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Abstract:

Methods for simulating frictional contact response are in high demand in robotics, graph-

ics, biomechanics, structural engineering, and many other fields where the accurate modeling

of interactions between solids are required. While techniques for accurately simulating struc-

tures and continua have advanced rapidly, methods for simulating contact between solids have

lagged behind. This thesis considers the difficulties encountered in designing robust, accurate,

and efficient computational methods for simulating frictional contact dynamics. We focus on

understanding the fundamental sources of difficulty in frictional contact modeling, elucidating

existing structures that can be leveraged to minimize them, and designing robust, accurate and

efficient algorithms to simulate challenging frictional contact problems.

In this thesis a Coupled Principles formulation of discrete, time-continuous frictional con-

tact is developed. This is then applied as the basis for deriving novel, time-discrete, variational

integrators that pose the discrete frictional contact problem as a system of coupled minimiza-

tions. Solutions to these resulting systems are given by points that are simultaneously optimal

for both minimizations and avoid some known issues present in existing variational integra-

tion approaches for frictional contact. We then consider a specific two-step variant of these

variational schemes that generalizes the popular Stewart-Trinkle model for frictional contact
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simulation. This is taken as a starting point for investigating encountered sources of difficulties

found in solving numerical problems posed by these models. We show that many existing al-

gorithms, that have generally been presumed suitable for solving the resulting contact-related

numerical optimization problems, fail entirely for many important examples of frictional con-

tact, and then address these limitations with our Staggered Projections algorithm. Applying

a fixed-point scheme, derived from the Coupled Principles Formulation, we show that Stag-

gered Projections efficiently obtains accurate solutions to the optimizations problems for many

frictional contact problems that were previously impractical to solve. Finally, we also offer

convergence analysis of the Staggered Projections algorithm, as well as simulations and instru-

mented examples that capture frictional contact behaviors for both rigid and large deformation

models
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Chapter 1

Introduction

This thesis addresses the difficulties encountered in designing robust, accurate, and efficient

computational methods for simulating frictional contact dynamics. Such methods are in high

demand in robotics, graphics, biomechanics, structural engineering and many other fields where

the accurate modeling of interactions between solids are required. To date, while methods for

simulating structures and continua have advanced rapidly, methods for simulating the contact

between solids, which is often cited as one of the prime motivations for continuum model-

ing [Belytschko, Liu, & Moran 2000], have lagged behind [Kikuchi & Oden 1988; Stewart

2000; Wasfy & Noor 2003]. In this thesis we focus on understanding the fundamental sources

of difficulty in frictional contact modeling, elucidating existing structures that can be leveraged

to minimize them, and designing robust, accurate and efficient algorithms to simulate challeng-

ing frictional contact problems.

1.1 Discrete Frictional Contact

Despite its ubiquity, frictional contact remains one of the most challenging physical phenom-

ena to model and simulate. At large scales, unilateral contact and friction forces can appear to

effectively mediate the majority of interactions between solids; thus, understanding frictional

contact behaviors is essential in many problem domains. Modern frictional contact modeling is,

however, at its essence, a multi-scale problem. Combining macro-scale friction laws for tribo-

logical effects and one-sided nonpenetration conditions for boundary interactions that generally

occur at much finer time scales, modern methods intrinsically model phenomena occurring at

multiple temporal and spatial scales. Inherently, we can expect that any resulting numerical

problem will be in some sense fundamentally ill-posed. Nevertheless, the modeling of inter-

facial behavior at these scales is a necessary complement to any discrete model of continuum
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mechanics.

This thesis starts with a discrete (finite-dimensional) spatial model as a starting point. Once

we accept a finite-dimensional model as the basis for modeling frictional contact dynamics, a

rich range of mathematical and physical modeling problems are obtained. Despite the potential

ill-posedness of the resulting problems we will show that complex frictional-contact behaviors

can be accurately captured, and consistent and rigorous models can be developed.

There are a range of complementary perspectives that can be adopted for understanding the

frictional contact problem:

Tribology: Tribology [Dawson 1998] studies the underlying mechanisms of frictional contact

phenomena. Potentially, this can take us down to the quantum level and is generally, with

the exception of our adoption of macroscale friction laws, beyond the scope of this thesis.

Finite-Dimensional Models: Spatially finite-dimensional, time-continuous mathematical mod-

els are the starting point of this thesis. The adoption of finite-dimensional contact models

was pioneered by Lötstedt [1982a] and is, despite outstanding questions of well posed-

ness, existence, and uniqueness, that effectively date back as far as Painlevé [1895], a

powerful simplifying assumption. We will discuss these background issues and relevant

work further in the next Section.

Computational Models: Despite outstanding theoretical and practical issues, the numeri-

cal modeling of frictional contact is a crucial way (and in some cases, the only way) in

which we can investigate frictional contact phenomena. Here the question is how can we

accurately reproduce observed behavior using computational models? Issues of under-

standing and reducing accuracy, error, and computational complexity are all important

and will be addressed in this thesis.

Time-Continuous Convergence and Solution Existence: Despite modeling successes, an

open question in many cases is the relationship between time-discrete models and time-

continuous formulations. In many cases the convergence of a numerical scheme to its

time-continuous system is still an open problem. On the other hand, existence proofs

have been settled for many time-discrete models; however, this still remains another area
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of ongoing research. These issues are all related to the multi-scale nature of frictional

contact modeling and, as we will see in later chapters, these issues also have implica-

tions for the computational complexity of resolving frictional contact in the the fully

discretized setting. Time-continuous convergence and existence, however, are also out-

side the scope of this thesis.

1.2 Overview and Motivation

Numerical methods for the solution of frictional contact problems are in demand in a wide

variety of application areas that include structural engineering, interactive medical simulation,

computer animation, biomechanics, granular flow, robotics, and real-time video games.

Contacting systems present unique challenges. Pioneering research in applied mathematics

(Signorini, Moreau, Panagiotopoulos, Lötstedt, Stewart, Anitescu), mechanics (Ruina, Goyal,

Papadopoulos), robotics (Erdmann, Mason), and graphics (Baraff) have helped us to under-

stand many aspects of these challenges; however, implementing robust, accurate and efficient

methods for simulating frictional contact has, in general, been very difficult. Understanding

the root causes for these difficulties, and developing methods to bypass them, have remained

outstanding research problems.

Addressing and understanding these difficulties is the focus of this thesis, which presents

a general approach for formulating numerical methods to accurately and effectively solve dis-

crete, frictionally contacting systems. While earlier approaches were often either restricted to

frictionless contact or to particular (and/or simplified) contacting systems, the new methods

presented here are broadly applicable to many complex multibody configurations with finite

degrees of freedom.

Building on seminal results by Moreau, we describe the dynamics of frictional contact

resolution using a pair of coupled variational principles. Leveraging variational integration

methods (Veselov, Marsden), we can then pose the discrete problem as a system of coupled

minimizations that capture convincing and accurate frictional contact behavior. Solutions to

these systems are given by points that are optimal for both of the minimizations. Although

more general, this problem is similar in nature to finding the solution of a system of equations.
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Formulations based on Linear Complementarity Programming (LCP) are standard for fric-

tional contact problems involving linear systems. Initially introduced for contact simulation by

Lötstedt, newer variants, such as the popular Stewart-Trinkle formulation, now guarantee solu-

tion existence; however, solving the resulting optimization problems accurately and efficiently

has remained difficult. We will show that these difficulties can be explained, in part, by not-

ing that optimization problems, obtained from frictional contact, are equivalent to nonconvex

problems in global optimization (which are generally NP-hard). We believe that this is the first

time that a complexity argument has been made via the connection to global minimization for

the Stewart-Trinkle model.

Consistent with these observations we will show that, in practice, standard optimization

methods such as Lemke’s algorithm, Projected Gauss-Seidel, and interior point methods, that

have generally been presumed suitable for solving these contact-related optimization problems,

fail entirely for many important examples of frictional contact. We will address these limita-

tions with our Staggered Projections algorithm. Applying a fixed point scheme, derived from

the coupled principles formulation, Staggered Projections efficiently obtains accurate solutions

to optimization problems for many frictional contact problems that were previously impracti-

cal to solve. We will show that Staggered Projections performs well in practice as evidenced

by both our simulations of complex multibody frictional contact of rigid and large deforma-

tion models and our extensive testing of a Staggered Projections implementation with other

available solvers.

1.2.1 Outline of Thesis

We begin in Section 1.3 with a brief discussion of the history and literature pertaining to discrete

frictional contact modeling and simulation. This is followed by a summary of contributions in

Section 1.4. We formulate and define the basic elements of the discrete frictional contact prob-

lem in a generalized setting in Chapter 2 and motivate the difficulties of frictional contact simu-

lation with a discussion of Painlevé’s Paradox. In Chapter 3 we develop the Coupled Principles

formulation of discrete, time-continuous frictional contact. This is then applied, in Chapter 4,

as the basis for deriving time-discrete variational integrators for frictional contact. Next, Chap-

ter 5 considers a specific two-step variant of these variational schemes and the Stewart-Trinkle
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model for frictional contact simulation. Here we also discuss sources of difficulties in solving

these methods, and propose the Staggered Projections algorithm to address them. In Chapter

6 we offer a detailed convergence analysis of the Staggered Projections algorithm; while in

Chapter 7 we investigate applications. Finally, we conclude in Chapter 8 with a summary and

discussion of future work.

1.3 History and Literature

1.3.1 Friction Models

The observed relationship between frictional resistance and normal loads can be traced back at

least as far as Leonardo da Vinci [Dawson 1998]. Leonardo further proposed the idea that a

value, i.e., a coefficient of friction, could describe the ratio between the two. It was not until

two-hundred years later that this observation was revisited by Amontons [1699]. Leonardo

and Amontons, however, both concluded that all materials they investigated effectively had the

same constant coefficient of friction [Dawson 1998].

Amontons also made the somewhat perplexing observation, at the time, that resistance due

to friction did not, apparently, vary with the size of the contact area. He proposed that this

potentially paradoxical behavior could be ascribed to surface roughness at finer scales and

examined, in detail, how this might occur in the cases of both rigid and elastic asperities.

Other noted researchers, including Leibnitz and Euler1, also looked into the friction prob-

lem during the Renaissance. Over these years and into the Industrial Revolution many new

developments followed – some more quickly than others; coefficients of friction were found

to vary much more widely than initially proposed, the asperity model was further popularized

with a focus on the relation between friction and the shearing of asperities, and, perhaps most

importantly, variations of Leonardo and Amontons’s friction laws were extended to the dy-

namic case. Coulomb’s role [Coulomb 1785] in this last development is most generally noted.

See Dawson [1998] for a comprehensive history of these advances.

It is interesting to note that these early results in friction laws were generally developed

independently from consideration of the contact problem. That is, in most of the investigations

1Euler is believed to have introduced the use of the symbol µ for the coefficient of friction [Dawson 1998].
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of friction described above, tangential motion (or possibly no motion at all) was presumed a

priori and little or no consideration was given to how a body, subject to contacts, might be

described.

1.3.2 Contact Mechanics

In a parallel fashion initial investigations into contact mechanics also generally ignored fric-

tional phenomenon. Early investigations of rigid-body contact date back at least as far as

Galileo [1638]. Newton [1868] introduced the idea of restitution laws and a coefficient of

restitution by which to describe it .

The modeling of contact for continuum mechanics perhaps begins with Poisson and Saint-

Venant. The first successful approach to the elastic contact problem appears to have been

formulated by Hertz [1882], whose elastic half-space model is still applied in various forms

today [Johnson 1985].

The modern formulation of the frictionless contact problem, however, most likely begins

with Signorini [1933]. Signorini developed a nonlinear, complementarity-based, boundary con-

dition formulation for the static problem of a linear elastic body in contact with a rigid base.

Fichera [1964] showed that an equivalent variational inequality formulation of Signorini’s prob-

lem was possible and used convex minimization results to analyze uniqueness and existence

questions for frictionless contact problems. Around the same time Moreau [1963, 1966] ana-

lyzed the more general case of a system subject to arbitrary one-sided constraints.

1.3.3 Nonsmooth Formulations

Inspired by these and other modeling problems, Moreau [1968] soon after introduced the con-

cept of superpotentials and elucidated their connection to variational inequalities. When com-

bined with subdifferentials (see Section 2.5.3), superpotentials allow for beautiful and almost

transparent generalizations of classical mechanics to many nonsmooth settings beyond unilat-

eral contact constraints, including plasticity and friction [Moreau 1973]. In a complementary
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manner, friction can also be viewed as an the application of the Maximal Dissipation Princi-

ple [Moreau 1973; Goyal, Ruina, & Papadopoulos 1991]. First introduced as a tool for plas-

ticity, the Maximal Dissipation Principle effectively provides a variational interpretation of the

more familiar Coulomb friction model and will be applied throughout this thesis as a useful

framework for understanding and modeling frictional behavior.

1.3.4 Frictional Contact Dynamics

The rigorous consideration of the interplay between one-sided non-penetration constraints and

Coulomb-type friction forces perhaps begins in earnest with Painlevé [1895]. From the begin-

ning, Painlevé’s observation [Painlevé 1895] that some initial value problems involving rigid

bodies and Coulomb friction had no solution 2, incited controversy [Klein 1910; Mises 1910,

Prandtl 1910]. This potential inconsistency in frictional contact dynamics, dubbed “Painlevé’s

Paradox”, has been the subject of a long and, in some places, ongoing debate. Early observa-

tions by Delassus [1905], Lecornu [1905], Beghin [1923], and others, however, suggested that

these cases perhaps corresponded to what were, effectively, observed jumps in velocity. The

modern resolution of the Painlevé Paradox hinges on formalizing this notion of a velocity jump

through the careful application of impulsive (measure-based) forces, differential inclusions, and

superpotentials [Moreau 1988; Stewart 2000].

