, the matrices
H , A, and C are often large and sparse. By sparse we mean that the
majority of matrix entries are zero, e.g., we have an average of 98%
zero entries in our benchmark examples.

Unlike the solution of symmetric linear systems (or equivalently,
unconstrained quadratic energies) the optimality conditions, and
thus the accuracy of a QP solution, are much more complex to
evaluate. Optimality of (1) is given by the specialized Karush-Kuhn-
Tucker (KKT) conditions1 [Fletcher 2013; Wong 2011]

Hx + q +ATy +CT z = 0
Ax − b = 0

0 ≤ z ⊥ d −Cx ≥ 0.
(2)

where y and z are the QP problem’s Lagrange multipliers [Wong
2011].

2.1 Accuracy
Applications require controllable quality and thus controllable accu-
racy for solutions to the QP problem. The accuracy of a QP solution
is evaluated by reduction of four corresponding measures2

Primal-feasibility: ∥
(
(Ax − b)T , (max(0,Cx − d))T

)T
∥ < ϵf , (3)

Stationarity: ∥Hx + q +ATy +CT z∥ < ϵs , (4)
Complementarity: ∥z ⊙ (Cx − d)∥ < ϵc , (5)
Non-negativity: ∥min(0, z)∥ < ϵn . (6)

In the following we design NASOQ and analyze QP methods on
their ability to drive all four of these measures (∞-norm) below a
common,maximum error threshold accuracy: ϵ ≥ max(ϵf , ϵs , ϵc , ϵn).
While necessary accuracies for each of the four measures certainly
change per application, a desirable goal for a general-purpose QP
algorithm is to solve every reasonable problem to any requested
accuracy. Here we design for general-purpose QP problems and so
do not predict a priori what measures are most important. Thus we
evaluate fitness by asking each solve to drive all measures below ϵ .

Primal-feasibility measures constraint satisfaction. Applying the
∞-norm gives the worst violation of the enforced constraints by
a given solution. In many applications constraints are invariants
that need to be satisfied such as positive volume, non-penetration,
or structural feasibility. Errors in constraint satisfaction lead to
unacceptable failures and constraint drift in applications that depend
on constraint resolution at each call of a QP solve.

Stationarity measures the balance between energy and constraint
gradients. This is critical for stable and accurate solutions. For ex-
ample, in structural engineering applications stationarity measures
1Here x ⊥ y is the complementarity condition xiyi = 0, ∀ corresponding entries i in
vectors x and y .
2Here ⊙ is the Hadamard (element-wise) product.

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 3

Algorithm 1: Dual-feasible active-set QP solver.
Data: H, q, A, b, C, d
Result: x, y, z
/* Feasibility phase */

1 Initialize z0 = 0; k = 0; active-set=∅;
2 Solve Equation 7 to initialize x0, y0;

/* Optimality phase */

3 while xk is not primal-feasible do
4 Solve Equation 8 to compute descent ∆x ,∆y,∆z;
5 Compute the step length t ;
6 if t = ∞ then
7 Problem is unbounded.;
8 else
9 Update xk+1,yk+1, zk+1 with ∆x ,∆y,∆z;

10 Update the active set;
11 Update the KKT system with the updated active set;
12 end
13 k = k + 1 ;
14 end
15 xk ,yk , zk are optimal;

how well force balance is modeled, while in dynamic simulations
stationarity measures how well the equations of motion are satisfied.
In many applications even small residuals of stationarity with re-
spect to measured dimensions of the systems can lead to simulation
instabilities and blow-ups and/or unacceptable modeling errors for
engineering applications.
Complementarity measures the pairwise products of dual vari-

ables and their corresponding inequality constraints and is critical
for correctly capturing active sets. For example, in multi-body simu-
lations [Erleben 2013; Heyn et al. 2013] dual variables often represent
contact forces while constraints model intersections. Complementar-
ity then encodes the property that contact forces cannot be applied
unless objects are touching. Large violations of complementarity
can create instabilities and visual artifacts of floating bodies with
contact forces artificially applying action at a distance.

Non-negativity then ensures that dual variables are positive. Neg-
ative dual variables likewise have serious consequences for sta-
bility and quality in applications. Consider, for example, bounded
biharmonic weights for deformation skinning are computed via
QP solves [Jacobson et al. 2011] with resultant weights requiring
non-negativity; while similarly for contact problems negative dual
variables indicate an unacceptable violation of the “no-velcro” con-
dition – that contact forces should push but not pull [Smith et al.
2012].

2.2 Active-Set KKT System Solutions
We focus on enabling scalable, efficient, and accurate solutions for
QPs at all scales. For a given input QP we seek an as-efficient-as-
possible solver that will obtain a user-requested accuracy. While
state-of-the-art barrier and first-order QPmethods are promising for
scaling to large QP problems, their solutions suffer from degraded
accuracy [Stellato et al. 2020] and no general method exists for

determining a priori when they will succeed or fail in reaching
the requested accuracy [Boyd et al. 2011]. On the other end of
the spectrum, active-set QP methods provide high-accuracy QP
solutions. However, in order for active-set QP algorithms to reach a
targeted accuracy they must also accurately solve a large number
of successive indefinite linear systems visited by the algorithm at
each inner iteration, which can be computationally expensive.

Active-set methods start with a feasible solution and keep a run-
ning set of proposed active inequality constraintsW to reach the
optimal solution while maintaining feasibility conditions. Active-
set methods are then either primal-feasible, preserving the primal-
feasibility condition or else are dual-feasible, preserving the non-
negativity condition. Here we focus on the Goldfarb-Idnani (GI)
[Goldfarb and Idnani 1983] strategy. GI is a dual-feasible active-set
approach and so enables direct and inexpensive initialization [Wong
2011].

The high-level pseudocode for the GI algorithm is shown in Algo-
rithm 1. The GI algorithm begins (lines 1–2) by initializing an empty
active-set proposal, W = ∅ with zero dual variables, z0 = 0. The
resulting initial KKT system to solve is then the indefinite linear
system, [

H AT

A 0

] [
x0
y0

]
=

[
-q
b

]
(7)

which corresponds to solving a feasible QP with just equality con-
straints applied.
Then, each successive iteration of the GI method (lines 3–14,

Algorithm 1) improves the last iterate’s solution by updating the
active-set proposal W and so the corresponding active-set con-
straint matrix CW and the right-hand side constraint vector cw .
The GI method updates the active set by only adding one or re-
moving one constraint in each successive iteration. Herew is the
activated constraint.
The next descent direction for the QP is then determined by

solving the updated KKT system
H AT CT

W

A 0 0
CW 0 0

∆x
∆y
∆z

 =

cw
0
0

 (8)

The dual and primal variables of the next iteration are then up-
dated by finding step lengths along the computed descent direc-
tions. The step lengths ensure that the activated constraint becomes
primal-feasible and all dual variables remain dual-feasible. Thus, in
each iteration, both the dual and primal variables corresponding to
the constraints in the active set are both non-negative and primal-
feasible. Each iteration’s linear solve of the updated indefinite KKT
system in (8) becomes increasingly expensive as QP system sizes
and constraint numbers grow. However, at the same time, the GI
algorithm requires accurate solutions for each of these successive
KKT systems for algorithmic stability and in order to consistently
obtain accurate solutions for the overall QP problem [Powell 1985].

A key observation then is that each update toW and correspond-
ingly to the matrix in (8) is small and specifically requires the update
of just a single row inCW . Currently, active-set algorithms leverage
this observation with indirect methods [Gould 2006] that solve the
KKT system by adaptively updating it with respect to W via the
application of the QR decomposition and the Schur complement.

, Vol. 1, No. 1, Article . Publication date: May 2020.

4 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

While indirect methods provide accurate and efficient KKT solutions
at small scales, they are unable to take advantage of sparsity. These
methods suffer from extensive fill-in3 due to the QR factorization
and the Schur complement form and so do not scale due to slow
compute times and memory overhead for QP problems with large
numbers of variables and/or large numbers of constraints.
Alternately direct active-set QP methods form the KKT system

explicitly and solve it via direct or iterative linear solvers. Direct
methods solve each iteration’s KKT system via indefinite factoriza-
tion methods [Maes 2011] followed by a solve stage. This leads to
accurate and scalable solutions but is inefficient due to the repeated
cost of recomputing factorizations. Application of iterative methods,
e.g., Krylov subspace methods [Gould et al. 2001], in place of direct
solves are not typically performed as it remains challenging to find
effective, general-purpose preconditioners for KKT matrices with
generic active sets [Maes 2011]. Re-purposing prior factorizations
to compute the solution of a modified KKT system is thus a highly
attractive direction for combined efficiency and accuracy. However,
to our knowledge, no previous solution for indefinite matrix fac-
torization updates exists. The closest possible option we find is
CHOLMOD row modification [Davis and Hager 2005], which is
an efficient and effective solution designed for symmetric positive
definite (SPD) matrices but does not provide accurate and stable
solution updates for indefinite KKT systems.
In this work, we focus on enabling accurate, scalable, and effi-

cient QP solutions by taking advantage of sparsity and by efficiently
updating factorizations of the active-set method’s indefinite KKT
system. In doing so we address the gap between direct and indirect
methods. We develop NASOQ to combine the advantages of lever-
aging direct, accurate solutions of KKT systems with the small and
localized updates of subsequent KKT systems. NASOQ leverages
our new SoMod method which enables efficient, sparsity preserving
updates of existing factorizations after each new constraint update
to W and, as we show in Section 6, enables the application of accu-
rate direct factorization methods across a wide range of large- and
small-scale QP problems not previously possible.

3 RELATED WORK
QP solvers. QP algorithms can be categorized into three broad
classes of methods: barrier (primarily interior-point), first-order,
and active-set.

Barrier methods. Barrier methods [Domahidi et al. 2013; Gertz
and Wright 2003; Gondzio and Grothey 2006; Mattingley and Boyd
2012; Mosek 2015; Optimization 2014; Pandala et al. 2019; Waltz and
Nocedal 2004] apply weighted barrier functions in the objective to
enforce inequality constraints, converting inequality constrained
QPs into equality-constrained nonlinear problems that can be solved
by Newton or quasi-Newton methods [Boyd and Vandenberghe
2004; El-Bakry et al. 1996]. Performing a series (homotopy) of pro-
gressively tighter and thus more challenging barrier solves leads
to interior-point and related methods [Boyd and Vandenberghe
2004]. As unconstrained optimization methods can then be directly
applied, barrier methods can leverage sparse linear methods and

3Fill-ins are additional nonzeros created in the factor during a matrix factorization.

so scale to large systems. Thus popular, a wide range of commer-
cial [Mosek 2015; Optimization 2014] and open-source [Gertz and
Wright 2003; Wächter and Biegler 2006] interior-point solvers are
available. However, accurate solutions are challenging to obtain for
barrier methods – especially as system and constraint sizes grow. As
accuracy is tightened, barrier solvers generally require increasingly
large numbers of iterations. In turn, each iteration necessitates the
expensive solution of a new, large-scale linear system.