1.3.5 Computational Methods

As discussed above, the accurate numerical modeling of contact for continuum mechanics has

long been an active area of research. Computational contact mechanics has been broadly cov-

ered, with varying degrees of formalism [Johnson 1985; Kikuchi & Oden 1988; Brogliato 1999;

Wriggers 2002]. Yet resolving multiple contacts with friction for both rigid and deformable

bodies is still challenging [Stewart 2000]. In particular, flexible multibody systems have re-

ceived increased attention in the last decade [Wasfy & Noor 2003], but fast and reliable algo-

rithms for impact and friction remain open problems. Also of importance, existing algorithms

tend to specialize to either rigid or flexible multibody systems, but rarely generalize to all cases.

2Painlevé also noted the, possibly less controversial, phenomena that in other case where solutions did exist they
were possibly non-unique.
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Restricting the frictional contact problem to rigid body models opened the development

of acceleration-level LCP solutions [Lötstedt 1981, 1982a,b; Baraff 1991, 1994; Trinkle et al.

1995]. Baraff [1993] noted that Painlevé’s Paradox implies that these acceleration formula-

tions were not guaranteed to always have a solution and used these inconsistencies to show

that the acceleration LCP is NP-hard. This observation led to more recent velocity-level LCP

methods [Stewart & Trinkle 1996; Anitescu & Potra 1997]. While velocity-level LCPs can be

shown to always have a solution [Anitescu & Potra 1997], Anitescu & Hart [2004] demonstrate

examples where the solution set is non-convex and, based on this observation, suggest that

velocity-level LCPs may also be difficult, in general, to solve. LCP approaches have also been

extended to many elastic formulations, including quasi-rigid [Song & Kumar 2003; Pauly, Pai,

& Guibas 2004], linear modal [Stewart 2001; Hauser, Shen, & O’Brien 2003] and Finite Ele-

ment models (FEM) [Klarbring 1986; Baraff & Witkin 1992; Jourdan, Alart, & Jean 1998; Jean

1998; Duriez et al. 2006; Otaduy et al. 2007]. As with the rigid case, these formulations can

also potentially suffer from inconsistency and non-uniqueness [Klarbring 1990, 1993], which

again implies the likelihood of computational difficulties. Alternate formulations [Kikuchi &

Oden 1988] with tight bounds on allowable coefficients of friction or even nonlocal friction

models have also been proposed to side-step some of these issues.

Kane et al. [1999] have proposed a nonsmooth extension of variational integration meth-

ods [Marsden & West 2001] for frictionless contact that offers an alternate approach to resolv-

ing contact constraints in the discrete setting. While the specific methods proposed in Kane

et al. [1999] have some known issues [Stewart 2000], this general approach is exciting in that

it offers a natural bridge between the implied optimization interpretation of Discrete Varia-

tional Mechanics [Marsden & West 2001] and the modern tools of Mathematical Programming

necessary for resolving contact. A natural and desirable extension would be to rigorously in-

corporate friction into this formulation; however, recent approaches have had limited success

due to restricting assumptions [Pandolfi et al. 2002; Pandolfi & Ortiz 2007] and/or ad-hoc sim-

plifications [Cirak & West 2005]. One bar to applying discrete variational techniques has been

understanding what an appropriate Langrangian function for frictional contact should look like.

Instead, friction has generally been incorporated as a Rayleigh-type damping force – with lim-

ited success. We will discuss these background issues and the potential difficulties with existing
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variational methods for both friction and contact further in Chapter 4. In the same chapter we

will also propose a new discrete variational integration scheme that resolves many of these dif-

ficulties and then, later in Chapter 5, clarify the relationship between the resulting variational

methods and existing complementarity approaches.

In general, proving the convergence of numerical integration schemes to their correspond-

ing time-continuous systems has been plagued with difficulties. A variety of methods in recent

years, however, have been shown to converge [Monteiro-Marques 1993; Stewart 1999; Pang

et al. 2006; Gavrea et al. 2008]. In general, Painlevé Paradox-type conditions often present

the technical crux for these problems. A complementary question is that of time-continuous

solution existence and uniqueness. Here too, convergence results can also be applied fruitfully.

While many outstanding questions of existence in the time-continuous setting still remain, gen-

eral solution existence for a broad class of problems, in the fully discrete setting, has recently

been obtained [Pang & Stewart 1999], placing discrete frictional contact problems on a firmer

footing.

Despite these outstanding theoretical questions, LCP integration methods and related for-

mulations can now be considered as rigorously posed mathematical problems. Then, given an

appropriately formulated LCP method with guaranteed solution existence, the technical ques-

tion becomes how (and whether) we can obtain accurate numerical solutions. Generally, it

has been widely assumed that, when fully accurate and robust solutions were desired, a direct,

pivoting-based LCP algorithm, such as Lemke’s [Cottle, Pang, & Stone 1992], could be ap-

plied, provided enough computation time was available. It has been recently noted, however,

that direct LCP solvers do not, in practice, scale. They are not, in fact, currently able to return

solutions for non-trivial frictionally contacting problems beyond relatively small-scale exam-

ples [Anitescu & Hart 2004; Erleben 2007]. In Chapter 5 we will discuss these difficulties

further and investigate the reasons why these methods often fail.

Alternate, sometimes ad-hoc, approaches for frictional contact resolution have long been

standard in many fields as well. Among the most popular alternatives, penalty-based methods,

are well known in mechanics [Kikuchi & Oden 1988], and first introduced contact resolu-

tion problems to the graphics community [Hahn 1988; Bridson, Fedkiw, & Anderson 2002;

Hauser, Shen, & O’Brien 2003], but suffer from stiffness and stability issues despite recent
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advances [Spillmann, Becker, & Teschner 2007]. Optimization-based approaches in graph-

ics [Baraff 1989, 1991, 1994; Redon, Kheddar, & Coquillart 2002; Raghupathi & Faure 2006],

which are generally equivalent to LCP formulations, introduced improved accuracy in exchange

for greater computational cost and motivated several extensions using local [Milenkovic &

Schmidl 2001] and nonlocal [Kaufman, Edmunds, & Pai 2005] approximations of friction. In

some cases the frictional contact problem has been simplified by reducing the contact inequal-

ity constraints to equalities [Irving, Schroeder, & Fedkiw 2007; Harmon et al. 2008]; in others

it is mollified by treating individual constraints sequentially rather than simultaneously [Moore

& Wilhelms 1988; Mirtich & Canny 1995; Cirak & West 2005].

In general, however, with the exception of LCP-based approaches, which we will discuss

further below, existing methods for frictional contact resolution generally suffer from instabil-

ities, often exhibited by unnatural vibrations at contacts, constraint drift (i.e., elements sinking

into one another over time), popping artifacts (created by stabilization methods applied to com-

bat drift), energy gain (although contact resolution should be dissipative) and other issues which

have so far made the accurate simulation of many frictional contact phenomena out of reach.

In the following discussion, as well as above, we use the term “robustness” to denote that these

problems do not manifest, regardless of the accuracy of the obtained solution.

In part, to address the perceived high computational cost of direct LCP algorithms, recent

attention has been focused on iterative LCP solution methods [Murty 1988; Cottle, Pang, &

Stone 1992] customized for contacting systems [Moreau 1994; Jourdan, Alart, & Jean 1998;

Jean 1998; Guendelman, Bridson, & Fedkiw 2003; Duriez et al. 2006; Erleben 2007]. These

methods, generally based on Gauss-Seidel variants, can potentially be quite fast, and, for LCP

problems obtained from frictionless contacting systems, have reasonably nice convergence

guarantees [Cottle, Pang, & Stone 1992]. When friction is also modeled, however, Gauss-

Seidel-based methods are no longer guaranteed to converge for the resulting LCPs and, as we

will show in Chapters 5 and 7, often fail for LCPs obtained from complex problems. The

inherent lack of accuracy, stability and robustness this causes generally requires hand tuning

and large amounts of non-physical constraint stabilization [Erleben 2007] to make complex

multibody simulations work. Effectively, iterative LCP methods often reintroduce many of the

same errors and artifacts, discussed above, that LCP methods were designed to avoid in the first
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place.

In general, none of the above negative results suggests that solutions to these LCP problems

would not generate effective simulations of frictional contact. It just has not been practical, in

many cases, to actually examine the behavior of numerical solutions to large and/or complex

LCP frictional-contact problems. Part of the difficulty in solving these LCPs, which we will

discuss in detail in Chapter 5, can be ascribed to an asymmetry in the LCP problem that is

imposed by friction constraints (see Section 2.4 for details on friction constraints) and made

worse as friction increases.

In an effort to address the asymmetry problem, Anitescu & Hart [2004] have proposed a

relaxation algorithm for the frictional contact problem by symmetrizing the LCP formulation.

By formulating these relaxations as an iterative sequence, the proposed algorithm can be shown

to converge to the true LCP solution, provided the coefficient is below an (unknown) threshold.

In this approach, however, contact and friction constraints are folded together, which effectively

moves the contact constraint directions away from the surface normals, as the coefficients of

friction increase, and thus changing the nature of the contact problem when convergence is

not obtained. While their approach is convergent for very small coefficients of friction (µ '

0.05), the authors report that it fails for coefficient values where frictional behavior becomes

pronounced, e.g., µ = 0.2.

1.4 Contributions

This thesis offers the following contributions:

• We show how the conditions for the so-called Painlevé Paradox can be generalized to

define an important metric of frictional contact problem difficulty, on par with the coef-

ficient of friction.

• We reformulate existing time-continous models [Moreau 1988; Stewart 2000] to explic-

itly partition the frictional contact problem into two naturally convex subproblems. This

leads to discretizations and algorithms that naturally leverage the existing frictional con-

tact problem’s structure.

• Combining this model with discrete variational integration methods [Marsden & West
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2001; Hairer, Lubich, & Wanner 2002], we then derive new variational integrators that

pose the discrete frictional contact problem as a system of coupled minimizations. Solu-

tions to these systems are given by points that are optimal for both of the minimizations 3

and avoid known issues with existing variational integration approaches for friction and

contact.

• We show how a specific two-step variant of these variational schemes [Kaufman et al.

2008] generalizes the popular Stewart-Trinkle model [Stewart & Trinkle 1996] and es-

sentially requires the solution of the same underlying Linear Complementarity Problem

(LCP).

• We then show that difficulties specifically encountered in solving these LCP systems can

be explained, in part, by noting that optimization problems obtained from these frictional

contact formulations are equivalent to nonconvex problems in global optimization (which

are generally NP-hard). We believe that this is the first time that a complexity argument

has been made via the connection to global minimization for the Stewart-Trinkle model.

• We show that existing solution methods that have generally been presumed suitable for

solving these contact-related optimization problems fail entirely for many important ex-

amples of frictional contact, and then address these limitations with our Staggered Pro-

jections algorithm. Applying a fixed-point scheme, derived from our coupled principles

work, Staggered Projections efficiently obtains accurate solutions to optimization prob-

lems for many frictional contact problems that were previously impractical to solve.

• We show that Staggered Projections performs well in practice by offering simulations and

instrumented examples that capture convincing and accurate frictional contact behaviors

for both rigid and large deformation models, as well as tests of the Staggered Projections

implementation with other available popular frictional contact solvers.

• Finally, we offer a detailed convergence analysis of the Staggered Projections algorithm

in which we discuss its behavior, as well as its suitability for practical applications and

its potential limitations.

3Although more general, this problem is similar in nature to finding the solution of a system of equations.
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Chapter 2

Discrete Frictional Contact

In this chapter we formulate and define the basic elements of the discrete frictional contact

problem in a generalized setting. These will essentially define the fundamental elements of

the contact problems that we will be considering throughout the remainder of this thesis. We

will then, for completeness, quickly introduce some useful tools from convex and variational

analysis that we will apply in later chapters. Finally, with our definitions, assumptions, and

structures in place, we will discuss and motivate the difficulties involved in discrete frictional

contact a bit more rigorously.

2.1 Semi-Discrete and Reduced Systems

In this thesis we restrict our attention to finite degree of freedom systems with generalized

coordinates given by a vector q, mass matrices denoted by M, and a convex, potential energy

function given by V (q). Systems covered potentially include Finite Element Models (FEM),

reduced modal models, rigid body models, reduced mechanical models and many other formu-

lations that either directly have discrete coordinates or have had a spatial discretization scheme

applied to them.

2.2 Frictional-Contact Response

Along with system state (i.e., q, q̇, q̈) frictional contact problems have an additional unknown:

the frictional contact response, which we will denote by r. This frictional contact response can

then be decomposed into a contact (non-penetration) component, c, and a frictional response

component, f. In most cases it will be sufficient to consider these terms as forces. However, for

full rigor, left and right limits of these terms must be handled carefully (see Section 2.8.2 for a
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brief discussion and Stewart [2000] for a full coverage of the related issues). To limit the scope

of the following presentation, beyond Section 2.8.2, we will not discuss these issues further,

except to note that in the following sections we will first treat these terms as forces, while from

Chapter 4 onward we will overload the notation by using superscripted versions of r, c, and f

to describe discrete impulses 1. Within each of the following sections we will clarify the local

usage of these terms.

Also note that in this thesis, to simplify our discussion, we will reserve the word “contact” to

specify terms (e.g., forces, constraints, impulses) related to the enforcement of non-penetration.