First-order method: OSQP. Barrier methods leverage second-order
expansions of constraint information via Newton-type methods
which can be expensive for computation per iterate. On the other
hand, per-iteration efficient methods can be constructed by lever-
aging first-order strategies. In particular, operator splitting via the
alternating direction method of multipliers (ADMM) has been re-
cently applied to design OSQP [Stellato et al. 2020], an efficient,
highly scalable, first-order QP algorithm. OSQP forms all constraints
into a single, large saddle-point-like system and then re-applies the
solution of this system in each successive ADMM iteration to update
primal and dual terms. OSQP thus can take advantage of lightweight
computations per iteration and scales well to large, sparse QP prob-
lems. However, consistent with first-order strategies it can be slow
or even unable to reach accurate solutions for larger and more
challenging QP problems.

Active-set methods. Active-set methods [Ferreau et al. 2014; Gill
et al. 2005, 1991; Maes 2011; Schittkowski 2003] start with an initial
feasible solution and then iterate to obtain the optimal solution
while maintaining feasibility. After finding the initial feasible so-
lution, which is either primal- or dual-feasible depending on the
method, active-set methods look for the optimal active-set by solv-
ing successive KKT systems that include all constraints in the cur-
rent active-set. Solving these KKT systems is the most expensive
part in these methods. Active-set methods are divided into direct
and indirect based on how they solve KKT systems [Benzi et al.
2005]. Indirect methods, known as range-space [Goldfarb and Id-
nani 1983] and null-space [Gill et al. 2005] methods, solve the KKT
system using a Cholesky factorization along with a QR or Schur
complement. Although these techniques provide an accurate solu-
tion, they do not preserve sparsity and thus do not scale for large
QP problems due to high memory usage and extensive computa-
tions in the QR and Schur complement factorization. Full-space
methods [Gould et al. 2003; Huynh 2008], on the other hand, are
direct active-set QP methods that work directly with the KKT sys-
tem. Solving the KKT system using an iterative algorithm such as
a Krylov subspace method [Gould et al. 2001] for active-set meth-
ods requires finding an efficient preconditioner for any arbitrary
active-set which is often difficult [Maes 2011]. Factorizing the KKT
system using a direct method is very expensive and thus existing
full-space techniques build an augmented system, along with an
initial KKT, to compute the solution of the KKT system via the Schur
complement [Gould et al. 2003] or Block-LU [Huynh 2008]. Both of
these methods require large amounts of storage thus limiting their
scalability and efficiency. Nevertheless, full-space methods have
a promising property – they preserve the sparsity pattern of the
system. In this work we leverage this sparsity to efficiently re-use
factors across iterations. We introduce a new, full-space active-set

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 5

algorithm, based on the Goldfarb-Idnani active-set strategy, that
directly factorizes the successive KKT systems with SoMod and
LBL to enable sparsity-oriented row modification and indefinite
factorization of the successive KKT systems across our full-space
QP solver’s iterations.

LDL factorization. Using direct factorization methods for solving
a linear system of equations is common in many computer graphics
applications [Herholz and Alexa 2018; Herholz et al. 2017; Yeung
et al. 2016] and is a subroutine in full-space QP solvers. A number
of existing factorization methods are designed for solving a sparse
SPD system of equations [Chen et al. 2008; Cheshmi et al. 2017,
2018; Herholz and Alexa 2018]. These methods use a square-root
based Cholesky factorization [Davis 2006; Golub and Van Loan
2012] that will fail with symmetric indefinite systems from negative
values under the square root when factorizing diagonals. Applying
these solvers with regularization [Herholz and Alexa 2018] prevents
these types of failures but can introduce significant inaccuracies
to problem solutions. Some existing indefinite factorization meth-
ods are square-root free [Golub and Van Loan 2012] but are slow,
e.g., Suitesparse’s LDL [Davis 2019] which is a single-thread imple-
mentation. Parallel indefinite solvers such as MKL Pardiso [Wang
et al. 2014], the standalone Pardiso solver [Schenk and Gärtner 2002,
2006] and MA57 [Duff 2004; Hogg and Scott 2013] provide fast
factorizations but do not support factor modifications for when a
row/column is changed. We introduce LBL, a new, parallel, indefi-
nite, square-root free solver with pivoting, that additionally enables
modifying already-computed factors efficiently. LBL extends the
parallelism strategy from Cheshmi et al. [2018] from SPD to indefi-
nite factorizations where the now-required pivoting introduces new
dependencies.

L-factormodification. Modifying the L-factor to avoid re-factoring
a symmetricmatrix after small changes [Davis andHager 1999, 2009]
is a critical task in computer graphics [Hecht et al. 2012; Herholz and
Alexa 2018], circuit simulation [Davis and Hager 2005; Hager 1989],
and optimization [Davis and Hager 2005]. In all such applications,
the linear system of equations changes either by a rank update/-
downdate (adding or subtracting the outer product of a row by
itself) or a row modification. Existing modification methods [Davis
and Hager 1999; Herholz and Alexa 2018] are generally designed to
perform rank update/downdate (A +wwT) on SPD matrices. These
modification methods are then not applicable to our active-set QP
solver where a row/column is modified for a symmetric indefinite
system in each iteration. In turn, to our knowledge the only exist-
ing system with sparse row modification is CHOLMOD [Davis and
Hager 2005] which is an efficient solution designed for SPD matri-
ces. Thus CHOLMOD row modification does not provide accurate
and stable solution updates for indefinite KKT systems; see Section
6.5. We propose SoMod row modification to leverage the sparsity
pattern of constraint row updates and so accurately and efficiently
modify the L-factor of indefinite factorization.

4 SOMOD: SPARSITY-ORIENTED ROW MODIFICATION
A scalable solution to a dual-feasible active-set QP requires an effi-
cient solution to the successive KKT systems in Equations 7 and 8.

This section discusses SoMod, a novel method for efficiently solv-
ing these KKT systems using the combination of a novel sparsity-
oriented row modification method, a novel implementation of LDL
factorization, and an efficient triangular solve. SoMod consists of
two phases: an initialization phase associated with Equation 7 and
a factor modification phase associated with Equation 8. In both
phases, SoMod solves Kx = s for x where s is a dense vector and K
is a sparse symmetric indefinite KKT matrix. At the start of each QP
solve we initialize the KKT matrix with the subsystem correspond-
ing to applying just the equality constraints, so that:

K =
[
H AT

A 0

]
(9)

where H and A are respectively the matrices for the quadratic objec-
tive and equality constraints. In order to solve the system Kx = s ,
SoMod applies LDL factorization to decompose the matrix K into

K = Pf il lPS (LDL
T + E)PTS P

T
f ill (10)

where D is a blocked diagonal symmetric matrix (due to our use of
Bunch-Kaufman pivoting [Schenk and Gärtner 2006]), L is a sparse
lower triangular matrix, E is a diagonal perturbation matrix (neces-
sary to avoid zero diagonals, which can cause instabilities [Hogg
and Scott 2013; Schenk and Gärtner 2006]), Pf il l is a fill-reducing
ordering (such as METIS [Karypis 1997]), and PS is reordering due
to pivoting. Given this factorization of the matrix, SoMod then uses
L and D along with s (the right-hand side) to quickly compute the
solution x via triangular solve.

The overall process of the factorization in this initialization phase
of SoMod closely follows that of standard sparse linear system
solvers. For efficient factorization, the sparsity pattern of K is ana-
lyzed during symbolic analysis. Symbolic analysis uses the sparsity
pattern ofK to construct symbolic information, which consists of the
fill-reducing ordering Pf il l and the sparsity pattern of L. Symbolic
information guides the numeric factorization, which operates on
the actual numeric values of K to compute the nonzero values of
L and D. Unlike prior work, SoMod applies symbolic analysis in a
way that allows the results to be reused during the modification
phase. The initialization phase also includes permutation with Pf il l ,
constraint-aware super-node creation, perturbation with E, and a
restricted pivoting strategy with PS ; all of these steps are described
in Section 4.1.

The modification phase in SoMod, described in Section 4.2, itera-
tively solves each new, updated KKT system which contains addi-
tional active constraints. During this phase, SoMod solves Kx = s
for each updated K :

K =

H AT CT

W

A 0 0
CW 0 0.

 (11)

Here, for each update, Cw contains rows from the full constraint
matrix corresponding to the current proposed active constraint set.
Rather than solving each of these systems from scratch, SoMod
updates the starting solution in our initialization phase using factor
modification. Specifically, SoMod updates the symbolic information

, Vol. 1, No. 1, Article . Publication date: May 2020.

6 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

1
2
3
4
5
6
7
8

H• • •
• •
• •

• • •
• • •
• •
• •
• • •
A

1
2

• •
•

1
2
3
4

C• • •
• •
• •

• • • • • •
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

K• • • •
• • • • •
• • • •

• • • • • • •
• • • • •
• • • •
• • • •
• • •
• •

•
• • •
• •
• •

• • • • • •
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

L•
•

•
• • • •

•
•
• •

•
• •

•
• • • •

• • • • •
• • • • • • • • •

• • • • • • • •
1 2 3 4 5 6 7 8 9 10

1

12

3

4

5

67

8

9

10

1

(a) Sparse matrices in Equation 1 (b) Inclusive matrix (Hinc) (c) L-factor of K (d) Inclusive assembly tree (πinc)

Fig. 1. The symbolic initialization phase of SoMod starts with creating an inclusive matrix, shown in Figure 1b from the matrices in Figure 1a which are inputs
to the QP problem in Equation 1. The inclusive matrix is then permuted with a fill-reducing permutation to compute the sparsity pattern of the L-factor with
minimum number of fill-ins. The sparsity pattern of the L-factor of the inclusive matrix in Figure 1b is computed and shown in Figure 1c. Boundaries of
Supernodes are shown with dotted lines and supernode numbers are illustrated below the L-factor. The corresponding inclusive (assembly) tree of the L-factor
in Figure 1c is shown in Figure 1d. The colored nodes correspond to the inequality constraint rows (matrix C in Figure 1a). The constraint-aware supernode
creation strategy ensures that supernodes corresponding to the inequality constraint nodes contain only a single column. The colored nodes of the inclusive
tree are removed to create the pruned inclusive tree passed to numerical factorization along with the L-factor in Figure 1c.

from the initialization phase, followed by updating the numeric L-
factor to account for the added/removed constraints in each iteration.
Then, a triangular solve is once again used to find x given the
updated L and D matrices.

4.1 Initialization Phase
In SoMod, the initialization phase produces symbolic information
that can be reused by subsequent factorizations in the factor mod-
ification phase. After producing symbolic information, this phase
then proceeds with numeric factorization, followed by triangular
solve to return the solution to the KKT system.