Similarly, we use the word “friction” to specify terms related to frictional phenomena. The

second usage may be obvious, but we find that this division of terms is helpful in clarifying the

discussion.

2.3 Material Domain and Contacts

We presume that the material domain of the system, potentially composed of many different

bodies, is given by Ω ⊂ R3. Each point belonging to the system is identified by a material

coordinateX ∈Ω, with local spatial coordinates given by

x= Φ(X,q) ∈ R3. (2.1)

2.3.1 Contact Set

We also define the set of all possible contact pairs, C . Generally speaking, we will rarely

compute this set explicitly; however, this is a useful convention in the foregoing discussion.

1i.e., integrals of force with respect to time-step
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2.3.2 Relative Jacobian

Arbitrary contacts, indexed by k ∈ C and occurring at xk ∈ R3, between points X i and X j

belonging to the boundary2 of the material domain, ∂Ω, have a relative velocity given by

ẋk = ∇q

(
Φ(X i,q)−Φ(X j,q)

)
q̇. (2.2)

To simplify notation in much of the following, we specify the relative Jacobian, employed

above, using

Γk
def
= ∇q

(
Φ(X i,q)−Φ(X j,q)

)
. (2.3)

x

x

i

j

i
j

n

Figure 2.1: Relative Velocity: we track the relative velocity at a contact k between two points
i and j using the relative jacobian, Γk.

2.4 Coulomb-Type Friction Laws

Coulomb-type friction laws constrain friction forces locally, at each possible contact, to lie in

an origin centered, convex subset, scaled by the magnitude of the applied normal force. In the

following, for each possible contact, k, we will let f k denote the local friction force and αk the

local normal force magnitude. Friction laws can then be specified in either an inclusion form

or an inequality constraint form. We’ll discuss both variations here.

2The ∂ operator applied to Ω will be used to define the boundary of the domain, however, elsewhere, when
applied to nonsmooth mappings, it will be used to indicate the application of the generalized gradient operator.
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2.4.1 Inclusion Form

Friction laws can be enforced using set valued mappings, F k(αk,q). These mappings generate

scaled, origin centered, convex subsets in which the current friction force must lie, so that, at

each contact, we can define the local friction law via the inclusion

f k ∈ F k(αk,q). (2.4)

2.4.2 Inequality Form

Alternately, letting T k denote an arbitrary, generally orthogonal, span of the minimal subspace

containing F k, we can define friction laws by pairs of equalities and inequalities. Local friction

forces are constrained to the spanning subspace by requiring

f k = T kβk, (2.5)

where βk is a corresponding vector of friction force magnitudes. Friction is then further con-

strained to the correct subset of T k, via inequality constraint functions, F̆ k(αk,βk,q). These

functions are constructed so that the friction law is satisfied if and only if

F̆ k(αk,βk,q)≥ 0, (2.6)

for all possible contacts k. In most cases of interest we can further decompose the inequality

constraint so that we have

F̆ k(αk,βk,q) = ak(αk)−bk(βk). (2.7)

2.4.3 Example1: Isotropic and Anisotropic Coulomb Laws

For the classic form of the Coulomb-Amontons friction law, T k is given by the two-dimensional

span of a local tangent plane defined as common to both contacting points at xk. The constraint

function, F̆k is then given by ak(αk) = µkαk, while bk(βk) =‖ βk ‖ for the isotropic model and

bk(βk) =
√

c1βk1 + c2βk2 , where c1,c2 > 0, for the anisotropic model.
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Figure 2.2: Coulomb Friction Disk: Coulomb’s Law defines a contact centered disk of possi-
ble friction forces lying in the tangent plane.

2.4.4 Example2: Linearized Coulomb Laws

In many formulations a linearized, isotropic Coulomb Law [Stewart 2000] is employed. We

can consider this law as a particular instance of an anisotropic Coulomb law variant or, alter-

nately, we can view this law as a linear approximation of the nonlinear isotropic Coulomb Law.

Effectively, each isotropic Coulomb friction disk is approximated by an inscribed polygon so

that, at each contact k, we uniformly sample an arbitrarily large, symmetric set of unit length

vectors from the tangent plane. We then redefine T k to be the matrix composed column-wise

of these samples so that a friction force, f k ∈ R3, applied at a contact k, will lie in the span of

T k. As before, we continue to enforce the side constraint f k = T kβk; however, the benefits of

linearization come with the cost of an additional constraint. Now that we are using symmet-

ric samples (rather than two orthogonal samples), we additionally constrain the friction force

magnitudes, βk, to be nonnegative, i.e.,

βk ≥ 0. (2.8)

We then obtain the linearized Coulomb law friction subset

F k(αk,q) = {T kβ : eT
βk ≤ µkαk,βk ≥ 0}, (2.9)

where e= (1....1)T .

Similarly, the constraint function, F̆ k, in this case, is given by ak(αk) = µkαk and bk(βk) =
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eT βk. so that we enforce

F̆ (αk,βk) = µkαk−eTβk ≥ 0. (2.10)

Note that, for multiple points of contact, we can concatenate all of the respective µk values

into a single vector µ and correspondingly define a vector that concatenates the friction force

magnitudes for all of the contacts

β = (βT
1 ...β

T
|C |)

T . (2.11)

Then the linearized Coulomb constraint, for all contacts, can be reduced to the simple form of

the two inequalities

ETβ ≤ diag(µ)α, β ≥ 0. (2.12)

Here diag(µ) constructs the diagonal matrix composed of the µk values along the diagonal and

zeros elsewhere. The matrix E corresponds to the vector β such that each column k of E has

ones in rows that correspond to entries in the subvector βk ∈ β and zeros in all other rows.

n

x

k

k

tk3

tk1

tk4

tk2

Figure 2.3: The tangent plane is symmetrically sampled for the linearized Coulomb Law.

2.5 A Variational Toolkit

In the interest of making this dissertation mostly self-contained we will briefly introduce a

small set of tools from Variational and Convex analysis that will be useful in the following

discussion.
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2.5.1 Indicator Functions

Given an arbitrary set S, the extended value indicator function is defined as

IS(x) =

 0, x ∈ S

∞, x /∈ S.
(2.13)

This nonsmooth, extended value function will, in the following sections, be applied to construct

nonsmooth, dissipative, (super) potentials for both contact and friction.

x

S

T (x)

x

S

S

T (x)
S

S

!I (x)
S

Figure 2.4: The geometric picture for the extended value indicator function.

2.5.2 Generalized Gradient

Because we will be working with nonsmooth functions (such as the indicator function described

above) we will need to occasionally apply a generalized notion of calculus. A fundamental

tool for nonsmooth analysis is the generalized gradient, which, at any differentiable point,

reduces to the classical notion of a gradient. For nonsmooth points, however, the generalized

gradient at x is, loosely speaking, given by the convex hull of the gradients at all of the closest

differentiable points to x. More formally, we can define the generalized gradient of a locally

Lipschitz function, f , as

∂ f (x) = conv
{

lim
i→∞

∇ f (xi) : xi→ x, xi /∈U, xi /∈V
}
, (2.14)

were U is the set of non-differentiable points in the neighborhood of x and V is any set of

measure zero [Clarke 1983].
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2.5.3 Subdifferentials

For arbitrary convex functions, f , the generalized gradient operator, ∂ , reduces to the subdif-

ferential [Rockafellar 1970] of convex analysis which can be defined as

∂ f (x) = {y : f (z)≥ f (x)+yT (z−x),∀ z}. (2.15)

Basic calculus rules such as

∂ (− f )(x) =−∂ f (x). (2.16)

can be then be inferred and stationary points follow inuitively; however, because of convexity,

generalized stationarity, i.e., 0 ∈ ∂ f (x∗), specifically implies that x∗ is a minimum of f .

2.5.4 Tangent Cones

A tangent cone at an arbitrary point x ∈ S, effectively describes the set of all possible infinites-

imal motions that can taken from x, while still remaining in the set S.

More formally, in the convex setting, the tangent cone is given by

TS(x) =
{

λ (z−x) : λ ≥ 0,z ∈ S
}
. (2.17)

Taking advantage of convexity, this simply gives us the set of all vectors that, starting from x,

are directed towards other points in S.

The generalized definition of the tangent cone, for the nonconvex case, effectively defines a

similar, but localized, version of the tangent cone, constructed via a limiting process similar to

the construction of the generalized differential. For the sake of brevity, however, we refer the

interested reader to Clarke [1983] for details.

2.5.5 Normal Cones

The normal cone to S at x, then similarly generalizes the idea of an outward pointing normal di-

rection at a nonsmooth point. In particular, the normal cone for both the convex and nonconvex

cases is given by

NS(x) =
{

y : yT z≤ 0,∀ z ∈ TS(x)
}

(2.18)
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The normal cone is also given by applying the generalized gradient to the indicator function

on S. That is, we always have

∂ IS(x) = NS(x). (2.19)

For intuition building, the convex case can be helpful here. Applying the definition of the

tangent cone from above, the normal cone must then be given by

NS(x) =
{

y : 0≥ yT (z−x),∀ z ∈ S
}
. (2.20)

Then, for the particular case where we have an indicator function defined on a convex set S, the

subdifferential of the indicator is

∂ IS(x) = {y : IS(z)≥ IS(x)+yT (z−x),∀ z} (2.21)

so that

∂ IS(x) =

 {y : 0≥ yT (z−x),∀ z ∈ S}= NS(x), if x ∈ S,

/0, if x /∈ S.
(2.22)

We also note, in particular, that if x ∈ interior S, ∂ IS(x) = NS(x) = {0}.

2.5.6 Legendre-Fenchel Conjugates

The Legendre-Fenchel transform [Rockafellar 1970], of an arbitrary function, f , effectively

generalizes the Legendre Transform to nonsmooth systems and is given by

f ∗(x) = sup
y
(yT x− f (y)). (2.23)

Applying the Fenchel Transform to the case where f = IS we then obtain the conjugate function

I∗S(x) = sup
y∈S

yT x. (2.24)

The Legendre-Fenchel Transform will be helpful, in the next chapter, for defining an ap-

propriate (super) potential function for friction.
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Figure 2.5: Feasible Set: Contact constraints describe a feasible set A, which the contacting
system must lie in. For each configuration q, we can describe an associated tangent cone T(q),
and normal cone N(q).

2.6 Feasible Set

In the generalized discrete contact setting we will find it useful to define the set of all accept-

able non-penetrating configurations using the notion of a feasible set (or acceptable set) A. In

general, A can be both nonconvex and nonsmooth.

We also presume, without loss of generality, that the feasible set A can always be described

by a set of constraint functions,

G(q) = (g0(q), ...,gm(q))
T ≥ 0. (2.25)

2.7 Normal and Tangent Cones Via Constraint Gradients

For the specific context of discrete contact, we will also find it useful to define the tangent and

normal cone to the feasible set, A, using the gradients of the constraint functions, G.

We first let N denote the matrix composed of the gradients of the zero-valued constraints at

q, i.e.,

N(q)
def
= {∇gi(q) : gi(q) = 0, i ∈ [0,m]}. (2.26)

The inward pointing normal cone, the negation of the outward pointing normal cone, NA,

defined above, can then equivalently be given by

C(q)
def
= {Nx : x≥ 0}. (2.27)

Similarly, as hinted above, the set of feasible directions, along which infinitesimal motion is

locally permissible, will be described by the tangent cone to A at q, which can also be specified
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as

T(q)
def
= {y : NT y ≥ 0}. (2.28)

Note that throughout this thesis, to simplify notation, the tangent cone to the feasible set, A,

will be written, as above, without a subscript.

2.8 The Coupling Problem

With the preliminary problem formulation in place we can now discuss some of the fundamental

challenges of frictional contact with greater detail.

2.8.1 Frictional Contact Challenges

Much of the difficulty in frictional contact resolution algorithms comes from the feedback

between friction impulses (or forces) and contact (non-penetration) impulses (forces). Many

ad-hoc contact resolution algorithms propose variants on a two pass strategy in which contact

constraints are processed in a first pass, followed by a second pass in which friction impulses

are applied. For deformable models, with low stiffness, this can often work reasonably well.

As stiffness increases, however, friction impulses can begin to apply significant global changes

in the system’s velocity that, in turn, can create new contact constraint violations. In a similar

way, contact correction impulses can effect global changes in the system’s sliding velocities

and the Coulomb constraints, which must affect friction impulse calculations.

An applied 
friction impulse

induces a 
torque 

causing negative 
normal velocity

Figure 2.6: Rigid Card House: Constraint and friction force coupling.
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Rigid body systems, which are essentially deformable bodies with infinite stiffness, pose an

extreme version of this problem. Consider the card house example where the structure is com-

posed of thin, rigid planks. A tangential friction impulse applied at the base of a card, to oppose

outward sliding, will also induce a torque on the card. The torque, in turn, will cause a negative

velocity along the normal at the same point where the friction impulse was originally applied.

Similarly, a normal impulse, applied at the same contact point, would generate a faster outward

sliding velocity (see Figure 2.6). These effects are related to the Painlevé Paradox [Painlevé

1895], and the observation by Erdmann [1994] that generalized normal and friction impulses,

for rigid bodies, are not, in general, orthogonal. They can, in fact, oppose or even reinforce one

another. We also note that, while this effect is most marked for rigid bodies, we can extend the

same observations to deformable models.

Figure 2.7: Friction Dependent Masonry: Stable masonry structures can be built without ad-
hesives using materials that have a suitably high coefficient of friction. Left: In this simulated
example a stable catenary arch is constructed using rigid body block models with a high co-
efficient of friction (µ = 0.6). Right: In this simulated example a stable house of rigid cards
is constructed using rigid body card models with a high coefficient of friction (µ = 0.8). See
Chapter 7 for details on both of these simulation examples.