4.1.1 Symbolic Analysis with the Inclusive Matrix. The initialization
phase first builds an inclusive matrix. Then, we permute the inclusive
matrix and generate symbolic information, including the sparsity
pattern of the L-factor of the inclusive matrix, the assembly tree
of the inclusive matrix (the inclusive tree), a pruned inclusive tree,
and Pf il l in Equation 10. This symbolic information collectively
facilitates an efficient numeric factorization in the initialization
phase and also provides symbolic information leveraged by the
factor modification stage.
The inclusive matrix, the sparsity of L, and the assembly tree. An

inclusive matrix is first assembled using the objective and equal-
ity constraint matrices (H and A) and the sparsity pattern of the
inequality constraint matrix. That is, the inclusive matrix includes
all entries of C but with values set to zero. The numerical values
of the inequality constraint matrix will be added to the inclusive
matrix during the modification stage of SoMod when a constraint is
added. Figure 1b shows an example of an inclusive matrix created
from the matrices in Figure 1a.

SoMod then builds an elimination tree [Davis 2006; Liu 1990] for
the inclusive matrix, which enables obtaining the sparsity pattern of

the L-factor and creating the inclusive assembly tree. The elimina-
tion tree of the inclusive matrix is a tree that expresses dependencies
between operations on columns of the L-factor, dictating the order
of factorization. Because of fill-ins, the sparsity pattern of the L-
factor is different from that of the inclusive matrix. The number of
fill-ins correlates with the number of operations in the factorization
process. Thus, after creating the inclusive matrix, it will be permuted
with Pf il l , a fill-reducing ordering, which improves the speed of
numeric factorization by reducing the number of operations in the
factorization process.

Finally, the inclusive elimination tree and the sparsity pattern of
its L-factor are used to create constraint-aware supernodes and the
inclusive assembly tree, which is the supernodal version of the inclu-
sive elimination tree. Supernodes [Davis 2006; Schenk and Gärtner
2006] are created by grouping columnswith similar sparsity patterns
if they form a chain in the elimination tree; that is, two consecutive
columns are grouped together if one column is the only child of
its next column. Thus each node in the assembly tree represents a
group of columns together in a supernode; a node in the elimination
tree represents just a single column. For example, the tree in Fig-
ure 1d is the assembly tree of the supernodal L-factor in Figure 1c;
each node of the tree corresponds to a supernode and the numbers
shown below the L-factor correspond to the supernode’s number in
the assembly tree. The parent of each node in the assembly tree is
obtained using the row index of the first off-diagonal nonzero of its
corresponding supernode in the L-factor. For example in Figure 1c,
the row index of the first off-diagonal nonzero of supernode 3 is 4
and thus node 4 is the parent of node 3 in Figure 1d.
Sparse factorization can be more efficient when operating on

supernodes instead of individual columns [Chen et al. 2008]. Su-
pernode creation in SoMod is constraint-aware, so rows/columns
of C are not grouped with each other or with other columns; this

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 7

makes it possible to add or remove constraints separately from one
another while still allowing the rest of the assembly tree to bene-
fit from the increased efficiency of the supernodal approach. For
example, in the inclusive tree in Figure 1d, column 14 can form a
supernode with columns 12 and 13; however, since column 14 is the
fourth constraint in C , it is excluded from the supernode.
The pruned inclusive assembly tree. The inclusive assembly tree

contains dummy entries for all inequality constraints. During this
phase, and during row modification, we instead use a pruned in-
clusive assembly tree that contains only the entries corresponding
to active inequality constraints; this is represented by an array of
parents, denoted with π . Thus, before performing the initial factor-
ization, we remove all dummy entries corresponding to inequality
constraints. As an additional optimization, SoMod also creates a
visibility vector v that shows whether a column of the L-factor
should be visited during the initial numerical factorization phase;
this information is derived from the pruned assembly tree, but in
practice using the visibility vector can be faster than finding paths
in the assembly tree. Because the initial KKT matrix only includes
equality constraints, the visibility vector is initialized by setting
all rows of the inclusive matrix that correspond to rows of C to
invisible.

Constraint-aware supernode creation facilitates creating the pruned
inclusive tree by ensuring every row of matrix C corresponds to
one node in the inclusive tree. This allows removing rows by only
changing the pruned inclusive tree as described in Section 4.2.1.

4.1.2 Numeric Factorization with LBL. Numeric factorization com-
putes the nonzero values of the L-factor in solving Equation 7 (line 2
of Algorithm 1) using LBL, a modified LDL factorization algorithm
that uses Load-Balanced Level Coarsening [Cheshmi et al. 2018], a
scheduling technique that improves the performance of numeric fac-
torization on parallel architectures. While prior work applied Load-
Balanced Level Coarsening to Cholesky factorization for symmetric
positive definite matrices, LBL extends the technique to symmetric
indefinite matrices that arise from KKT problems.
Numeric factorization takes as input the sparsity pattern of the

L-factor and the visibility vector, and first computes the perturbation
matrix (E in Equation 10), using information from the inclusive
matrix to enable a stable factorization. Perturbation ensures no
zeros exist in the diagonal entries of the matrix, since these lead to
division-by-zero during factorization. Numeric factorization then
uses the pruned inclusive assembly tree to determine an efficient
and correct order of computation, and then uses this schedule to
compute the nonzero values of L, D, and PS in Equation 10.

Perturbation. We add a small value to zero diagonals of the inclu-
sive matrix that correspond to rows of the equality constraints. Since
the location of the equality constraints are known in the inclusive
matrix, SoMod computes the perturbation matrix E:

Ei,i = diaд_pert ; n ≤ i ≤ n +m (12)

where n and m are the number of variables and constraints respec-
tively. Matrix E will be added to the inclusive matrix as shown in
Equation 10.

Load-Balanced Level Coarsened scheduling. Before performing the
factorization, we use Load-Balanced Level Coarsening to compute

Algorithm 2: Blocked-diagonal LDL factorization.Ma-
tricesK , L,D, PS correspond to Equation 10. super is a vector
that shows the boundary of supernodes in L.M is a set that
shows the order of computation. Matrices L and D only have
the sparsity pattern for LBL and include the previous factor
for row modification.
Data: K , L, D, super ,M
Result: L, D, PS

1 for j ∈ M do
2 b = super j
3 u = super j+1
4 L:,b :u = 0
5 T(:,:) = 0

/* Applying contributions from factorized supernodes in r */

6 for r ∈ L0:b, : do
7 T = T + Lb :n,r× Dr,r× LTb :u,r
8 end
9 [Lb :u,b :u , Db :u,b :u , PSb :u,b :u] = LDL(Kb :u,b :u - Tb :u, :)

/* Applying column permutation */

10 L:,b :u = L:,b :u× PTS b :u,b :u
11 Lu :n,b :u = (Lb :u,b :u × Db :u,b :u)

−1 × (Ku :n,b :u −Tu :n, :)
12 end

/* Applying row permutation */

13 L = PS × L

the order of factorization using the pruned inclusive assembly tree.
This scheduling algorithm provides a partitioning of the tree that
groups supernodes into partitions that can execute efficiently on
a parallel processor while preserving ordering dependencies. For
example, in the pruned tree of Figure 1d, nodes 1, 3, and 6 can run
in parallel, since none of them depend on lower non-colored nodes
in the tree.

LBL: parallel blocked-diagonal LDL factorization. LBL is a parallel
LDL factorization method that takes the computed schedule from
the Load-Balanced Level Coarsening algorithm, the visibility vector,
and the sparsity pattern of the L-factor and computes the nonzero
values of the L and D factors of the perturbed KKT matrix of the
system in Equation 7 (line 2 in Algorithm 1). Pseudocode for LBL is
shown in Algorithm 2.

LBL uses a supernodal left-looking approach [Davis 2006] (one of
several ways to compute LDL factorization), computing the supern-
odes of the L-factor using already factorized supernodes to the left
of the current supernode. The list of supernodes and the order of
computation are specified in super and M respectively. Each itera-
tion of LBL first accumulates contributions of supernodes to the left
and stores them in temporary matrix T. After deducting T from the
current column (line 9), the algorithm first factorizes the diagonal
part of the current supernode using a dense LDL factorization and
then uses the computed factors to factorize the off-diagonal part
of the current column (line 11). The dense LDL factorization uses
the Bunch-Kaufman algorithm, which only reorders rows within a
supernode of the L-factor. Thus, LBL pivoting is restricted to rows

, Vol. 1, No. 1, Article . Publication date: May 2020.

8 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

Algorithm 3: Symbolic row removal algorithm. k is the
node to remove. π is the pruned inclusive assembly tree.v is
the visibility vector. r is the list of root nodes. π−1(k) returns
the children list of node k .
Data: π , v , k, r
Result: π , v , r
/* Find the parent of deleting node k */

1 f = π (k)
/* Update all children of node k with its parent */

2 for j ∈ π−1(k) do
3 if v(j) then
4 π (j) = f

5 if k is a root node then
6 r = r

⋃
{j}

7 end
8 end
9 end

10 r = r − {k}
/* Update the visibility vector */

11 v(k)=false

within a supernode [Schenk and Gärtner 2006], which preserves the
sparsity pattern of the L-factor during factorization.

After pivoting, rows of the L-factor in supernodes to the left of the
current supernode must be permuted as well; were this done within
the parallel region (lines 2–11), it would introduce dependencies that
would prevent efficient computation, rendering the Load-Balanced
Level Coarsening schedule useless. Thus, unlike typical LDL fac-
torization methods, LBL separates row and column permutations,
applying row permutations after the factorization (line 13). After
obtaining the factorization, SoMod then uses triangular solve to
efficiently obtain a solution to the initial KKT problem, as described
in Section 4.3.
LBL thus works with the same base SBK algorithm as in MKL

Pardiso [Schenk and Gärtner 2006]. However, LBL enables addi-
tional important features necessary for updates. The first and most
key feature is that LBL enables factor modification: when adding or
removing a constraint fromK , LBL modifies the factor as opposed to
MKL Pardiso which requires computing the factor from scratch. The
second feature is LBL’s application of a static scheduler [Cheshmi
et al. 2018] to schedule the computation to ensure load-balanced
parallelism while preserving locality. In contrast, MKL Pardiso uti-
lizes dynamic scheduling which optimizes solely for load-balanced
execution, which results in suboptimal locality. To prevent depen-
dencies due to pivoting in SBK that would limit parallelism, LBL
postpones row permutation to after numerical factorization.