There has recently been a focus on stable structured stacking in gaming and graphics [Er-

leben 2007]. While these examples require accurate contact constraint enforcement they re-

quire very little accuracy from friction. Structures like the rigid card house in Figure 2.7 right,

masonry arches without adhesives (see Figure 2.7 left), or woven elastic-frictional composites

(see Figure 7.1), on the other hand, depend on very accurate coupling between friction and

contact impulse calculations. Non-orthogonal friction and contact impulses must be accurately

balanced, at each active contact point, to prevent incremental errors from crashing or breaking
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apart the structures. Because of this, inaccuracies imposed by two-pass, penalty, iterative LCP,

and other methods have previously made the stable simulation of such frictionally dependent

structures impractical.

2.8.2 The Painlevé Paradox

Painlevé [1895] famously observed that some initial value problems involving rigid bodies

and Coulomb friction appeared to have no solution. For obvious reasons this has long stirred

controversy.

Figure 2.8: Painlevé Rod Example

The now classic example given by Painlevé is that of a rigid rod sliding along a flat surface,

with the rod at an angle to the horizontal (see Figure 2.8). The Painlevé rod example is generally

formulated using the local coordinates of the contacting point (see Stewart [2000] for example).

Here, we will reformulate the problem in a generalized coordinate formulation to make explicit

some properties of the Painlevé Paradox that we will want to revisit in later chapters.

Generalized Coordinate Painlevé Example

In this simple example we have a one dimensional rod of length 2 with a single point of contact

at xc (Figure 2.8). The rod has the inertia matrix M and the magnitude of gravity is g. The

contacting surface is fixed with a normal direction n and a tangent t. Here the degrees of

freedom of the system are given by

q = (a,p)T ∈ SE(2), (2.29)
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where a gives the angle of rotation about the center of mass, and p indicates the R2 coordinates

of the center of mass 3The generalized velocity is then

q̇ = (ȧ, ṗ)T ∈ se(2). (2.30)

The body frame coordinates of the contact point could then be given by

x̂c = (0,−1)T . (2.31)

The world coordinates of the contacting point are the given by

xc(q) = R(a)x̂+p, (2.32)

Where R(a) is the rotation specified by a; i.e.,

R(a) =

cos(a) −sin(a)

sin(a) cos(a)

 . (2.33)

Then, we have

ẋc =

cos(a) 1 0

sin(a) 0 1

 q̇, (2.34)

so that the jacobian for contact point xc is

Γc =

cos(a) 1 0

sin(a) 0 1

 , (2.35)

with ẋc = Γcq̇.

To enforce non-penetration, we enforce the constraint that acceleration of the contact point

be nonnegative along the normal, i.e.,

nT ẍc ≥ 0. (2.36)

Then contact forces, required to enforce this constraint, are applied with a magnitude of

α ≥ 0 along the direction of the normal. The corresponding generalized force, if this contact

force, nα , is applied at xc is then

c = ΓT
c nα ∈ se∗(2). (2.37)

3For more details on the Special Euclidean groups for two and three dimensional rigid motion (i.e., SE(2) and
SE(3)) and their correspodning Lie Algebras (se(2) and se(3)) we refer the interested reader to Murray, Li, & Sastry
[1994]
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Similarly, friction is applied as a magnitude β along the tangent direction t. The corresponding

generalized force if this friction force, tβ , is applied at xc is then

f = ΓT
c tβ ∈ se∗(2). (2.38)

Intuitively, these three-dimensional, generalized forces make sense in the context of a contact

in R2. The last two entries in each generalized force correspond to the linear force applied at

xc, while the first entry in each generalized force corresponds to the torque that is generated.

The equations of motion for this contacting system are then

Mq̈ = c+ f +M(0,−g,0)T . (2.39)

If contact is breaking, i.e., nT ẍc > 0, then, since we do not consider adhesion, the contact

force must be zero. Similarly, if the contact force is greater than zero, i.e., α > 0, the rod must

stay in contact, implying nT ẍc = 0. Combining these observations together we get a simple

variant of the Signorini condition [Signorini 1933],

0≤ α ⊥ nT ẍc ≥ 0, (2.40)

where the ⊥ notation simply indicates αnT ẍc = 0.

We now consider the case of zero angular velocity (ȧ = 0), zero normal velocity (ṗ2 = 0),

and negative tangential velocity (ṗ1 < 0). This, in turn, implies that the contact point must be

sliding to the left, i.e, tT ẋc < 0. Because of this sliding, Coulomb’s law specifically requires

that magnitude of the friction force take the maximum value

β = µα. (2.41)

Expanding the contact constraint from Equation (2.36) we have

nT
( d

dt

(
Γcq̇
))

= nT Γcq̈+nT Γ̇cq̇≥ 0. (2.42)

Then, noting that, in this context, we have

Γ̇c =

−sin(a)ȧ 0 0

cos(a)ȧ 0 0

 , (2.43)
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the nT Γ̇cq̇ term drops out of the above inequality (since ȧ= 0) and we are left with the constraint

nT Γcq̈≥ 0. (2.44)

Then substituting in Equations (2.39),(2.41), (2.37), and (2.38) we obtain

nT ΓcM−1ΓT
c nα +nT ΓcM−1ΓT

c t(µα)−g ≥ 0, (2.45)

or

(
nT ΓcM−1ΓT

c n+µnT ΓcM−1ΓT
c t
)

α−g ≥ 0. (2.46)

Recalling that g > 0 and noting that nT ΓcM−1ΓT
c n > 0, we see that if nT ΓcM−1ΓT

c t < 0

and µ is sufficiently large, there does not exist any contact force α ≥ 0 that can satisfy the

contact constraint. This is Painlevé’s Paradox. Effectively, in these Painlevé cases, the applied

forces will induce a torque that rotates the contacting point into the constraint surfaces and, due

to friction, no feasible contact force exists that can prevent this from happening.

The modern resolution of the so-called paradox hinges on the observation that the entire

analysis above depends on the assumption that there are no impulsive forces involved. The

moment we presume that the sliding velocity can be driven to zero instantaneously, the para-

dox disappears. To rigorously include impulsive forces, however, requires a measure-based

formulation that carefully handles right and left limits at jumps. We refer the interested reader

to Moreau [1988] and Stewart [2000] for further details.

2.8.3 Painlevé Conditions and Non-Orthogonality

Considering the above generalized force definitions in Equations (2.37), and (2.38), we see

that they effectively define a generalized normal direction n = ΓT
c n and a generalized tangent

direction d = ΓT
c t.

In this framework, it is also often helpful to consider the kinetic metric given by the system’s

mass and inertia. That is, for arbitrary covariant vectors a and b, the kinetic metric is given by

< a,b >
M−1= aT M−1b. (2.47)
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From this perspective, conditions for the Painlevé Paradox, as given above in Equation

(2.46), can occur whenever we have

< n,d >
M−1> 0. (2.48)

The problem is then that, although n and t are orthogonal in the contact space, their corre-

sponding generalized force space analogues, n and d, no longer necessarily inherit orthogonal-

ity [Erdmann 1994].

Equation (2.46) suggests that as µ increases, the higher the likelihood of conditions being

suitable for the Painlevé Paradox to occur. On the other hand, however, we also see that the

angle between n and d, is also important. As this angle decreases, the likelihood of conditions

suitable for the Painlevé Paradox also correspondingly increases.

As we will show in later chapters, conditions that can cause the Painlevé Paradox are not

only of theoretical interest. We will show that in combination, these two criteria (µ and the

generalized, inertia-weighted angle) are responsible, in large part, for much of the difficulty

involved in solving computational problems related to frictional contact problems.

Given the modern resolution of the Painlevé Paradox, we will, in the rest of this thesis, sim-

ply refer to the conditions that give rise to these troublesome Painlevé Paradox-type conditions

as “Painlevé Conditions”.

In the generalized, multi-point setting these issues are of even greater importance. For

these cases we will introduce a simple, useful, and intuitive generalization of the Painlevé

Condition and will show its direct connection with the difficulty of computational frictional

contact problems. We will show that, as is generally well appreciated, increasing the coefficient

of friction, µ , is certainly a crucial indicator of potential difficulties, but that a generalized

notion of angle between friction and contact directions, is also of equal importance.

2.8.4 Two-Way Coupling in this Thesis

In Section 2.8.1 we motivated how coupling between friction forces and contact forces could

be troublesome for accurate frictional contact algorithms. In Sections 2.8.2 and 2.8.3 we intro-

duced the Painlevé Paradox and discussed how non-orthogonality and the coefficient of friction

play a role in somehow making frictional contact problems hard.
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What we have shown and will continue to discuss throughout this thesis is that friction is,

in essence, a two-way coupled problem. The first coupling, as we saw above, comes from

the interaction between generalized friction forces and generalized contact forces. If these two

forces are orthogonal, then this form of coupling is removed. As we saw in the last three

sections non-orthogonal cases encode important global changes that can be imposed by local

contact and friction forces. The other source of coupling comes from Coulomb-type friction

subsets. These subsets are scaled by the magnitude of the contact force; this scaling causes

a second form of feedback between friction and contact forces. If either form of coupling

is removed we will show, in Chapters 5 and 6, that the frictional contact problem generally

becomes much easier. With this coupling in place, however, frictional contact imposes unique

challenges that must be addressed for accurate frictional contact modeling.
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Chapter 3

Coupled Variational Principles

In this chapter we will develop a coupled model of frictional contact. We will show that dis-

crete frictional contact, in the time-continuous setting, can be posed as a system of coupled

variational principles. From this perspective we will see that frictional contact is, essentially, a

multi-physics problem. we will then show that both of the obtained principles are effectively

convex minimization problems and so lead (in Chapter 4) to partitioned discretizations that

leverage the frictional contact problem’s inherent structure. Morever, the coupled variational

formulation we adopt here allows us to construct natural Lagrangians that, in turn, will be ap-

plied, using discrete variational techniques, to construct novel numerical integration schemes

for frictional contact in Chapter 4.

We first begin by noting that frictional contact response is, by definition, a purely dissipative

phenomena. Similar to Rayleigh-type damping it is velocity dependent. Unlike Rayleigh-type

damping, however, frictional-contact response can not, in general, be obtained from the direct

substitution of a single potential gradient into the Euler-Lagrange equations. Instead, frictional-

contact response terms can be obtained from the gradients of two separate, nonsmooth poten-

tials, which are mutually dependent.

We will highlight this coupling by showing that, leveraging seminal results by Moreau

[1966, 1973, 1988] a variational interpretation of frictional contact can be formulated as a pair

of two, independently convex, variational principles, in which the friction and contact potentials

are each embedded in separate variational principles. As we will show, these two potentials are

intrinsically coupled in both directions. Due to this coupling, each variational principle can

not, in general, be solved independently of the other and will generally be found to be the chief

source of unavoidable computational difficulty in solving related frictional contact problems

accurately.
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3.1 A Non-Smooth Hamilton’s Stationarity Principle

To begin our development we start with Hamilton’s Stationarity Principle subject to constraints.

3.1.1 The Basic Form

We can implicitly include constraints in the Hamiltonian setting by augmenting the classical

action functional with an indicator function of the acceptable set, IA, to construct an extended

value action ∫ T

0

1
2

q̇T Mq̇−V (q)− IA(q) dt. (3.1)

Note that all terms here are the same as in the classical action, except for the addition of the

indicator function. This extra term infinitely penalizes all paths that leave the feasible set A.

Thus extremizing this action leads to a generalized form of the Euler-Lagrange equations that

naturally include constraint enforcing forces [Clarke 1983; Kane et al. 1999]. We will see more

on this in a moment.

3.1.2 A Frictional External-Force/Dissipation Term

Our formulation begins with a relatively simple addition. With the assumption that local co-

ordinates for q exist, that are compatible with the generalized friction force, f, we can add an

extra term, fT q, to the action. This additional function describes the dissipation performed by

friction. Adding this term to the action then gives us the augmented functional∫ T

0

1
2

q̇T Mq̇−V (q)− IA(q)+ fT q dt. (3.2)

Then, applying Hamilton’s Stationarity Principle, we can extremize the action in this nons-

mooth setting as,

δq

∫ T

0

1
2

q̇T Mq̇−V (q)− IA(q)+ fT q dt 3 0. (3.3)

3.1.3 Integral Lagrange-d’Alembert Principle for Friction

Alternately, if we do not wish to apply a local coordinate argument, we can invoke the integral

Lagrange-d’Alembert principle [Marsden & Ratiu 2003] in the nonsmooth setting,

δq

∫ T

0

1
2

q̇T Mq̇−V (q)− IA(q) dt +
∫ T

0
f ·δ q dt 3 0, (3.4)
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to formulate our augmented system. In adopting this perspective, we effectively treat friction as

an externally prescribed force; however, since friction is essentially path dependent, the inclu-

sion of this term in the action here, as above, also requires friction to be maximally dissipative.

3.1.4 Stationarity

By either route, applying Nonsmooth Analysis [Rockafellar & Wets 1998], we obtain a multi-

valued stationarity condition,

Mq̈− f−g ∈ −∂ IA(q). (3.5)

This is a differential inclusion (DI) form of the Euler-Lagrange equations of motion with

g
def
= −∇qV (q).

3.1.5 Discussion: Generalized Gradients, Normal Forces

By definition, the generalized gradient of the indicator function returns 0 whenever q lies in

the interior of A. In this case the DI in Equation (3.5) reduces to the familiar Euler-Lagrange

equation, Mq̈ = g. While, on the boundary of A, it reduces to the outward pointing normal

cone. Thus we have −∂ IA(q) = C(q).