4.2 Factor Modification
After the initialization phase, finding a solution to the QP problem
requires solving a large number of successive symmetric indefinite
KKT systems. The factor modification phase in SoMod efficiently
solves these successive systems by reusing the computed factors
from the initialization phase and modifying them based on whether
a new inequality constraint is added or removed. In contrast, the

Algorithm 4: Symbolic row addition algorithm. k is the
node added. π is the pruned inclusive assembly tree. πinc
is the inclusive assembly tree. v is the visibility vector. r is
the list of root nodes. ρinc (j) returns the list of ancestors of
node j. π−1(f) returns the children list of node f .
Data: π , πinc , v , r , k
Result: π , v , r
/* Find the first visible ancestor of k */

1 f = min {j |j ∈ ρinc (k) ∧v(j)}
2 if f is a node then

/* Find all nodes that k is their least ancestor */

3 for j ∈ π−1(f) do
4 if k ∈ ρinc (j) then
5 π (j) = k

6 end
7 end
8 else

/* Look for any missing child in root nodes */

9 for j ∈ r do
10 if k ∈ ρinc (j) then
11 π (j) = k

12 r = r - {j}
13 end
14 end
15 r = r

⋃
k

16 end
/* Update the pruned inclusive assembly tree */

17 π (k) = f
18 v(k)=true

usual approach would solve these systems from scratch, performing
symbolic analysis and factorization without reusing any previously-
computed information.

Successive KKT matrices are created by adding or removing rows
of matrix C to/from the existing KKT system. To obtain the solution
to the linear system in Equation 8 (line 4 of Algorithm 1), SoMod
first updates the symbolic information and then the numeric factor-
ization previously obtained from the initialization phase or obtained
from the previous iteration of the QP algorithm. It then uses the
updated L-factor and D to obtain a solution (Section 4.3). In this
subsection we explain how factor modification efficiently modifies
the previously obtained symbolic information and then uses the
new symbolic information to update the existing numeric factors.

4.2.1 SymbolicModification. The symbolicmodification phasemod-
ifies the pruned inclusive assembly tree using the full inclusive
tree when row k of the inclusive matrix is modified. Depending
on whether the modification adds or removes a row, SoMod uses
symbolic row removal or row addition algorithms to update the
tree.

Row removal.When a constraint is removed from the KKT matrix,
SoMod updates the pruned inclusive tree using the symbolic row
removal algorithm shown in Algorithm 3. To remove node k, the
removal algorithm first finds its parent and then assigns all children

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 9

1

3

46

8

9

1

12

3

46

8

9

10

1

12

3

46

8

9

1
(a) Pruned inclusive matrix (π0) (b) π1 (c) π2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
• •

•
• •

• • •
• • • • • • •

• • • • • • •

L0

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
•
• •

•
• •

• • • •
• • • • • • • •

• • • • • • • •

L1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
•
• •

•
• •

• • • •
• • • • • • • •

• • • • • • •

L2

1

(d) (e) (f)

Fig. 2. Factor modification example starting with the pruned inclusive tree (Figure 2a) and the L-factor (Figure 2d) that are computed in the initialization
phase, in order, by removing all nodes corresponding to the inequality matrix from the inclusive tree in Figure 1d and by hiding all rows of the inequality
matrix in the L-factor in Figure 1c. SoMod symbolically adds rows that correspond to nodes 2 and 10 (rows 5 and 14, respectively) to the inclusive matrix using
the row addition algorithm, resulting in a new pruned inclusive tree shown in Figure 2b. The corresponding supernodes in the L-factor in Figure 2e, shown in
red, are also visible and will be updated using the numerical modification algorithm. Figure 2c is the result of removing node 10 from Figure 2b by using the
symbolic row removal algorithm. Column 14 of the L-factor (which corresponds to node 10 in the tree) in Figure 2f becomes invisible after row removal.

of node k to its parent. If node k is a root node and therefore has
no parent, we add its children to a list r which contains all root
nodes. This list is used in the row addition algorithm to facilitate
the process of adding constraints corresponding to such nodes. For
example, Figure 2b shows a pruned inclusive assembly tree with
two already-added constraint rows 2 and 10 and Figure 2c shows
the pruned inclusive assembly tree after node 10 is removed. Node 9
then becomes a root node, so Algorithm 3 adds it to r and removes
10 from r .

Row addition. When row k is added to the KKT matrix, SoMod
updates its symbolic information, finding where to insert node k into
the pruned inclusive assembly tree. The algorithm first visits the tree
to find the first visible ancestor of k. If there is a first visible ancestor,
the algorithm then finds the children of this closest ancestor f in the
pruned inclusive tree; the algorithm looks through these children
and updates any for which k is the parent. If k does not have a first
visible ancestor, the algorithm cannot use its ancestor’s information
to update the pruned inclusive tree and thuswould need to search for
its children by considering all nodes of the inclusive tree. Instead,
the algorithm uses the list of root nodes from the node removal
algorithm and only searches in r . Algorithm 4 shows the process

of row addition. Figure 2a shows the pruned inclusive tree with
no constraints and Figure 2b shows the pruned inclusive assembly
tree after adding constraint rows 2 and 10. When adding node 2,
Algorithm 4 first finds its visible ancestor, node 9, and then updates
the parent node with 9 since none of children of node 9 belong to
node 2. Node 10 is a root node in the inclusive tree of Figure 1d,
thus the algorithm goes over the list of root nodes, which has 9 in it
as explained in the example of the row removal section. Since 9 is a
child of 10 in the inclusive tree, its parent will be updated with 10.

4.2.2 Numeric Modification. SoMod uses the updated pruned inclu-
sive tree to update the numeric factorization of the newly-modified
KKT system by visiting only the columns that are dependent on
the modified row in the pruned inclusive assembly tree. Given the
pruned inclusive assembly tree of a linear system, solving the factor-
ization after adding or removing a row is similar to Algorithm 2. The
only difference is how the inputM is computed. Numeric modifica-
tion only updates supernodes that are in ρ(k), which are the nodes
in an up-traversal starting from k . An up-traversal from a node visits
all ancestors of that node. For example, the up-traversal of node 2
in the tree of Figure 1d is {2, 9, 10}. For the node removal case, the

, Vol. 1, No. 1, Article . Publication date: May 2020.

10 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

symbolic row removal algorithm is called after the numeric modifi-
cation. This allows the modification algorithm to apply the effect
of removing the node before removing the necessary information
from the symbolic information; instead, the row is replaced with
all zeros in order to update the numeric factorization. For the node
addition case, the symbolic row addition algorithm is called before
numeric modification, and the appropriate nonzeros are added to
the row. Calling Algorithm 4 before numeric modification allows
the numeric modification algorithm to utilize values of the added
row during the L-factor update.

4.3 Triangular Solve and Accuracy Refinement
In both the initialization phase as well as the modification phase,
once SoMod obtains the newly-computed or updated numeric fac-
tors L and D, it uses them to solve the linear system Kx = s . SoMod
finds the solution vector x by doing a forward triangular solve, a
block-diagonal system solve, and a backward triangular solve as
shown in Equation 13. SoMod uses an efficient parallel triangu-
lar solve from [Cheshmi et al. 2018] and a simple single-threaded
hand-written block-diagonal system solver for these steps.

b = (Pf il lPS)s

Lx1 = b

Dx2 = x1

LT x3 = x2

x = (Pf il lPS)
−1x3

(13)

As shown in Equation 10 and discussed in Section 4.1.2, we add
perturbation matrix E to the KKT matrix prior to solving. As a re-
sult, the solution x contains inaccuracies, necessitating an accuracy
refinement strategy to obtain an acceptable solution.
Accuracy refinement. It is standard practice to use an iterative

method after a direct solve to improve the accuracy of the solu-
tion [Arioli et al. 2007; Hénon et al. 2002; Saad 2003; Schenk and Gärt-
ner 2002]. SoMod uses an iterative method, right-preconditioned
GMRES [Saad 2003], to refine the obtained solution from the solve
phase. The GMRES algorithm is preconditioned with the output of
LDL factorization and performs up to max_iter iterations to achieve
the requested residual norm res_tol, but will terminate early if the
required tolerance is achieved.

5 NASOQ: NUMERICALLY ACCURATE
SPARSITY-ORIENTED QP SOLVER

With our key innovation SoMod in place, we now can define our two
closely-related QP solution algorithms, NASOQ-Fixed and NASOQ-
Tuned. Both methods integrate SoMod row modification and LBL
within the GI dual-feasible active-set framework and so provide
efficient, accurate, and sparsity-preserving full-space QP algorithms.
NASOQ-Fixed and NASOQ-Tuned both, as we show in Section
6, consistently improve over state-of-the-art QP methods across
our benchmark, while the two methods each individually offer a
different balance in the trade-off between efficiency and accuracy
for larger scale problems.
In this section we first highlight the changes applied by SoMod

row modification and LBL to the GI framework with NASOQ-Fixed

Algorithm 5: NASOQ: A dual-feasible full-space QP
solver.
Data: H, q, A, b, C, d
Result: x, y, z
/* Feasibility phase */

1 LinearSolve SoMod(H ,A,C);
2 z0 = 0; k = 0; active-set=∅; modify=ADD;
3 SoMod.symbolic_initialization();
4 SoMod.LBL(q, b);
5 [x0,y0] = SoMod.solve();

/* Optimality phase */

6 while xk is not primal-feasible do
7 w = most_violated(C,d,xk);
8 if modify == ADD then
9 SoMod.symbolic_row_addition(w);

10 SoMod.numerical_modification(w);
11 else
12 SoMod.numerical_modification(д);
13 SoMod.symbolic_row_removal(д);
14 end
15 [∆x ,∆y,∆z]=SoMod.solve();
16 Compute the step length t ;
17 if t =∞ then
18 Problem is unbounded.;
19 else
20 Update xk+1,yk+1, zk+1 with ∆x ,∆y,∆z;
21 Update the active set;
22 Add or remove a row to/from KKT;
23 Set д to removed constraint;
24 Setmodi f y to either ADD or REMOVE;
25 end
26 k = k + 1 ;
27 end
28 xk ,yk , zk are optimal;

and then, building off of this baseline, discuss the NASOQ-Tuned
method as a direct and natural extension of NASOQ-Fixed.
Algorithm 5 summarizes our full NASOQ-Fixed algorithm in

pseudocode. At each update and solution of the new active-set KKT
(previously lines 2 and 4 in Algorithm 1) NASOQ-Fixed now applies
the SoMod solve phase via LBL and row modification. This allows
NASOQ-Fixed to replace the Cholesky and QR solves in the standard
GI method; this is the key difference between NASOQ and standard
GI methods. In addition, standard GI implementations require one
additional iteration for each equality constraint while NASOQ, due
to its full-space approach, applies equality constraints by solving
the initial KKT system, see Equation (7).

Numerical optimization methods generally apply a wide diversity
of empirically tuned parameters [Nocedal and Wright 2006; Stellato
et al. 2020]. A key feature of NASOQ is that in our construction
of SoMod’s LBL and row modification we expose three parameters
with direct and intuitive interpretations that enable us to balance

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 11

efficiency against accuracy for different applications and problem
scales. With NASOQ-Fixed we demonstrate that without tuning a
default setting works well across the board. With NASOQ-Tuned
we similarly demonstrate that if a range of reasonable settings for
these parameters are a priori known, NASOQ’s active set approach
enables a rapid sweep for improved accuracy. These parameters are

• max_iter : the maximum number of refinement iterations for
incrementally improving the solution of a KKT system after
the solve phase (see Section 4.3);

• stop_tol : the threshold defining the upper bound for the resid-
ual accuracy of the KKT system during the refinement phase
(see Section 4.3);

• diaд_perturb: value added to zero-entry diagonals of the KKT
matrix (see Section 4.1.2) to stabilize LBL and row modifica-
tion in SoMod.

Increasingmax_iter and decreasing stop_tol generally improve ac-
curacy at the cost of more computation. Setting of diaд_perturb
then relates to problem conditioning and machine accuracy; a typ-
ical value is near square root of machine precision [Arioli et al.
2007].

5.1 NASOQ-Fixed
NASOQ-Fixed is a direct, one-shot application of our SoMod-enhanced
GI approach. Here we presume that, per-application, time is suf-
ficient for a single QP solve, but no further, and so seek the most
effective values for given input QP characteristics.

NASOQ-Fixed sets diaд_perturb and stop_tol to fixed values for
all input QP problems to 10−9 and 10−15 respectively. Here we find
that adaptingmax_iter per problem based on the requested accu-
racy ϵ is most effective (with the assumption that we will only
have a single attempt at the solve). When lower accuracy ϵ’s are
requested, NASOQ-Fixed applies fewer refinement iterations (low-
eringmax_iter) and then correspondingly increasesmax_iter to
obtain more accurate linear solves when higher accuracies are spec-
ified. Concretely, NASOQ-Fixed sets

max_iter =

1, ϵ > 10−4

2, 10−8 ≤ ϵ ≤ 10−4

3, ϵ < 10−8.
(14)

Finally, for very small QP problems, i.e., fewer than 100 nonzeros,
NASOQ-Fixed keeps max_iter = 3 as this does not impose an
appreciable cost.

5.2 NASOQ-Tuned
NASOQ-Tuned leverages the underlying active-set framework. Active-
set methods terminate in bounded time with respect to number of
constraints, and, in practice generally much more rapidly than bar-
rier and first-order approaches [Maes 2011; Wright 1997]. Thus the
cost of running multiple passes of NASOQ to determine whether
a chosen setting for our three parameters successfully matches a
requested accuracy is generally acceptable when accuracy is critical
and some efficiency can be sacrificed.
NASOQ-Tuned therefore sweeps through a set of empirically-

determined parameter combinations, as found from testing solely
against the subset (0.5%) of the QP problem instances in the testing

Config max_iter diag_perturb stop_tol
1 2 10−9 10−15
2 2 10−13 10−15
3 2 10−7 10−15
4 2 10−11 10−17
5 3 10−10 10−15
6 3 10−9 10−17
7 3 10−11 10−17

Table 1. List of NASOQ-Tuned parameters. Each row contains parameters
used in one pass of NASOQ-Tuned.

set (see Section 6.3.1) for which NASOQ-Fixed does not converge.
NASOQ-Tuned begins with an initial pass of NASOQ-Fixed. Then,
if the requested accuracy ϵ is not met, it successively tries new
NASOQ passes with the sequence of configurations in Table 1.

In practice, for all but 21 examples in our benchmark, we find that
NASOQ-Tuned successfully converges at all requested accuracies.
See Section 6.3 for details.

6 EVALUATION
In this section we evaluate NASOQ against other solvers on a large
set of QP problems from diverse applications. First, we describe
our experimental setup (Section 6.1) and our new collection of 1513
sparse QP problems collected from a wide variety of applications
(Section 6.2). We then evaluate NASOQ for the full benchmark set,
comparing accuracy, efficiency, and scalability against existing tools
(Section 6.3). We then describe the effect of numerical range on
NASOQ’s ability to attain convergence (Section 6.4). Finally, we
explore the impact of SoMod on overall performance (Section 6.5).

Across all QP problems in our repository, NASOQ converges for
over 99.5% of the problems for accuracies ranging from 10−3 to
10−9 with average speedups ranging from 1.7× to 24.8× over the
best competing method. For requested accuracies of 10−3 and 10−6,
NASOQ-Tuned has no failures, while only 21 problem instances
(out of 1513, or 1.4%) fail to reach the 10−9 accuracy threshold. Our
analysis shows that these few failures occur due to the numerical
range of the problems themselves and that other solvers likewise fail
to solve these problems. NASOQ demonstrates consistent efficiency
and speedups across all application types, and we see that the SoMod
algorithm plays a critical role in the performance of NASOQ.

6.1 Experimental Setup
Testbed architecture. All experiments are performed on a 6-core
3.30GHz Intel Core i7-5820K processor with 32GB of main memory
and turbo-boost disabled, running Ubuntu 16.04 with Linux kernel
4.4.0. NASOQ and all open-source solvers are compiled with GCC
v5.4.0 using the -O3 option. MKL 2019.1.144 is used wherever dense
BLAS routines are required. Throughout this section, convergence
time refers to the wall clock time to reach convergence, measured
using the standard C++ chrono library. We use a time limit of 30
minutes for all solvers; if a solver does not converge in 30 minutes
for a problem instance, we consider it a failure for that instance.

, Vol. 1, No. 1, Article . Publication date: May 2020.

12 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

Termination criteria. We set all solvers, where possible, to use
common, absolute (rather than relative) termination criteria, i.e., a
common accuracy threshold ϵ for all four measures in Equations 3-6.
Relative tolerances are often specific to the algorithm and/or partic-
ular domain, and are often highly susceptible to falsely reporting
convergence when an algorithm stagnates (e.g. small relative errors
only tell us iterates have stopped progressing) rather than reaching
a low error solution. Although accuracies for each of the four opti-
mality measures in Equations 3-6 change depending on application,
we believe a desirable goal for a general-purpose QP solver is to
solve every reasonable problem to any requested accuracy given
commensurate time, and to only report success when accuracy is
achieved. We don’t presume to know a priori per problem type what
measures are most important; instead, we evaluate fitness by asking
each method to drive all measures down below each specified error
tolerance according to the infinity norms of Equations 3-6. Details
for each solver are explained separately below.

Solver settings. We compare NASOQ with four widely-used state-
of-the-art QP solvers: OSQP [Stellato et al. 2020], Gurobi [Opti-
mization 2014], MOSEK [Mosek 2015], and QL [Schittkowski 2003].
These tools are selected to represent different QP solver methods.
OSQP applies a first-order method, supports sparse problems, and
parallelism. Gurobi and MOSEK are both commercial tools based
on barrier methods; both support parallel execution and sparse QP
problems. To compare NASOQ to an alternative Goldfarb-Idnani
algorithm implementation, we include QL, a robust GI implementa-
tion; however, QL does not support sparsity nor parallelism.

NASOQ is implemented in C++with double precision, withMETIS
5.1.0 for reordering the inclusive matrix, and MKL BLAS [Wang
et al. 2014] for dense operations within LBL. All other QP solvers
are set to their default modes and only settings related to the re-
quested accuracy or ϵ in Equations 3-6 are changed when exposed
and necessary, see below4.

OSQP is an open-source first-order solver designed for sparse QP
problems. We use OSQP 0.6.0 and build in double precision using the
MKL Pardiso solver. In OSQP the user-requested accuracy is scaled
by the norm of matrix H (see [Stellato et al. 2020] Section 3.4). This
scaling leads to early termination and thus inaccurate/non-optimal
solutions. For fair comparison, we change OSQP’s termination cri-
teria to use the absolute requested accuracy – leaving the algorithm
otherwise unchanged5.

Gurobi and MOSEK are two commercial solvers that apply barrier
methods to solve QP problems. For both packages, we utilize default
settings for the solvers. We use currently latest releases of MOSEK
(v8) and Gurobi (v8). Gurobi uses an absolute termination criteria
and so can be applied in our comparison directly. MOSEK, on the
other hand, does not allow absolute error tolerances for convergence
and instead applies algorithm-specific, relative measures. AsMOSEK
is closed source (and so its termination criteria can not be modified)
we experimented with a range of its different exposed parameter
settings, seeking to maximize MOSEK’s success. Discussion of our
experiments with MOSEK and details of MOSEK’s behavior applied

4The list of parameters related to user-requested accuracy for each solver is provided
in supplemental material.
5In the supplemental material, we provide detailed information on the sole parts of the
OSQP code we modify.

with its most successful settings for comparison are covered in
Section 6.3.1 below.

QL is a dense active-set solver based on the GI algorithm, imple-
mented in Fortran. We convert all sparse matrices to dense prior to
using QL, as it only supports dense matrices. Conversion time is not
included in reported solve times. Large-scale QP problems cannot
be converted due to memory limitations of the testbed architecture.

Performance profile. Aggregating combined performance and fail-
ure data in plots across methods on a significantly-sized benchmark
is always challenging. Thus, to compare the convergence speed of
different solvers, following existing work [Dolan and Moré 2002;
Pandala et al. 2019; Stellato et al. 2020; Wong 2011] we utilize a
performance profile plot. To define performance profiles, we use
the performance ratio rp,s =

tp,s
mins tp,s where tp,s is the time for QP

solver s to solve problem instance p. When solver s fails for problem
p, its performance ratio is set to infinity, i.e., rp,s = ∞. After the
performance ratio for all pairs of solvers and problem instances is
obtained, we compute the performance profile, function fs , that
maps any rp,s to [0, 1] and is computed as: fs (τ) = 1

np
∑
p α≤τ (rp,s)

where α≤τ = 1 if rp,s ≤ τ and np is the number of problems in our
repository. fs (τ) denotes the fraction of solved problems within τ×
the time of the best solver. Thus, in Figure 4 for example, faster
performance for a given fraction of problems means the line is to
the left, while more problems with successful convergence lead to
lines that are higher on the y-axis.
Speedup. In addition to performance profiles, we also provide

detailed, per-category analyses and breakdowns using speedup and
failure rate (Section 6.3). The reported average speedup through-
out the paper is computed using normalized shifted geometric
mean [Mittelmann 2020; Stellato et al. 2020]. Given tp,s is the time
for QP solver s to solve problem instance p, shifted geometric mean
of solver s acrossn problems is computed as:дs = n

√∏
p (tp,s + k) − k

where k is the shift and selected to be one [Stellato et al. 2020]. When
solver s fails in the problem p, tp,s = 1800 which is the 30 minute
time limit in seconds. To avoid overflow we use the logarithmic
form of the geometric mean. Given дs for each solver, the speedup
of solver s1 over s2 is computed by дs2

дs1 .