Then, Equation (3.5) implies that all corrective forces, i.e., those that enforce the feasibil-

ity or contact constraints, must be applied positively along the constraint gradient directions,

giving us

Nα = Mq̈− f−g ∈ −∂ IA(q), α ≥ 0. (3.6)

From this perspective, the above α terms can thus be interpreted as force magnitudes, along the

normal directions of system contacts.

3.1.6 A Lagrangian Dual Formulation

Equivalently, from an optimization perspective, we can view the α terms as Lagrange multipiers

for enforcing the constraints, G. To explicitly expose these multipliers we can also reformulate

the non-smooth action using Lagrangian duality

∫ T

0

1
2

q̇T Mq̇−V (q)−αG(q)− IRm
+
(α)+ fT q dt, (3.7)
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Extremizing with respect to both q and α , an equivalent stationarity condition is then given

by the pair

Mq̈ = g+ f +Nα, (3.8)

G(q) ∈ −∂ IRm
+
(α). (3.9)

3.1.7 Kinematic Equivalence, Local Convexity and Optimality

A A A

A

Figure 3.1: At the boundary of the feasible set, the relationship between the normal cone and
the tangent cone allow us to transform constraints locally from configuration space to velocity
space.

Locally we have an equivalence between the constraining the system’s position to the fea-

sible set, q ∈ A, and constraining velocities to the tangent cone, q̇ ∈ T(q). This observation can

be extended [Moreau 1988] to compose an equivalent, but convex, form of Equation (3.5), via

the equivalence

Mq̈− f−g ∈ −∂ IA(q) ⇐⇒ Mq̈− f−g ∈ −∂ IT(q)(q̇). (3.10)

See Figure 3.1 for intuition. This equivalence exposes the underlying local convexity of the

stationarity criterion, since T(q), and correspondingly IT(q), are both convex for all configu-

rations, even when A is not. In the following we will refer to this equivalence as the “Moreau

Transform”. We now can compactly describe the contact response optimality using the convex

formulation

−Nα ∈ ∂ IT(q)(q̇), (3.11)

so that ∂ explicitly indicates the subdifferential operator.
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3.2 A Maximal Dissipation Principle

Moreau [1973] introduced a rate-based Maximal Dissipation Principle to describe single point

frictional contact. This approach reinterprets Coulomb friction as maximizing dissipation over

all feasible friction forces at a contact [Goyal, Ruina, & Papadopoulos 1991]. Here we show

how this approach can be generalized to construct a variational principle for friction in the

multi-contact setting.

3.2.1 Local Dissipation Rate

First we need to define the rate of dissipation with respect to the generalized velocity The rate

of dissipation performed by a friction force, f k, acting locally at a contacting point, xk, with

an associated relative velocity, ẋk, is given by

−fT
k ẋk =−fT

k Γkq̇. (3.12)

3.2.2 A Global Formulation of Dissipation

Then summing the local dissipation rates over all potential contacts and rearranging the terms,

we obtain a generalized, global form of the total dissipation rate,

−
(
∑
k

ΓT
k f k

)T
q̇. (3.13)

Thus the generalized friction force, generated at contacting point k, is given by

fk = ΓT
k f k, (3.14)

while, the corresponding full generalized friction term is then given by their sum,

f = ∑
k

fk. (3.15)

3.2.3 Generalized Friction Constraints

Above we’ve shown how to generate the generalized friction forces. Here we will correspond-

ingly derive generalized friction sets.
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As discussed in Section 2.4, we can enforce Coulomb-type friction laws at each possible

contact, k, using the inclusion constraints

f k ∈ F k(αk,q). (3.16)

Here we merely require that each F k be convex for all1 αk.

Applying Equation (3.14) we can generate a corresponding generalized friction constraint

for each potential contact,

fk ∈ Fk(αk,q)
def
= ΓT

k F k(αk,q). (3.17)

This, in turn, defines a single, global generalized friction set to which we constrain the global,

generalized friction force

f ∈ F(α,q)
def
=

⊕
k

Fk(αk,q). (3.18)

Note that because the generalized friction set, F(α,q), is generated from this direct sum 2 of

convex sets, it too is convex.

3.2.4 Dissipation Rate Functional

In the last section we reduced the friction constraints to a single generalized friction set in

Equation (3.18). Using this friction set we can now construct a constrained work rate functional

for friction, ∫ T

0
q̇T f + IF(α,q)(f) dt, (3.19)

which we will call the Friction Functional. By construction, this functional is convex, so that

by minimizing it, we maximize the rate of dissipation globally over the system’s path, subject

to the selected friction law.

3.2.5 Maximal Dissipation Principle: Variational Form

Extremizing the Friction Functional,

δf

∫ T

0
q̇T f + IF(α,q)(f) dt 3 0, (3.20)

1Extensions to stiction laws can be obtained by reformulating F k to also be parameterized by q̇.

2The direct sum of two arbitrary subsets, U and V , is given by U
⊕

V = {x+ y : x ∈U,y ∈V}.
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we now obtain a second multi-valued optimality condition in DI form,

−q̇ ∈ ∂ IF(α,q)(f), (3.21)

which corresponds to the optimality condition for the Maximal Dissipation principle.

3.2.6 A Lagrangian Dual Formulation

Equivalently, to expose the friction force magnitudes, β , we can also reformulate the Maximal

Dissipation Principle using Lagrangian duality. We first concatenate the set of all possible local

friction inequality constraints into a single global constraint

F̆ (α,β ,q)
def
=
(
F̆ 1(α1,β1,q), ..., F̆ |C |(α|C |,β|C |,q)

)T
. (3.22)

Similarly we concatenate the friction magnitudes

β
def
=
(

β1, ...β|C |

)T
(3.23)

and the local friction bases

T
def
=
(
T T

1 , ...T
T
|C |

)T
, (3.24)

so that the friction equality constraints can be given by

(
fT

1 , ...f
T
|C |

)T
= Tβ. (3.25)

We now can reformulate the Frictional Functional as

∫ T

0
(Γq̇)T (Tβ)−λ

T F̆(α,β ,q)− IRm
+
(λ ) dt. (3.26)

Extremizing this action with respect to β and λ then gives the equivalent stationarity con-

dition in the form of the pair

T T Γq̇ ∈ λ∂βF̆(α,β ,q), (3.27)

F̆(α,β ,q) ∈ −∂ IRm
+
(λ ). (3.28)
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3.3 Joint Optimality

We have now independently derived the two Variational Principles for frictional contact. We

have additionally shown how, despite the original nonconvexity of the Nonsmooth Hamilton’s

Principle, it can be further modified, using a theorem from Moreau, to expose the underlying

convex structure of the contact problem. In each principle, however, essential unknowns from

the other principle are required to correctly formulate the problem. In this section we will

discuss this coupling and its implications for numerically solving frictional contact problems.

First, however, we will discuss and clarify the superpotential interpretation of the obtained

optimality conditions using Fenchel-Legendre conjugates.

3.3.1 Conjugate Optimality Forms

In Equation (3.21) the inclusion shows that the generalized velocity, q̇, is effectively constrained

by the generalized friction response, f. In this inclusion IF(α,q)(f) functions as a conjugate

form of the friction potential since, via an application of the Legendre-Fenchel transform, the

equivalent conjugate DI optimality form of Equation (3.21) is

f ∈ ∂ I∗F(α,q)
(−q̇). (3.29)

Similarly, applying the Legendre-Fenchel transform to Equation (3.11) we obtain

q̇ ∈ ∂ I∗T(q)
(−Nα), (3.30)

and see that the generalized velocity is similarly constrained by the generalized contact re-

sponse.

3.3.2 The Coupled Optimality System

With the addition of these last two conjugate terms we can now fully characterize the coupled

frictional contact response system. The following diagram summarizes the overall relationship,

including the dependency of the friction optimality terms on α (we use “L−F” to indicate the

application of the Legendre-Fenchel Transform),
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−Nα ∈ ∂ IT(q)(q̇)
L−F−−−−→ q̇ ∈ ∂ I∗T(q)

(−Nα)

α

y
−q̇ ∈ ∂ IF(α,q)(f)

L−F−−−−→ f ∈ ∂ I∗F(α,q)
(−q̇).

(3.31)

Recalling the defintion of the subdifferential, we can cast the diagram explicitly as a set of

optimizations. Then we can equivalently view the relationship as

q̇ = argminy
{

yT Nα + IT(q)(y)
} L−F−−−−→ Nα = argminy

{
yT q̇+ I∗T(q)

(−y)
}

α

y
f = argminy

{
yT q̇+ IF(α,q)(y)

} L−F−−−−→ q̇ = argminy
{

yT f + I∗F(α,q)
(−y)

}
.

(3.32)

3.3.3 Coupled Potentials

Based on the above coupled formulation, IT(q)(q̇) and I∗F(α,q)
(−q̇) function as the convex po-

tentials for contact and friction response, respectively. Joint optimality for the system’s instan-

taneous frictional contact response, r = c+ f, is thus given by the coupled system of the two

subdifferentials

c = Nα ∈ −∂ IT(q)(q̇),

f ∈ ∂ I∗F(α,q)
(−q̇).

(3.33)

The Euler-Lagrange equation,

Mq̈ = g+ f + c, (3.34)

then completes the description of the contacting system’s dynamics by describing the correct

relation between the frictional-contact response and the non-contacting portion of the system.

Note that classical dissipative forces, such as damping and external forcing, can also be in-

cluded in the Euler-Lagrange equation, i.e., Equation (3.8), in the usual manner, and from the

perspective of the above derivation can equivalently be added into the original variational for-

mulation via the Lagrange-d’Alembert principle.
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3.3.4 Discussion: Two-Way Interdependence Revisited

Since the friction potential is parameterized by α , the correct formulation of the friction poten-

tial is directly dependent on the subdifferential of the contact potential. The correct formulation

of the contact potential, conversely, is dependent on the subdifferential of the friction potential,

since the system’s contact constraint status is directly effected by changes imposed by friction

terms via the Euler-Lagrange equation. These interdependencies pose the primary difficulties

encountered in frictionally contacting systems. In the later chapters we will clarify exactly how

these difficulties manifest in the discrete time setting and just what aspects of this two way

coupling are the chief culprits.
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Chapter 4

Variational Methods for the Numerical Integration of Frictional
Contact

4.1 Overview

Recently attention has been focused on numerical integration methods that preserve geometric

invariants of continuous systems [Hairer, Lubich, & Wanner 2002]. The chief observation is

that while numerical accuracy is desirable, there will always be error, due to discretization, for

all numerical schemes. Thus the preservation of invariants, which leads to qualitatively good

long term behavior, is essential for simulating the flow of differential equations.

One such class of methods are discrete variational integrators [Marsden & West 2001].

Instead of discretizing the equations of motion in the usual manner, discrete analogs of orig-

inal minimization/stationarity principles that lead to a system’s descriptive differential equa-

tions are derived. By paralleling in the discrete domain the classical development of the La-

grangian/Hamiltonian formulation, numerical integration schemes are obtained. They can be

formulated to any order of accuracy desired and are symplectic in the discrete sense [West

2004].

For frictionally contacting systems, where, as we have already shown, minimization is a

fundamental and unavoidable feature, the variational framework potentially offers several ad-

vantages. As we will show in this chapter, applying variational methods to contacting systems

we can directly expose the underlying discrete constrained minimization systems that are nec-

essary to accurately model contact and friction, while avoiding measure-based issues relating

to Painlevé’s paradox. Variational discretizations, once properly formulated, will also offer a

wide range of possible integration approaches that directly couple the treatment of nonsmooth

contact and friction terms with the classical numerical treatment of continuum and rigid-body

mechanics. In order to properly formulate frictional contact in the discrete variational setting,
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however, several technical hurdles will need to be overcome in this chapter. One bar to applying

discrete variational techniques – formulating appropriate Lagrangians for frictional contact has

already, however, been cleared in the last chapter. As we will see later in this chapter, the cou-

pled Principles Formulation, introduced in the last chapter, when properly handled, provides a

suitable basis for formulating discrete variational integrators for frictional contact.

Kane et al. [1999] first proposed applying nonsmooth extensions of variational integra-

tion methods in the frictionless contact setting. Although variational integration schemes have

also been proposed for both conservative systems and dissipative systems with forcing and/or

Rayleigh-type damping [Kane et al. 2000], extending these approaches to frictional contact

has proved difficult. An extension of this latter approach, employing Newmark integration for

frictional contact, has also been formulated [Pandolfi et al. 2002]. However, because it treats

friction as effectively an uncoupled damping force, it requires that the contacting system treated

in this model have a closed form solution for the evaluation of contact Lagrange multipliers, α .

This is an unlikely property that generally only holds for very simple systems that do not exhibit

the coupling difficulties that are characteristic of many interesting frictional contact problems.

In part to address this issue, the model in Pandolfi et al. [2002] was later reformulated using a

penalty based approach [Pandolfi & Ortiz 2007].

Even without friction, appropriately integrating contact into the discrete variational setting

still remains challenging. Stewart [2000] notes that, despite good conservative properties in the

smooth setting, symplectic methods do not necessarily translate well for nonsmooth contact

problems. In particular, he observes that symplectic methods like the midpoint rule and even

the variational approach of Kane et al. [1999] loose their good (discrete) energy conserving

properties when subject to contact.