6.2 Benchmark Repository for Sparse Quadratic Programs
We assemble a repository for sparse QP problems of different scales,
most of which come from applications in animation, geometry pro-
cessing, and simulation. Existing QP problem benchmarks are not
large enough to stress-test large-scale QP solvers. For example, the
largest QP problem instance in terms of the number of variables in
the Maros-Mészáros repository [Maros and Mészáros 1999] only has
10k variables, which is far smaller than real-world large-scale QP
problems. Existing QP solvers are either tested for a limited number
of problems or are tested for randomly generated problems [Pan-
dala et al. 2019; Stellato et al. 2020]. To address this shortcoming,
we gathered existing strictly-convex QP benchmark problems and
also added a set of new QP problem instances mostly arising from
computer graphics applications.
Our repository includes QP instances from shape deformation,

contact simulation, model reconstruction, and cloth simulation from

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 13

0%

10%

20%

30%

40%

50%

eps = 1e-3 eps = 1e-6 eps = 1e-9

Fa
ilu

re
 R

at
e(

%
)

0%

5%

10%

15%

20%

eps = 1e-3 eps = 1e-6 eps = 1e-9

Fa
ilu

re
 R

at
e

(%
)

Gurobi MOSEK NASOQ-Fixed

NASOQ-TUNED OSQP OSQP-polished

QL 93.6 97.3

82.3 97.3

Fig. 3. Failure rate of NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-Polished,
Gurobi, QL, and MOSEK across different ranges of accuracy (10−3, 10−6, and
10−9) and for both small-scale (top) and large-scale (bottom) QP problems.
NASOQ-tuned has the lowest failure rate compared to all other QP solvers
for problems of different scales and for different requested accuracies.

computer graphics; model predictive control (MPC) [Segata 2019]
from robotics; and strictly-convex QP problems from the Maros-
Mészáros repository [Maros and Mészáros 1999]. The number of
variables ranges from 50–114309 and the number of constraints
ranges from 20–10k. Each QP for image deformation comes from
Jacobsen et. al. [Jacobson et al. 2011] and is created using libigl [Ja-
cobson et al. 2018]. Contact simulation QPs correspond to QP prob-
lems that must be solved in each timestep of the simulation and are
created using the GAUSS library [Levin 2019]. Model reconstruction
instances are QP problems that compute the third dimension of a 2D
mesh, explained in [Dvorožňák et al. 2018; Sýkora et al. 2014]. Cloth
simulation QPs arise from each timestep of the cloth simulation
in [Weidner et al. 2018].

6.3 Accuracy, Efficiency, and Scalability of NASOQ
NASOQ can solve a large range of QP problems from different ap-
plication types and across a range of problem scales. In this section,
we first compare the efficiency and scalability of NASOQ to other
QP solvers and demonstrate NASOQ’s superior performance. We
also explore the performance of NASOQ versus other tools for dif-
ferent types of applications. Finally, we discuss the effect of using
the full-space method in NASOQ.

6.3.1 Overall performance. As discussed in Section 5, NASOQ-Fixed
and NASOQ-Tuned target different points in the trade-off between
efficiency and accuracy. NASOQ-Tuned sweeps through a set of
parameters to deliver improved accuracy for problems where ac-
curacy is critical. Thus, as shown in Figure 3, NASOQ-Tuned al-
ways converges for requested accuracy thresholds of 10−3 and 10−6,
while NASOQ-Fixed fails for 1.2% of problems (there are 21 prob-
lem instances that NASOQ-Tuned fails for 10−9; this is explained

in Section 6.4). Since NASOQ-Tuned starts from the NASOQ-Fixed
configuration, the performance profiles of both variants are similar,
as shown in Figure 4 and the small difference is due to problems that
NASOQ-Tuned converges and NASOQ-Fixed fails. The convergence
behaviour of both variants of NASOQ is consistently better than
other solvers for both large- and small-scale problems (Figure 3).
OSQP uses several lightweight iterations to incrementally im-

prove the accuracy of the solution to the QP problem. However,
when an accurate solution is needed, the number of iterations sig-
nificantly increases in OSQP, leading to reduced efficiency. Like
NASOQ-Tuned, OSQP also has a variant, called OSQP-polished, that
trades off efficiency for accuracy in problems where accuracy is
critical. OSQP-polished uses an additional step after OSQP to refine
accuracy and obtain solutions for some problems when the accu-
racy range is 10−9. OSQP and OSQP-polished collectively solve 94%
percent of all problems in our repository for accuracy ranges of
10−3, 10−6, 10−9 which is quite good, but still considerably less than
the 99% obtained from NASOQ (see Figure 3). NASOQ is more effi-
cient than OSQP across all problem scales and for different accuracy
thresholds. For example, the average speedup of NASOQ-Fixed over
OSQP for thresholds of 10−3 and 10−6 is 2.7× and 2.3× respectively.
Gurobi, in contrast to NASOQ, has a high failure rate and does

not scale to larger problems. Unlike NASOQ and OSQP, Gurobi does
not provide different variants to balance accuracy and efficiency. In
Gurobi, the number of iterations typically remains unchanged for
different requested accuracies. Thus, in Figure 4, all performance pro-
files for Gurobi follow similar trends across different requested accu-
racies and different problem scales. For accuracies of 10−3 and 10−6,
Gurobi’s failure rate is similar to that of OSQP; however, compared
to NASOQ, Gurobi fails in more problems. Furthermore, Gurobi
exhibits a high failure rate for large-scale problems with lower re-
quested error. For example, for the threshold of 10−9, Gurobi fails
for 42.25% of large-scale problems as shown in Figure 3.
MOSEK is another barrier method that converges in a bounded

number of computationally-heavy iterations. MOSEK does not con-
verge for most large-scale problems with accuracy thresholds lower
than 10−3. As shown in Figure 3, the failure rate of MOSEK for
smaller requested accuracy thresholds is more than 82%, which is
significantly higher than the failure rate of all other solvers. As
discussed in Section 6.1, MOSEK doesn’t allow absolute error tol-
erances and instead applies algorithm-specific, relative measures.
We experimented with a number of different parameter settings,
attempting to improve MOSEK’s success. During this process we
observed that decreasing requested accuracies further below 10−10
produces slower performance and increased failures. For example,
requesting 10−16 accuracy leads failure rates to increase to 86%.
We find setting to the requested accuracy works best for MOSEK
in terms of combined performance and failure rate reduction. We
also set MOSEK’s infeasibility tolerance parameter to the default:
10−12. We find no change for high accuracy benchmarks (i.e. 10−6
and 10−9) and a 0.2% reduction in failure rate for 10−3. We observe,
however, consistent with [Stellato et al. 2020] the speed and failure
rate of MOSEK generally lags behind OSQP at low accuracy and
Gurobi at higher accuracies.

QL is a dense active-set solver and thus can only solve small-scale
problems. For small QP problems, QL’s failure rate is 11% for each

, Vol. 1, No. 1, Article . Publication date: May 2020.

14 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 0

.0
01

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
06

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
09

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 0

.0
01

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f p
ro

bl
em

s s
ol

ve
d

(to
l =

 1
e-

06
)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
09

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

Fig. 4. Performance profiles for NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-Polished, Gurobi, QL, and MOSEK across different ranges of accuracy (from left
to right: 10−3, 10−6, and 10−9) and for small-scale (top) and large-scale (bottom) QP problems from our repository. Lines to the left are more efficient, and lines
higher on the y-axis solve a greater percentage of problems within a given performance threshold. The figures show that NASOQ-Fixed and NASOQ-Tuned
are, for almost all accuracies and all problem scales, more efficient than available QP solvers and are able to solve more of the QP problems in our repository.

of the accuracy thresholds as shown in Figure 3. The figure also
shows that the performance profile and efficiency of QL in Figure 4
is inferior compared to other QP solvers including NASOQ, due to
its lack of support for sparsity and parallelism.

6.3.2 Effect of Different Applications. Different applications create
varying types of QP problems that pose different challenges to
solvers. We examine the obtained accuracy and efficiency with
different QP solvers as we vary QP problem types. Our analysis
shows that unlike other QP solvers, NASOQ performs well across
different application domains.
To show this variation, we compare NASOQ-Tuned, NASOQ-

Fixed, OSQP, and Gurobi across different application types for the
accuracy threshold of 10−6; the trend holds for other accuracies. QL
and MOSEK do not successfully converge for larger problem sizes,
so we exclude them from our comparison.
For contact simulation problems, NASOQ-Tuned and NASOQ-

Fixed provide the lowest failure rates (0% and 0.15%, respectively)
compared to all other solvers. Although OSQP’s failure rate (1.07%)
is higher than NASOQ, it still performs better than Gurobi, which
fails for 3.44% of these instances. The efficiency of these solvers
also follows the same trend where both NASOQ solvers are faster
than OSQP in 80% of contact simulation problems with an average
of 2.1× speedup across all contact simulation instances. OSQP also
exhibits better efficiency than Gurobi.

In shape deformation and model reconstruction, NASOQ-Fixed
and NASOQ-Tuned do not fail for any problems while OSQP and
Gurobi fail in 12.5% of instances. NASOQ is 22.8× and 24× faster
than OSQP and Gurobi respectively for these problems.
For Maros-Mészáros problems, NASOQ-Tuned does not fail for

any problem and the nearest competitors are Gurobi and NASOQ-
Fixed with failure rates of 15% and 24.5%, respectively. NASOQ-
Tuned is on average 8.9× faster than Gurobi and NASOQ-Fixed
is slower than Gurobi by 3.2×. OSQP does not perform well for
Maros-Mészáros problems (45% failure rate).
For model predictive control (MPC) problems, NASOQ-Tuned

and NASOQ-Fixed show no failures while OSQP’s failure rate is
2.5%, which is relatively high compared to Gurobi, which fails in
only 0.83% of instances. Both NASOQ-Tuned and NASOQ-Fixed
solvers are faster than OSQP and Gurobi. For example, NASOQ-
Fixed obtains an average speedup of 3.4× over OSQP-polished.
Unlike other existing solvers, NASOQ provides consistent effi-

ciency and good accuracy across all problem types. Both variants
of NASOQ are more efficient and accurate compared to all solvers,
with the exception of the failure rate of NASOQ-Fixed for Maros-
Mészáros problems 6.

6The breakdown by application for each user-requested accuracy and for each solver is
provided in supplemental material.

, Vol. 1, No. 1, Article . Publication date: May 2020.

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 15

ϵ = 10−3 ϵ = 10−6 ϵ = 10−9
NASOQ-Range-Space 0% 0.23% 2.42%

NASOQ-Fixed 0.1511% 0.45% 1.44%
NASOQ-Tuned 0% 0% 0.91%

Table 2. Failure rate of NASOQ for different ranges of accuracy using range-
space (NASOQ-Range-Space) and full-space (NASOQ-Fixed and NASOQ-
Tuned) methods for small-scale problems in our QP repository. NASOQ-
Fixed has a failure rate comparable to that of NASOQ-Range-Space. NASOQ-
Tuned outperforms NASOQ-Range-Space and has no failures for accuracies
ϵ = 10−3 and ϵ = 10−6.

6.3.3 Effect of the Full-Space Approach. As discussed in Section 5,
NASOQ replaces the range-space method in GI with a full-space
approach. In this section we examine the effect of the full-space
approach on the accuracy of NASOQ to demonstrate that the use
of a full-space method does not negatively affect the accuracy of
NASOQ compared to a range-space approach. To show the accuracy
of NASOQ’s full-space method, we integrate a range-space method
inside NASOQ and use it to solve the KKT systems. We call this im-
plementation NASOQ-Range-Space. Cholesky decomposition along
with the QR decomposition are used instead of SoMod in NASOQ-
Range-Space. However, due to the use of QR decomposition that has
intensive memory usage, NASOQ-Range-Space is limited to solving
small-scale problem instances. Table 2 shows the failure rates of
NASOQ-fixed, NASOQ-Tuned, and NASOQ-Range-Space for small-
scale problems in our QP dataset. NASOQ-Fixed has a failure-rate
comparable to NASOQ-Range-Space and NASOQ-Tuned performs
significantly better than NASOQ-Range-Space. Thus, using SoMod
and the full-space method in NASOQ does not reduce the accuracy
of the QP solver and can even improve accuracy with an appropriate
choice of parameters for NASOQ-Tuned.

6.4 Effect of Numerical Range
NASOQ-Tuned and other QP solvers fail to solve 21 problem in-
stances in our benchmark suite for the accuracy of 10−9; Gurobi
is an exception, but it can only solve 2 of these 21 problems. This
section discusses properties of these 21 problems and explores why
existing QP solvers and NASOQ-Tuned fail to solve them.
These problem instances have a large numerical range which

can be classified into two categories: (1) problems that contain a
large value (106 or larger) in either their input matrices or vectors
(matrices H, A, and C and vectors q, b, and d in Equation 1); and (2)
problems with large values in their primal or dual variables (vectors
x, y, and z in Equations 1–2). This large numerical range limits the
accuracy QP solvers can achieve in double precision.
This issue can be resolved if (i) for the first category, a scaling

technique is used to normalize the range, and (ii) for the second cat-
egory, an implementation with higher precision is used; for example,
using floating-point types with 128 bits of precision.
Gurobi is the only QP solver that converges for two of these

problem instances. While NASOQ-Tuned is able to get close to the
accuracy threshold of 10−9 (because the stationarity norm for these
two problems in NASOQ-Tuned is 4.7 × 10−9 and 4.4 × 10−9), the
maximum value of the Lagrange multipliers in these two problems is

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
06

)

NASOQ-Fixed-CHOLMOD
NASOQ-Fixed-MKL
NASOQ-Fixed
NASOQ-Fixed-LBL
OSQP

Fig. 5. Performance profile of NASOQ using SoMod (NASOQ-Fixed), using
CHOLMOD row modification (NASOQ-Fixed-CHOLMOD), solving from
scratch using LBL (NASOQ-Fixed-LBL), and solving from scratch using MKL
(NASOQ-Fixed-MKL). OSQP is also shown as a reference solver. NASOQ-
Fixed (green line) performs better than the modified versions of NASOQ.
Note that this performance profile contains both small and large QP in-
stances, unlike Figure 4.

about 106, which leads to inaccurate solutions for some intermediate
KKT systems and thus leads to failure in NASOQ-Tuned.

6.5 Effect of SoMod
As discussed in Section 4, NASOQ uses SoMod to efficiently solve the
successive KKT systems arising in active-set methods. In this section
we analyze the effect of SoMod on NASOQ’s performance and also
separately demonstrate the efficiency of using LBL in NASOQ. We
use the NASOQ-Fixed variant of NASOQ throughout this section
because the effects of SoMod are the same in both variants. Figure 5
compares the performance profile of NASOQ-Fixed for ϵ = 10−9
with three different modifications of NASOQ: (i) NASOQ-Fixed-
CHOLMOD, which uses CHOLMOD [Chen et al. 2008] instead of
SoMod in NASOQ; (ii) NASOQ-Fixed-LBL, which instead of using
row modification in NASOQ solves all KKT systems from scratch
using LBL; and (iii) NASOQ-Fixed-MKL which solves all KKT sys-
tems in NASOQ using the MKL-Pardiso solver. In all modifications,
the same number of accuracy refinement iterations is used. Over-
all, NASOQ-Fixed is faster than all other implementations while
achieving the fewest failures.
NASOQ-Fixed-CHOLMOD replaces SoMod’s row modification

and LBL phases with row modification and the solver used in
CHOLMOD [Chen et al. 2008]; the iterative refinement from SoMod
is still used in NASOQ-Fixed-CHOLMOD because CHOLMOD does
not come with refinement. CHOLMOD’s rowmodification primarily
supports symmetric positive definite (SPD) matrices. CHOLMOD
will fail or provide inaccurate results for some indefinite systems: (i)
unlike SPD systems, the diagonal value of the L-factor in an indefi-
nite KKT system can sometimes be negative, so CHOLMOD may
fail for these systems as it uses square root in computations that in-
volve the diagonal value; (ii) to update the new L-factor, CHOLMOD
uses the already computed L-factors, and thus numerical errors and
inaccuracies may propagate to subsequent computations. NASOQ
however re-computes the affected columns using the input matrix;

, Vol. 1, No. 1, Article . Publication date: May 2020.

16 • Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi

thus its L-factor is more accurate compared to that of CHOLMOD’s
as the number of iterations in the QP solver increase. Adding a per-
turbation value to the diagonal entries will remove some failures in
CHOLMOD and so it can solve some (but not all) indefinite systems.
With perturbation, the accuracy of the KKT solve using CHOLMOD
is still low and leads to failure in 40% of QP problems. As shown
in Figure 5, NASOQ-Fixed-CHOLMOD mostly converges for small-
scale QP problems when the number of variables is fewer than 50,
and needs few iterations to converge. Unlike NASOQ, NASOQ-Fixed-
CHOLMOD does not need to create an initial inclusive matrix and
thus its initial setup time is small; this leads to faster performance
for very small QP problem instances. NASOQ-Fixed is overall faster
than NASOQ-Fixed-CHOLMOD and results in the fewest failures.

NASOQ-Fixed is on average 3.1× faster than NASOQ-Fixed-LBL
and NASOQ-Fixed-MKL. This demonstrates the importance of using
the factor modification method of SoMod in NASOQ to avoid solv-
ing the KKT systems from scratch. In addition, NASOQ-Fixed-LBL
and NASOQ-Fixed-MKL demonstrate a similar performance profile
which warrants the use of LBL as a replacement solver for MKL
in SoMod while benefiting from the unique features of LBL that
facilitate the implementation of row modification in SoMod.

To separately measure the performance of LBL in NASOQ, we use
the indefinite solver from MKL-Pardiso instead of LBL for solving
the initial KKT system in NASOQ; we call this variant NASOQ-
Fixed-Initial-MKL. All other components of SoMod that solve the
successive KKT systems remain unchanged. NASOQ-Fixed obtains
a similar performance to that of NASOQ-Fixed-Initial-MKL: it is
roughly 1.01× faster. The reason for the small effect of LBL on
overall performance of NASOQ is that only a small fraction of the
overall time is spent on the initial factorization; on average initial
factorization only accounts for 25% of NASOQ time.

7 CONCLUSION
NASOQ now enables simultaneously accurate and efficient solves
for large and sparse QP problems across application domains. To
better understand QP computational challenges and solver perfor-
mance, we gathered a comprehensive benchmark set comprising
a wide range of application-based QP problems. We hope that its
application will lead to improved testing and further development
of performant QP solvers. We are releasing both NASOQ and our
new benchmark suite for QP problems as open-source projects to
enable application of fast, numerically-accurate QP solutions.

To enable NASOQwe have constructed our new sparsity-oriented
SoMod rowmodificationmethod and LBL, our fast LDL factorization
for indefinite systems. Together they enable the efficient updates and
accurate solutions of the iteratively modified KKT systems critical
to accurate QP solves.

Looking ahead there remain many interesting questions both in
terms of both improving efficiency and per-problem automatic scal-
ing for the most challenging QP problems we have identified. These
should lead to even further improvements in robustness, efficiency
and accuracy. At the same time there are many promising poten-
tial applications extending the building blocks we have developed
here towards equality-constrained problems, non-linear optimiza-
tion, the solution of more general saddle-point systems and beyond

to other applications where factorization and update of indefinite
systems remains critical.

ACKNOWLEDGMENTS
We thank Alec Jacobson, David I.W. Levin, Kevin Wampler, Seung-
bae Bang, Daniel Sỳkora, Marek Dvorožňák, Matthew Overby, and
Oded Stein for their assistance. This work was supported in part
by NSERC Discovery Grants (RGPIN-06516, DGECR-00303), the
Canada Research Chairs program, and U.S. NSF awards NSF CCF-
1814888, NSF CCF-1657175; used the Extreme Science and Engineer-
ing Discovery Environment (XSEDE) [Towns et al. 2014] which is
supported by NSF grant number ACI-1548562; and was enabled in
part by Compute Canada and Scinet (www.computecanada.ca).

REFERENCES
Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and

J. Zico Kolter. 2019. Differentiable Convex Optimization Layers. In Advances in
Neural Information Processing Systems 32. Curran Associates, Inc. http://papers.nips.
cc/paper/9152-differentiable-convex-optimization-layers.pdf

Brandon Amos and J. Zico Kolter. 2017. OptNet: Differentiable Optimization as a Layer
in Neural Networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70 (ICML’17). JMLR.org.

M. Arioli, I. S. Duff, S. Gratton, and S. Pralet. 2007. A Note on GMRES Preconditioned
by a Perturbed LDLT Decomposition with Static Pivoting. SIAM J. Sci. Comput. 29,
5 (Sept. 2007).

Jernej Barbic. 2007. Real-Time Reduced Large-Deformation Models and Distributed
Contact for Computer Graphics and Haptics. Ph.D. Dissertation. USA.

Michele Benzi, Gene H Golub, and Jörg Liesen. 2005. Numerical solution of saddle
point problems. Acta numerica 14 (2005).

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Foundations and Trends in Machine Learning 3, 1 (2011).

Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008).