In this chapter, we will show how a combined application of the coupled principles formu-

lation (developed in the last chapter) and variational discretization techniques allows for the

natural construction of variational frictional contact integrators that avoid many of the issues

discussed above. We will first introduce useful discrete analogues of the friction sets, normal

cones, and other elements introduced in earlier chapters. Next we will motivate our derivation

by presenting a brief tutorial on variational integration methods (without contact). We will in-

troduce our general construction strategy for deriving variational frictional contact integrators
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from the coupled principles formulation and then, finally, focus on the particular example of

deriving a symmetric variational integrator for frictional contact. Examples follow in Section

4.8 to demonstrate the performance, effectiveness, and good energy preservation properties of

the derived integrators.

4.2 Discrete Contacting Systems

In the discrete setting, individual constraints describe non-penetration conditions, pairwise,

between geometric primitives, such as boundary elements (e.g., edges, faces, algebraic surface

representations). For each such constraint, gk, with an active value at time t, i.e., gk(q
t)≤ 0, we

can associatea discrete spatial contact location, xk, and tangent plane, T k. The corresponding

discrete contacting system, at time t, is then described by the contact set, Ct , which contains all

such potentially active constraints.

4.2.1 Discrete Constraint Gradients, Cones and Sets

In the remaining part of this section we will describe some further, time-discrete analogues of

useful geometric structures first introduced in Chapter 2.

Letting

nk
def
= ∇gk, (4.1)

for all k ∈ Ct , the gradients of the contact set are concatenated to form a subspace of normal

directions

N(qt) = (n1, ...,n|Ct |), (4.2)

the corresponding discrete normal cone is then

C(qt) = {Ny : y ≥ 0}, (4.3)

while the discrete tangent cone is

T(qt) = {x : NT x≥ 0}. (4.4)

Finally, the discrete friction subset is given by

F(α t ,qt)
def
=

⊕
k∈Ct

Fk(α
t
k,q

t). (4.5)
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4.2.2 Discrete Frictional-Contact Terms

In the following sections the contact terms, r, f, and c, with superscripts will be exclusively

reserved to indicate discrete impulse terms. For example, time will be super-scripted using t,

t +1, etc..., while intermediary predictor values will be indicated using the superscript, p.

4.3 Introduction to Variational Integrators

An alternative approach to creating numerical integration methods with good properties (sym-

plectic, invariant preserving, etc...) is to begin with derivations that respect discrete versions of

variational principles [Cadzow 1970; Logan 1973; Maeda 1981; Marsden & West 2001]. Mim-

icking the continuous derivation of the Lagrangian equations of motion we wish to extremize

a discrete Lagrangian on the time interval t ∈ [0,T ] over all possible discrete paths of the form

{q0, ...,qk, ...,qN}, where N = T/h. We can define a discrete Lagrangian,

Ld(q
k,qk+1,h)≈

∫ (k+1)h

kh
L(q, q̇) dt (4.6)

as the quadrature on a finite interval of the continuous Lagrangian. The quadrature of the

Lagrangian over the entire discrete path, called the discrete action, is then the sum of the

discrete Lagrangians over all intervals:

N−1

∑
k=0

Ld(q
k,qk+1,h)≈

∫ Nh

0
L(q, q̇) dt. (4.7)

Then the minimization of the discrete Lagrangian, over all discrete paths with fixed endpoints,

is obtained by finding the variations of the discrete action,

δ

N−1

∑
k=0

Ld(q
k,qk+1,h).

This is computed as

N−1

∑
k=0

[ D1Ld(q
k,qk+1,h) ·δk +D2Ld(q

k,qk+1,h) ·δk+1 ],

where Dn is the partial derivative with respect to the nth variable and δk is the variation of the

kth point on the discrete path. Noting that our endpoints are fixed, we have δ0 = δN = 0. Then,

rearranging our summation we have

N−1

∑
k=1

[ D2Ld(q
k−1,qk,h)+D1Ld(q

k,qk+1,h) ] ·δk.
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Finally, by imposing zero action for all possible δk, we obtain our Discrete Euler-Lagrange

equations [Marsden & West 2001]:

D2Ld(q
k−1,qk,h)+D1Ld(q

k,qk+1,h) = 0. (4.8)

Discrete Euler-Lagrange equations obtained in this way are called variational integrators.

Given qk, and qk−1 they advance our system to a new configuration, qk+1. Thus velocity phase

space, in the discrete domain, has been replaced by two copies of the configuration space.

In terms of accuracy, the order of the quadrature scheme we use to generate our discrete La-

grangian entirely specifies the order of our variational integrator [West 2004]. This means that

we can derive variational integrators of any accuracy simply by selecting appropriate discrete

Lagrangians.

4.3.1 An Example

As an example consider a physical system for which we have a generalized inertia tensor, M.

Kinetic energy is then K = 1
2 q̇T M q̇, while the system’s Hamiltonian will simply represent

the system’s total energy. A simple quadrature for a discrete Lagrangian is the generalized

midpoint rule,

Ld(q
k,qk+1,h) = h L

(
(1−α)qk +αqk+1,

qk+1−qk

h

)
, (4.9)

with α ∈ [0,1]. A choice of α = 1
2 leads to a second order scheme while all other choices lead

to first order schemes. With α = 0 we have

Ld =
h
2

(
qk+1−qk

h

)
M

(
qk+1−qk

h

)
−hV (qk), (4.10)

which gives us

D1Ld(q
k,qk+1,h) =−M

(
qk+1−qk

h

)
−h∇V (qk) (4.11)

and

D2Ld(q
k,qk+1,h) = M

(
qk+1−qk

h

)
. (4.12)

Substituting into Equation (4.8) our discrete variational integrator is

qk+1 = qk +h
(

qk−qk−1

h

)
−h2 M−1

∇V (qk),

which is just a first order symplectic Euler scheme [Hairer, Lubich, & Wanner 2002].
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4.4 Variational Integration for Frictional Contact

Kane et al. [1999] first proposed applying nonsmooth discrete variational methods in the fric-

tionless contact setting; however, this model formulates contact constraints in configuration

space. This requires a nonconvex minimization solve just for resolving contact at each time-

step and may be difficult to formulate for systems with nonlinear configurations such as are

commonly found in multi-body and rigid-body mechanics. In this section we will show how to

overcome these issues via an application of Moreau’s Transform (introduced in Section 3.1.7).

In particular, we will show that, in the discrete setting, this is simply equivalent to a local

constraint linearization, but has important consequences for the resulting problem. We will

also discuss the consistency problem for discrete variational friction and show how this too

can be appropriately handled in the variational setting. We will then show how the application

of these developments together with the coupled principles formulation, introduced in the last

chapter, allows for the natural construction of variational frictional contact integrators. In this

section we will first introduce the general construction strategy that this approach leads to. This

method allows for the potential construction of a wide range of possible variational integrators

suitable for frictionally contacting systems. Finally, to ground this section, we will focus on a

particular (and potentially useful) example by constructing a symmetric variational integrator

for frictional-contact.

4.4.1 Discretization Strategy

At a high level, our strategy for formulating discrete variational integrators for frictional con-

tact begins with the coupled formulation from the last chapter. We extract two functions: a

Lagragian for contact and dissipation rate function for friction, from Equations (3.2) and (3.19)

respectively. We then generate a discretization of each. To do this, unlike in classical Dis-

crete Variational methods, we also need to make the discrete friction impulses, discrete contact

impulses and velocity (in the dissipation rate function) variables of the quadratures.

Once we have the quadratures defined, we then generate discrete functionals for each, as

in the non-contacting case. Next we extremize each action independently to get a pair of time-

discrete differential inclusions: a contact inclusion and a Friction inclusion. At the end of this
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process our goal is to obtain a pair of minimizations that correspond to these optimality terms.

To formulate the minimizations, however, there are several steps that need to be taken to ensure

that the two inclusions are both consistent with one another and lead to convex minimizations.

First, we need to address the discrete velocity variable in the friction inclusion. The contact

inclusion we obtain from the Discrete Action will always implicitly define a discrete velocity

term. Our next step then is to enforce the discrete definition of velocity in the friction inclusion,

so that it is kinematically consistent with the contact inclusion.

Second, the discrete contact inclusion will, as in the time-continuous case, have a noncon-

vex term, obtained from the indicator function on the nonconvex feasible set A. Here we will

apply a discrete analogue of Moreau’s Transform (Section 3.1.7) to regain the stable and con-

sistent energetic behavior of classic variational integrators as well as to remove nonconvexity

from the inclusion.

Finally, using the definition of the subdifferential we are able to reformulate the resulting

inclusions as a pair of coupled, convex optimization problems.

In the next few sections we will cover these steps in more detail, before we apply them to

an example discretization in Section 4.5.

4.4.2 Discrete Lagrangian and Action

Extrapolating from Equation (3.2) in Section 3.1, we can define the frictionally-contacting

system’s extended value Lagrangian using

L(q, q̇) =
1
2

q̇T Mq̇−V (q)− IA(q)+ fT q. (4.13)

Mirroring standard variational integration techniques, we then define a discrete Lagrangian

map, Ld , using quadrature, so that

Ld(q
k,qk+1, fk+1)∼=

∫ (k+1)h

kh
L(q, q̇)dt. (4.14)

Likewise, we can construct a corresponding discrete analogue of the Hamiltonian Action using

the sum

Ad =
N−1

∑
k=0

Ld(q
k,qk+1, fk+1). (4.15)
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4.4.3 Extremizing the Discrete Action

Stationarity for Ad with respect to the discrete path, (q0, ...,qN), is then given by the inclusion

D1Ld(q
t+1,qt+2, ft+2)+D2Ld(q

t ,qt+1, ft+1) 3 0, (4.16)

Equation (4.16) in turn implies the discrete position update inclusion,

pt ∈ −D1Ld(q
t ,qt+1, ft+1), (4.17)

and the discrete momentum update inclusion,

pt+1 ∈ D2Ld(q
t ,qt+1, ft+1). (4.18)

Here pk is used to denote the discrete system’s momentum at time k.

4.4.4 Discrete Dissipation Rate Function and Friction Functional

Similarly, extrapolating from Equation (3.19) in Section 3.2, the system’s frictional dissipation

rate function is then

FL(q, q̇,α, f) = q̇T f− IF(α,q)(f). (4.19)

Correspondingly, we can also define a discrete dissipation rate map, FLd , using quadrature, so

that

FLd(q
k, q̇k+1,αk+1, fk+1)∼=

∫ (k+1)h

kh
FL(q, q̇,α, f)dt. (4.20)

Because the time step size, h, does not explicitly appear in this equation, it may not, at first,

appear to be a proper quadrature; however, note that we have substituted the force, f, with an

impulse, ft+1, that integrates the friction force response over the time interval defined by the

step size. Finally, a discrete analogue of the Friction Functional can be constructed using the

sum

FAd =
N−1

∑
k=0

FLd(q
k, q̇k+1,αk+1, fk+1). (4.21)

4.4.5 Extremizing the Discrete Friction Functional

Stationarity for FAd with respect to the discrete impulse arc, (f0, ..., fN), is then given by the

inclusion

D4FLd(q
t , q̇t+1,α t+1, ft+1) 3 0. (4.22)
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4.4.6 The General Recipe

With these preliminaries in place we can now describe, at a high level, our general strategy for

generating coupled discrete variational integrators for frictionally contacting systems. Using

the above derivations, we compose our numerical integrators using the set of discrete optimal-

ity conditions given by Equations (4.17), (4.18), and (4.22). We then use the first two inclusions

to enforce consistency across variables by reducing q̇t+1, pt+1 and qt+1 to a single unknown.

Next, we substitute this unknown in place of q̇t+1 in the friction inclusion to ensure kinematic

consistency between inclusions. Finally, motivated by Section 3.1.7, we apply a discrete ana-

logue of Moreau’s Transform that allows us to convexify the discrete problem. In the next

section we will go through this process in detail.

4.5 A Symmetric, Half-Step Integrator

As an important example, and to highlight many novel and non-trivial details required to derive

these integrators, we discuss in detail the construction of a symmetric, half-step Integrator.

The derivation of coupled, Newmark-type integrators, and other useful schemes for frictional

contact integration follow from the application of similar steps.

4.5.1 Discrete Lagrangian, Dissipation Rate Function, and Inclusions

Discrete Lagrangian

We consider a discretization of the Lagrangian of the form

Ld(q
k,qk+1, fk+1) = hL

(qk +qk+1

2
,

qk+1−qk

h
,

fk+1

h

)
. (4.23)

Evaluating we then obtain

Ld(q
k,qk+1, fk+1) =

h
2

(qk+1−qk

h

)T
M
(qk+1−qk

h

)
−hV

(qk +qk+1

2

)
− IA

(qk +qk+1

2

)
+
(qk +qk+1

2

)T
fk+1.

(4.24)
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Stationary Terms

Taking the generalized gradients of the discrete Lagrangian we obtain the first inclusion,

D1Ld(q
k,qk+1fk+1) ∈M

(−qk+1 +qk

h

)
− h

2
∇V
(qk +qk+1

2

)
−∂ IA

(qk +qk+1

2

)
+

1
2

fk+1,

(4.25)

and second inclusion,

D2Ld(q
k,qk+1, fk+1) ∈M

(qk+1−qk

h

)
− h

2
∇V
(qk +qk+1

2

)
−∂ IA

(qk +qk+1

2

)
+

1
2

fk+1.