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and MaryamMehri Dehnavi. 2017.
Sympiler: Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 13.
https://doi.org/10.1145/3126908.3126936

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2018. ParSy: Inspection and Transformation of Sparse Matrix Computations for
Parallelism. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ,
USA, Article 62. http://dl.acm.org/citation.cfm?id=3291656.3291739

Timothy A Davis. 2006. Direct methods for sparse linear systems. Vol. 2. Siam.
Timothy A Davis. 2019. Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in

the Language of Sparse Linear Algebra. ACM Transactions on Mathematical Software
(TOMS) 45, 4 (2019).

TimothyADavis andWilliamWHager. 1999. Modifying a sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl. 20, 3 (1999).

Timothy A Davis and William W Hager. 2005. Row modifications of a sparse Cholesky
factorization. SIAM J. Matrix Anal. Appl. 26, 3 (2005).

Timothy A Davis and William W Hager. 2009. Dynamic supernodes in sparse Cholesky
update/downdate and triangular solves. ACM Transactions on Mathematical Software
(TOMS) 35, 4 (2009).

Elizabeth D Dolan and Jorge J Moré. 2002. Benchmarking optimization software with
performance profiles. Mathematical programming 91, 2 (2002).

A. Domahidi, E. Chu, and S. Boyd. 2013. ECOS: An SOCP solver for embedded systems.
In 2013 European Control Conference (ECC).

Iain S. Duff. 2004. MA57—a Code for the Solution of Sparse Symmetric Definite and
Indefinite Systems. ACM Trans. Math. Softw. 30, 2 (June 2004).

Marek Dvorožňák, Saman Sepehri Nejad, Ondřej Jamriška, Alec Jacobson, Ladislav
Kavan, and Daniel Sýkora. 2018. Seamless Reconstruction of Part-Based High-
Relief Models from Hand-Drawn Images. In Proceedings of the Joint Symposium
on Computational Aesthetics and Sketch-Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering (Expressive ’18). Association for Computing
Machinery, New York, NY, USA, Article 5.

, Vol. 1, No. 1, Article . Publication date: May 2020.

www.computecanada.ca
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
https://doi.org/10.1145/3126908.3126936
http://dl.acm.org/citation.cfm?id=3291656.3291739

NASOQ: Numerically Accurate Sparsity-Oriented QP Solver • 17

AS El-Bakry, Richard A Tapia, T Tsuchiya, and Yin Zhang. 1996. On the formulation and
theory of the Newton interior-point method for nonlinear programming. Journal of
Optimization Theory and Applications 89, 3 (1996).

Kenny Erleben. 2013. Numerical methods for linear complementarity problems in
physics-based animation. In Acm Siggraph 2013 Courses.

Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and
Moritz Diehl. 2014. qpOASES: A parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation 6, 4 (2014).

M Fesanghary, Mehrdad Mahdavi, M Minary-Jolandan, and Y Alizadeh. 2008. Hy-
bridizing harmony search algorithm with sequential quadratic programming for
engineering optimization problems. Computer methods in applied mechanics and
engineering 197, 33-40 (2008).

Roger Fletcher. 2013. Practical methods of optimization. John Wiley & Sons.
E. Michael Gertz and Stephen J. Wright. 2003. Object-Oriented Software for Quadratic

Programming. ACM Trans. Math. Softw. 29, 1 (March 2003).
Philip E Gill, Walter Murray, Michael A Saunders, and Elizabeth Wong. 2005. User

guide for SQOPT 7: Software for large-scale linear and quadratic programming.
Philip E Gill, Walter Murray, Michael A Saunders, and Margaret HWright. 1991. Inertia-

controlling methods for general quadratic programming. Siam Review 33, 1 (1991).
Donald Goldfarb and Ashok Idnani. 1983. A numerically stable dual method for solving

strictly convex quadratic programs. Mathematical programming 27, 1 (1983).
Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU press.
Jacek Gondzio and Andreas Grothey. 2006. Solving nonlinear financial planning prob-

lems with 109 decision variables on massively parallel architectures. WIT Transac-
tions on Modelling and Simulation 43 (2006).

Nicholas Gould. 2006. An introduction to algorithms for continuous optimization.
Nicholas IM Gould, Mary E Hribar, and Jorge Nocedal. 2001. On the solution of equality

constrained quadratic programming problems arising in optimization. SIAM Journal
on Scientific Computing 23, 4 (2001).

Nicholas IM Gould, Dominique Orban, and Philippe L Toint. 2003. GALAHAD, a library
of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM
Transactions on Mathematical Software (TOMS) 29, 4 (2003).

William W Hager. 1989. Updating the inverse of a matrix. SIAM review 31, 2 (1989).
Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated

Sparse Cholesky Factors for Corotational Elastodynamics. ACM Trans. Graph. 31, 5,
Article 123 (Sept. 2012).

P. Hénon, P. Ramet, and J. Roman. 2002. PASTIX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Positive Definite Systems. Parallel Comput. 28, 2 (Feb.
2002).

Philipp Herholz and Marc Alexa. 2018. Factor Once: Reusing Cholesky Factorizations
on Sub-Meshes. ACM Trans. Graph. 37, 6, Article 230 (Dec. 2018).

Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized Solutions of Sparse
Linear Systems for Geometry Processing. ACM Trans. Graph. 36, 6, Article 183 (Nov.
2017).

Toby Heyn, Mihai Anitescu, Alessandro Tasora, and Dan Negrut. 2013. Using Krylov
subspace and spectral methods for solving complementarity problems in many-body
contact dynamics simulation. Internat. J. Numer. Methods Engrg. 95, 7 (2013).

Jonathan D. Hogg and Jennifer A. Scott. 2013. Pivoting Strategies for Tough Sparse
Indefinite Systems. ACM Trans. Math. Softw. 40, 1, Article 4 (Oct. 2013).

Hanh M Huynh. 2008. A large-scale quadratic programming solver based on block-LU
updates of the KKT system. Technical Report. STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE.

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph., Article 78 (July 2011).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

G. Karypis. 1997. METIS : Unstructured graph partitioning and sparse matrix ordering
system. Technical Report (1997).

Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered
Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph., Article
164 (Dec 2008).

David I.W. Levin. 2019. GAUSS Library. https://github.com/dilevin/GAUSS.
Joseph W.H. Liu. 1990. The Role of Elimination Trees in Sparse Factorization. SIAM J.

Matrix Anal. Appl. 11, 1 (1990).
Christopher Mario Maes. 2011. A regularized active-set method for sparse convex qua-

dratic programming. Ph.D. Dissertation. Stanford University, USA.
IstvanMaros and Csaba Mészáros. 1999. A repository of convex quadratic programming

problems. Optimization Methods and Software 11, 1-4 (1999).
Jacob Mattingley and Stephen Boyd. 2012. CVXGEN: A code generator for embedded

convex optimization. Optimization and Engineering 13, 1 (2012).
Hans Mittelmann. 2020. Benchmarks for Optimization Software. Retrieved April 13,

2020 from http://plato.asu.edu/bench.html
ApS Mosek. 2015. The MOSEK optimization toolbox for MATLAB manual.
Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &

Business Media.
Gurobi Optimization. 2014. Inc.,"Gurobi optimizer reference manual," 2015.

Abhishek Goud Pandala, Yanran Ding, and Hae-Won Park. 2019. qpSWIFT: A Real-
Time Sparse Quadratic Program Solver for Robotic Applications. IEEE Robotics and
Automation Letters 4, 4 (2019).

Michael James David Powell. 1985. On the quadratic programming algorithm of
Goldfarb and Idnani. In Mathematical Programming Essays in Honor of George B.
Dantzig Part II. Springer.

L. Righetti and S. Schaal. 2012. Quadratic programming for inverse dynamics with
optimal distribution of contact forces. In 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2012).

Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems (second ed.). Society for
Industrial and Applied Mathematics.

Olaf Schenk and Klaus Gärtner. 2002. Two-Level Dynamic Scheduling in PARDISO:
Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Comput.
28, 2 (Feb. 2002).

Olaf Schenk and Klaus Gärtner. 2006. On fast factorization pivoting methods for sparse
symmetric indefinite systems. ETNA. Electronic Transactions on Numerical Analysis
[electronic only] 23 (2006). http://eudml.org/doc/127439

K Schittkowski. 2003. QL: A Fortran code for convex quadratic programming-User
guide. Report, Department of Mathematics, University of Bayreuth (2003).

Michele Segata. 2019. MPC Library. https://github.com/michele-segata/mpclib.
Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan

Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4,
Article 106 (July 2012).

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd.
2020. OSQP: An operator splitting solver for quadratic programs. Mathematical
Programming Computation (2020).

Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian
Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-Ray: Bas-
Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters.
ACM Trans. Graph. 33, 2, Article 16 (April 2014).

John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson, et al.
2014. XSEDE: accelerating scientific discovery. Computing in science & engineering
16, 5 (2014).

Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical Programming 106, 1 (01 Mar 2006).

Richard A Waltz and Jorge Nocedal. 2004. KNITRO 2.0 User’s Manual. Ziena Opti-
mization, Inc.[en ligne] disponible sur http://www. ziena. com (September, 2010) 7
(2004).

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. 2014. Intel math kernel library. In High-Performance Computing on
the Intel® Xeon Phi. Springer.

Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018.
Eulerian-on-Lagrangian Cloth Simulation. ACM Trans. Graph. 37, 4, Article 50 (July
2018).

Elizabeth Lai Sum Wong. 2011. Active-set methods for quadratic programming. Ph.D.
Dissertation. UC San Diego, USA.

Stephen J Wright. 1997. Primal-dual interior-point methods. Vol. 54. Siam.
Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interac-

tive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans.
Graph. 36, 4, Article 157a (March 2017).

Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. 2016. Interactively Cutting and
Constraining Vertices in Meshes Using Augmented Matrices. ACM Trans. Graph.
35, 2, Article 18 (Feb. 2016).

Changxi Zheng and Doug L. James. 2011. Toward High-Quality Modal Contact Sound.
ACM Trans. Graph., Article 38 (July 2011).

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-
Newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July
2018).

, Vol. 1, No. 1, Article . Publication date: May 2020.

http://plato.asu.edu/bench.html
http://eudml.org/doc/127439

	Abstract
	1 Introduction
	2 Problem Statement and Preliminaries
	2.1 Accuracy
	2.2 Active-Set KKT System Solutions

	3 Related Work
	4 SoMod: Sparsity-oriented row modification
	4.1 Initialization Phase
	4.2 Factor Modification
	4.3 Triangular Solve and Accuracy Refinement

	5 NASOQ: Numerically Accurate Sparsity-Oriented QP Solver
	5.1 NASOQ-Fixed
	5.2 NASOQ-Tuned

	6 Evaluation
	6.1 Experimental Setup
	6.2 Benchmark Repository for Sparse Quadratic Programs
	6.3 Accuracy, Efficiency, and Scalability of NASOQ
	6.4 Effect of Numerical Range
	6.5 Effect of SoMod

	7 Conclusion
	Acknowledgments
	References