(4.26)

Momentum and Position Update Inclusions

Noting Equations (4.17) and (4.18), Equations (4.25) and (4.26) generate the position map,

pt ∈M
(qt+1−qt

h

)
+

h
2

∇V
(qt+1 +qt

2

)
− 1

2
ft+1 +∂ IA

(qt+1 +qt

2

)
, (4.27)

and the momentum map,

pt+1 ∈M
(qt+1−qt

h

)
− h

2
∇V
(qt+1 +qt

2

)
+

1
2

ft+1−∂ IA
(qt+1 +qt

2

)
. (4.28)

Variational Contact Integrator

Subtracting Equation (4.27) from (4.28) then gives us the discrete variational contact integrator,

pt+1−pt +h∇V
(qt+1 +qt

2

)
− ft+1 ∈ −∂ IA

(qt+1 +qt

2

)
. (4.29)

Discrete Dissipation Rate Function

We analogously discretize the frictional dissipation rate function using

FLd(q
k, q̇k+1,αk+1, fk+1) = FL(qk, q̇k+1,αk+1, fk+1), (4.30)

so that we have

FLd(q
k, q̇k+1,αk+1, fk+1) = (q̇k+1)T fk+1 + IF(αk+1,qk)(f

k+1). (4.31)
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Variational Friction Integrator

Applying Equation (4.22) to Equation (4.31) then gives us the discrete variational friction inte-

grator,

q̇t+1 +∂ IF(α t+1,qt)(f
t+1) 3 0. (4.32)

4.5.2 Coupled Variational Integrator System

The system of coupled inclusions given by Equations (4.29) and (4.32) now form the base for

our variational integrator (given the above discrete Lagrangian and dissipation rate function).

At the moment, however, there are too many uncorrelated unknowns. In particular, between the

two inclusions, we currently have the unknowns: qt+1,pt+1, q̇t+1,α t+1, and ft+1. Given that we

only have two inclusions, we need to reduce the number of unknowns as well.

Update Equation

Our next step is to add Equation (4.27) to (4.28) obtain the update equation,

pt+1 = 2M
(qt+1−qt

h

)
−pt , (4.33)

This equation describes the relationship between new positions and momenta and makes ex-

plicit how we perform a position update.

Primary Unknown

Motivated by the above equation, we then define a time-step scaled change in configuration,

δ
t+1 def

=
qt+1−qt

h
. (4.34)

Note that now, using the update equation, we can define all unknowns, excepting friction, with

respect to δ t+1,

qt+1 = qt +hδ
t+1, (4.35)

pt+1 = 2Mδ
t+1−pt , (4.36)

and

q̇t+1 = 2δ
t+1− q̇t . (4.37)
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Coupled Integration System

Substituting these relationships into Equations (4.29) and (4.32) we then obtain the coupled

inclusion system that forms the basis of the discrete variational integration method:

Mδ
t+1−pt +

h
2

∇V
(

qt +
h
2

δ
t+1
)
− 1

2
ft+1 ∈ −∂ IA

(
qt +

h
2

δ
t+1
)
, (4.38)

(2δ
t+1− q̇t)+∂ IF(α t+1,qt)(f

t+1) 3 0. (4.39)

In its current form, the above system comprises a complete numerical integration scheme

for frictionally contacting systems. There are several factors that remain to be addressed, how-

ever, to fully enforce good energetic behavior in the dissipative setting, as well as to reduce

the computational burden of solving such systems. In the next section we will discuss some of

these potential difficulties and then show how to formulate extensions of the above scheme that

avoid them.

4.5.3 Configuration and Kinematic Constraints

Applying the definition of the generalized gradient [Clarke 1983] (see also Section 2.5.2) to

Equation (4.38) we find that it is equivalent to the local, nonlinear minimization

δ
t+1 = argmin

δ

{1
2

δ
T Mδ −δ

T
(

pt +
1
2

ft+1
)
+V

(
qt +

h
2

δ

)
: (qt +

h
2

δ
t+1) ∈ A

}
(4.40)

Leaving aside the interpretation of the objective for a moment, we see that the constraint

imposed requires the midpoint position to lie in the feasible set. Ideally, of course, we’d like

to constrain the final position, at the end of the time-step, to lie in the feasible set; this can be

generated using, alternate, non-symmetric discrete Lagrangians (for instance a Newmark-type

discretization).

In either case, however, constraining the final configuration to the feasible set can be com-

putationally expensive for two reasons. First, to enforce position constraints, we need to pre-

compute and then maintain, throughout the course of a simulation, constraint functions for all

pairs of boundary simplices. While this is feasible for small meshings [Kane et al. 1999], this

can very quickly become impractical for systems with large and/or complex boundary geome-

tries. Efficient pruning strategies, however, could be devised to accelerate this process. We
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expect that this could potentially be an exciting and profitable direction of future research to

pursue. Second, presuming we do have an efficient strategy to formulate and update configu-

ration constraints, the resulting constraint set will generally be nonconvex. Kane et al. [1999]

give a simple motivational example of a particle in a nonconvex box. Even this trivial example

results in a nonconvex constraint set. Thus, even with efficient, well formulated configuration

constraints, a nonconvex optimization solver needs to be employed.

Moreau Transform

To redress energy behavior in the nonsmooth setting and to remove nonconvexity we invoke a

discrete interpretation of Moreau’s transform. Following our discussion in Section 3.1.7, we

manipulate Equation (4.38) to form the new DI

Mδ
t+1−pt +

h
2

∇V
(

qt +
h
2

δ
t+1
)
− 1

2
ft+1 ∈ −∂ IT(qt)

(
δ

t+1
)
. (4.41)

The corresponding minimization (see Equation (4.50)) that we obtain from Equation (4.41),

now simply enforces the convex constraint δ t+1 ∈ T(qt). This requires a time scaled change in

configuration to lie in the discrete tangent cone, and thus will be a convex problem, amenable

to robust convex programming algorithms.

To understand the implications of applying Moreau’s transform in the discrete context,

consider that, in order for Equation 4.38 to hold, we must have (qt + hδ t+1) ∈ A (otherwise

∂ IA
(

qt + hδ t+1
)

is an empty set). Given this feasibility condition, we simply apply a first

order taylor expansion for each constraint k ∈ Ct , to get

gk(q
t +hδ

t+1)≈ gk(q
t)+h∇gk(q

t)T
δ

t+1 = h∇gk(q
t)T

δ
t+1. (4.42)

Then, to satisfy these linearized constraints we need

∇gk(q
t)T

δ
t+1 ≥ 0; (4.43)

or, concatenating all constraints in Ct together and recalling our earlier notation from Section

4.2.1,

N(qt)T
δ

t+1 ≥ 0. (4.44)
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In turn, we then must have

δ
t+1 ∈ T(qt). (4.45)

Applying Moreau’s transform in this context is thus effectively a linearization of the local

contact constraint set around qt .

4.5.4 Fully Implicit Friction Inclusion

To solve the coupled system it will generally be useful to formulate the friction inclusion in a

fully implicit form. We find that this generally helps to stabilize potential solution methods.

We first introduce an evaluated acceleration notation [Kane et al. 2000] where we let

at+1 def
= M−1

∇V
(
qt +

h
2

δ
t+1). (4.46)

Then, substituting into Equation (4.29), we obtain

pt+1 = pt +hMat+1 + ft+1 + ct+1. (4.47)

This allows us to equivalently describe the discrete velocity as

q̇t+1 = q̇t +hat+1 +M−1ft+1 +M−1ct+1. (4.48)

Substituting this discrete velocity equation into the discrete friction optimality terms (Equation

(4.32)), then gives us an alternate form of the friction inclusion

(q̇t +hat+1 +M−1ft+1 +M−1ct+1)+∂ IF(α t+1,qt)(f
t+1) 3 0. (4.49)

4.5.5 Coupled Minimization Solution

We now can formulate a single step of the integration using the coupled minimizations

δ
t+1 = argmin

δ

{1
2

δ
T Mδ −δ

T
(

pt +
1
2

ft+1
)
+V

(
qt +

h
2

δ

)
: N(qt)T

δ ≥ 0
}

(4.50)

and

ft+1 = argmin
f

{
fT
(

2δ
t+1− q̇t

)
: f ∈ F(α t+1,qt)

}
. (4.51)



55

Or, alternately, we can replace Equation (4.51), with an equivalent, implicit minimization form,

ft+1 = argmin
f

{1
2

fT M−1f + fT
(

q̇t +hat+1 +M−1ct+1
)

: f ∈ F(α t+1,qt)
}
, (4.52)

obtained from Equation (4.49). While equivalent, this latter form exposes properties that allow

us to obtain implicit stationary point relations, useful for the solution of these systems. Either

way, once a solution to the coupled minimization system is obtained, the new state, at time

t +1, is given by

qt+1 = qt +hδ
t+1, (4.53)

and

pt+1 = 2Mδ
t+1−pt . (4.54)

4.6 A Velocity-Level Interpretation of the Contact Integrator

In the following it will be useful to consider an equivalent, velocity-level interpretation of the

contact differential inclusion.

Starting again with Equation (4.29) we see that this is, in turn, equivalent to

pt+1−pt − ft+1 +h∇V
(1

2
(
qt +

h
2

q̇t)+ h
4

q̇t+1
)
+∂ IA

(1
2
(
qt +

h
2

q̇t)+ h
4

q̇t+1
)
3 0. (4.55)

Then applying the discrete Moreau Transform (Section 3.1.7) to replace the generalized gradi-

ent,

∂ IAt

(1
2
(
qt +

h
2

q̇t)+ h
4

q̇t+1
)
, (4.56)

by

∂ I
T
(

1
2 (qt+ h

2 q̇t)
)(q̇t+1), (4.57)

and defining a predictor position as

qp =
1
2
(
qt +

h
2

q̇t), (4.58)

we obtain

pt+1−pt − ft+1 +h∇V
(

qp +
h
4

q̇t+1
)
+∂ IT(qp)

(
q̇t+1) 3 0. (4.59)
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Noting that q̇t+1 (or equivalently pt+1) is the unknown in the above DI, we then obtain the

equivalent convex, velocity-level minimization problem

q̇t+1 = argmin
v

{
vT Mv−vT (ft+1 +pt)+4V

(
qp +

h
4

v
)

: N(qp)T v ≥ 0
}
. (4.60)

4.7 A Two-step Variant

Kane et al. [2000] suggest an efficient approach for approximating the solution of complex

dissipative systems. The general strategy is to first obtain a predictor state by integrating for-

ward only the conservative portion of the dissipative system. Then one applies a corrector step

that solves the dissipative portion of the system based on the predictor estimates. In this spirit

we briefly investigate below how this strategy can be applied to approximate the symmetric

integrator from Section 4.5.5. The resulting predictor-corrector minimization system will be

discussed in detail in the following two chapters where it will be used as a practical integration

method (see Section 5.4.5).

We first note that if we presume that the evaluated acceleration, at+1, is known a priori

then, following the same steps as in Section 4.6, we obtain an implicit form of the velocity-

level minimization

q̇t+1 = argmin
v

{
vT Mv−vT (ft+1 +hMat+1 +pt) : N(qp)T v ≥ 0

}
. (4.61)

A semi-implicit-type discretization then suggests itself in which we replace at+1 with an

evaluated acceleration, ap, computed from the predictor configuration estimate. This in turn

generates an associated predictor velocity, q̇p. A predictor step is the given by

qp =
1
2
(
qt +

h
2

q̇t), (4.62)

ap =−M−1
∇V
(

qp
)
, (4.63)

q̇p = hap + q̇t . (4.64)

The above implicit velocity-level contact optimization, (4.61), and the friction optimization,

(4.52), then reduce to a pair of convex Quadratic Programs (QP), that form the corrector step
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system

q̇t+1 = argmin
v

{
vT Mv−vT (ft+1 +Mq̇p) : N(qp)T v ≥ 0

}
, (4.65)

ft+1 = argmin
f

{1
2

fT M−1f + fT (M−1ct+1 + q̇p) : f ∈ F(α t+1,qt)
}
. (4.66)

The final configuration is then updated by applying

qt+1 = qt +
h
2
(q̇t+1 + q̇t). (4.67)

4.7.1 Dual Two-Step Variational Formulation

In the following Chapters it will often be useful to invoke the Lagrangian dual form of the above

corrector system. Because Equation (4.65) is convex, we can also solve the problem using

its Lagrangian dual formulation [Boyd & Vandenberghe 2004]. Additionally, recalling from

Section 2.4.2, that the friction impulse is constrained by ft+1 = Dβ , we can also reformulate

Equation (4.66) by substitution. Applying these two observations together we then obtain an

equivalent dual Predictor-Corrector optimization system, in which we directly minimize over

discrete friction and contact impulse magnitudes,

α
t+1 = argmin

α

{1
2

α
T NT M−1Nα +α

T NT (M−1Dβ
t+1 + q̇p) : α ≥ 0

}
, (4.68)

β
t+1 = argmin

β

{1
2

β
T DT M−1Dβ +β

T DT (M−1Nα
t+1 + q̇p) : F̆(α t+1,β )≥ 0

}
. (4.69)

The final velocity is then obtained using

q̇t+1 = q̇p +M−1Dβ
t+1 +M−1Nα

t+1, (4.70)

before being fed to the position update, (4.67).

4.8 Examples

4.8.1 One Degree of Freedom Particle System

We begin by examining a simple frictionless example of a one dimensional particle with mass,

m, configuration, q ∈ R, and a simple contact constraint g(q) = q ≥ 0. Letting g be the mag-

nitude of gravity, the potential for this example is just V (q) = gq. Stewart [2000] uses this
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simple example to illustrate potential issues involved in applying symplectic integration meth-

ods to contacting systems. Poor energy conservation behaviors are observed for this case by

the author for both the (symplectic) implicit midpoint rule [Hairer, Lubich, & Wanner 2002]

and the variational, contact Newmark scheme from Kane et al. [1999]. See Figures 4.1(a) and

4.1(b) for these results. In particular, Stewart [2000] notes that the energy of these systems is

not conserved and that the effective coefficient of restitution varies with state for both of these

integrators.

In Figures 4.1(c) and 4.1(d) we show the results of applying the variational contact inte-

grator, developed above and given in Equation (4.50), to the same particle system. We show

the trajectories obtained in Figure 4.1(d), for step sizes of h = 10−1 (red circle), 10−2 (green

circle), and 10−3 (black line). For all three of these trajectories, energy is closely conserved.

We compare this with the trajectories given by the implicit midpoint rule in Figure 4.1(a) (at

h = 10−3) and contact Newmark in Figure 4.1(b) (at h = 10−2). We also show, in Figure 4.1(c),

that the effective coefficient of restitution remains stable over perturbations of initial conditions

and also compare this with the test in Figure 4.1(b).

4.8.2 Two Degree of Freedom Nonlinear Oscillator

To examine both nontrivial potential energies and friction, we next consider the example of a

two-degree of freedom, non-linear oscillator. We start with a particle in the plane, with mass,

m, and configuration, q ∈ R2. The non-linear potential for this system is given by

V (q) =‖ q ‖2 (‖ q ‖2 −1)2. (4.71)

Contact Free Integration

To get a sense of the non-contacting behavior of our proposed integrator, in this example, we

first apply the variational contact integrator, from Equation (4.50) to a contact-free system and

observe that we continue to obtain consistently good (approximate) energy conserving behavior

(see Figure 4.2 (a)). Note that, in particular, we obtain the characteristic fluctuating behavior of

energy, typical of many variational (and symplectic) methods in general; while energy varies

between time-steps, the integrator maintains the initial energy of the system, at any point, up
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to an additive constant [Hairer, Lubich, & Wanner 2002]. For reference, consider Kane et al.

[2000] where this same example system is simulated in a contact free setting using a variety of

high-order and symplectic methods.

Frictionless Contact

We then add a simple inequality constraint, g(q) = q2 ≥ 0, restricting the particle to the upper

half-plane, and again apply our variational contact integrator to this system. Similar energy

conserving properties, as noted above for the contact-free system, are observed here as well;

however, in this example, the energy fluctuations of the plot are no longer symmetric, due to

the ordering of collision events. See Figure 4.2 (b).

Frictional Contact

Finally, we apply our coupled variational integrator, given in Equations (4.50) and (4.52), to

simulate the frictional contact between the particle and constraint surface. In the context of

dissipation, the desired attributes of a variational integrator incorporating dissipation, are a

bit less clear [Kane et al. 2000]; however, as with the conserving case, we expect that the

(dissipative) energy behavior at contacts should be accurately mirrored at all reasonable step-

sizes, just as energy conservation should be maintained in free flight. We examine the behavior

of our contacting system by starting the mass particle at q = (4,4)T , and then simulating the

contacting system for three time-step sizes: h = 10−2 (red line), h = 5×10−3 (green line), and

h = 10−3 (black line) and two coefficients of friction: µ = 0.5 and µ = 5.

In each example we observe a period of strong tangential dissipation, followed by a leveling

off of the angle of energy decay, as the motion of the oscillator moves into a mode that is mostly

normal to the contact surface. See Figures 4.2 (c) and (d). We also note that the behavior is

dissipative during tangential contact and conservative for all motion sequences corresponding

to free flight or purely normal contact.
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Figure 4.1: Contacting Particle Example: In these figures we examine a single point mass
example in a one dimensional system subject to gravity and a single inequality (contact) con-
straint. In (a) the trajectory of the (symplectic) implicit midpoint rule is plotted (time-step:
h = 10−2). In (b) the trajectory of the contact Newmark scheme [Kane et al. 1999] is plot-
ted (time-step: h = 10−3) for three close initial conditions. In (c) we show the results of the
same test of three close initial conditions using our proposed variational contact integrator (EQ
(4.50)) and contrast its consistent behavior with the indeterminant changes of these other two
symplectic approaches. In (d) we show the results for our variational contact integrator over a
range of step sizes: h = 10−1 (red circle), h = 10−2 (green circle), and h = 10−3 (black line).
We again note the consistent, energy conserving behavior obtained. Plots (a) and (b) duplicate
results from Stewart [2000].
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Figure 4.2: Non-linear Oscillator Example: In these figures we examine the behavior of our
proposed coupled variational integrator on a non-linear oscillator example in two dimensions.
In (a) we examine the energy behavior for the non-contacting case. In (b) the energy behavior
of the frictionless contact case is plotted. In (c) we look at contact and friction (µ = 0.5). In (d)
we look at a case of higher friction (µ = 5). We again note the consistent, energy conserving
behavior for the frictionless examples, as well as accurate dissipative behavior for the examples
with friction.



62

Chapter 5

The Two-Step Variational Method and Staggered Projections

5.1 Overview

While the generalized discrete variational framework, introduced in the last chapter, is a promis-

ing and ongoing area of research, the specific case of the Two-Step Variational integrator, in-

troduced in Section 4.7, is of particular interest both because of its efficiency and, as we will

show in Section 5.5.4, due to its close relationship to the popular Stewart-Trinkle Linear Com-

plementarity Programming (LCP) formulation for frictional contact [Stewart & Trinkle 1996].

Formulations based on Linear Complementarity Programming are standard for frictional

contact problems involving linear systems. Initially introduced for contact simulation by Lötstedt,

newer variants, such as the popular Stewart-Trinkle formulation, now guarantee solution exis-

tence; however, solving these optimization problems accurately and efficiently has remained

difficult. We have found that that, in practice, standard optimization methods such as Lemke’s

algorithm, Projected Gauss-Seidel, and interior point methods, that have generally been pre-

sumed suitable for solving these contact-related optimization problems,fail entirely for many

important examples of frictional contact.

In this chapter we will show that these difficulties can be explained, in part, by noting that

optimization problems, obtained from frictional contact, are equivalent to nonconvex problems

in global optimization (which are generally NP-hard). We believe that this is the first time

that a complexity argument has been made via the connection to global minimization for the

Stewart-Trinkle model.

We address these limitations with an efficient and effective solution strategy, the Staggered

Projections algorithm. Applying a fixed point scheme, derived from the coupled principles for-

mulation, Staggered Projections efficiently obtains accurate solutions to optimization problems
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for many frictional contact problems that were previously impractical to solve. Staggered Pro-

jections performs well in practice as evidenced by both our simulations of complex multibody

frictional contact of rigid and large deformation models (see Chapter 7), and our extensive

comparison of a Staggered Projections implementation with other available solvers (Sections

5.7, 7.5, and Chapter 6).

In this chapter, for completeness, we will first present an alternate derivation of the Two-

Step method [Kaufman et al. 2008] that avoids the inclusion based formulation presented in

the last chapter and applies the usual linearization of the Coulomb Constraint discussed in

Section 2.4.4. We will then focus on how the Two-Step method naturally suggests the Staggered

Projections Algorithm and discuss how it generalizes the Stewart-Trinkle formulation. We will

then analyze the difficulties involved in solving the resulting optimization problems posed by

these formulations. Finally, we will individually discuss specific existing solution methods and

potential issues unique to each. In the following chapter we will focus further on the Staggered

Projections algorithm by analyzing stability and convergence behaviors.

5.2 Two-Step, Predictor-Corrector Derivation

The two-step algorithm for frictional contact can be directly obtained using a predictor-corrector

discretization. We first define a velocity-level, predictor-corrector form of the discrete Euler-

Lagrange equations (DEL) of motion for integrating the contacting system from time t to t +1,

with a step-size of h,

M
(

q̇t+1− q̇t
)
= hg(qp, q̇p)+hf p

ext + rt+1 (5.1)

Here fext is a specified external force, rt+1 is the frictional contact response impulse, and the

generalized force is

g(q, q̇) = −∇V (q)+
(
−Ṁq̇+∇qK(q, q̇)

)
= −∇V (q)+gqv, (5.2)

where V and K are the potential and kinetic energies of the system respectively, and gqv is

the quadratic velocity vector that provides Coriolis and centrifugal forces in multibody sys-

tems Shabana [2005].
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5.2.1 Predictor

Depending on the physical models in use, an appropriate integration method is selected based

on stability requirements of the underlying conservative system and modeling needs. We then

use the selected method to integrate only the terms indexed by p in (5.1). This amounts to

solving the system

M
(

q̇p− q̇t
)
= hg(qp, q̇p)+hf p

ext (5.3)

and generates a predictor velocity, q̇p.

5.2.2 Corrector

Then, by subtracting (5.3) from (5.1), the remaining unknown, rt+1, is determined by

M
(

q̇t+1− q̇p
)
= rt+1. (5.4)

5.2.3 Discrete Signorini-Fichera Condition

We then apply an impulse-level implicit discretization of the Signorini-Fichera Condition [Sig-

norini 1933; Fichera 1964]. The Signorini-Fichera Condition directly enforces nonlinear bound-

ary conditions between final velocities at contact points and the corrective contact impulses

applied at those points. In this case we have

0≤ NT q̇t+1 ⊥ α
t+1 ≥ 0. (5.5)

The left-hand side of the above complementarity condition is simply the contact constraint

inequality 1 that requires velocities to be positive along contact normals, while the right-hand

side correspondingly requires all contact impulses to be non-negative along the normals; i.e., no

adhesive impulses are allowed. Note that, as discussed above, the full contact impulse is given

by ct+1 = Nα t+1. Finally, the complementarity condition itself ensures that contact impulses

are only applied at points where the body is not moving away from the contacting surface.

1For rigid body systems we can also include a Newtonian restitution model by modifying the contact constraints
to nT

k
(
q̇t+1 + eq̇t)≥ 0. Here the coefficient of restitution is given by e ∈ [0,1].
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5.2.4 Maximal Dissipation Principle

Letting f k denote a frictional force applied at a sliding contact point, xk, we recall that the

Maximal Dissipation Principle [Moreau 1973] requires that friction maximize the rate of neg-

ative work at the contact, given by −fT
k ẋk. Combined with a suitable friction constraint, as

described in Section 2.4, this simply provides a variational interpretation of the more familiar

Coulomb friction.

To extend the Maximal Dissipation Principle to generalized coordinates we enforce it si-

multaneously at all contact points to obtain

max
f k

∑
k∈C

(
−fT

k ẋk
)
= min
f k

[
∑

k∈C
fT

k Γk

]
q̇ = min

f
fT q̇. (5.6)

This, in turn, requires that the total generalized friction impulse is given by f = ∑k∈C ΓT
k f k.

Then, using the above identity and remembering our earlier definition of the friction impulse

magnitude vector, β, from Section 2.4.2, the generalized friction impulse at each contact is

fk = ΓT
k T kβk. Note that, by construction, friction now appropriately applies an equal and

opposite impulse at each point of contact.

A generalized basis for friction impulses at contact k is then given by

Dk
def
= ΓT

k T k, (5.7)

and the corresponding subspace of all generalized friction impulses is

D = (D1...D|C |). (5.8)

Finally, by applying an implicit discretization to (5.6), and using the linearized Coulomb

constraint from Section 2.4.4, we obtain a discrete generalized maximal dissipation principle,

βt+1 = argmin
β

(
βT DT q̇t+1 : ETβ ≤ diag(µ)α t+1, β ≥ 0

)
. (5.9)

5.2.5 Discrete Hamilton’s Principle

In light of the above discussion, the friction impulse at time t +1, is given by Dβt+1, while the

contact impulse is Nα t+1, so that
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The full frictional contact response impulse is now given by 2

rt+1 = ct+1 + ft+1 = Nα
t+1 +Dβt+1. (5.10)

Equation (5.10) together with (5.4) and (5.5) now form the Karush-Kuhn-Tucker (KKT)

conditions for a second minimization [Moreau 1966; Boyd & Vandenberghe 2004]:

q̇t+1 = argmin
u

(1
2

uT Mu−uT (Mq̇p +Dβt+1) : NT u≥ 0
)
. (5.11)

This minimization implicitly solves for the contact impulse, ct+1, and, when combined with

(5.1), can be interpreted (as we saw in Chapter 4) as a discrete analog of Hamilton’s Stationarity

Principle.

5.3 The Staggered Projections Algorithm

To solve the corrector step for the unknown frictional-contact response rt+1 we employ projec-

tions in impulse space, using the kinetic metric. We define these projections, so that, given an

arbitrary convex set S, the projection of some v onto S is given by

PS(v)
def
= argmin

u∈S
(u−v)T M−1(u−v). (5.12)

5.3.1 Projective System

If the generalized velocity, q̇, has n DoFs, the set of possible normal impulse directions, given

by N, forms a polyhedral cone in Rn, while the linearized Coulomb constraint, (2.10), similarly

defines a more complex scaled, convex subset of Rn.

More rigorously we can define the polyhedral cone of all possible contact impulses as

C
def
= {Nα : α ≥ 0}, (5.13)

the polyhedral, scaled, convex set of possible friction impulses as

F(α)
def
= {Dβ : ETβ ≤ diag(µ)α, β ≥ 0}, (5.14)

2Note that because rt+1, by construction, only opposes relative sliding and relative normal velocities, it will
conserve the linear and angular momentum of the contacting system it is applied to.
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Figure 5.1: Staggered Projection Sequence: A simplified example of a few steps in a possible
staggered sequence is shown above. (a) We start the staggered sequence with the negative
momentum predicted by (5.3) and depicted above by the point x. We also start with the set
of all possible contact normal directions, in this case composed of only a single vector, and
depicted above as the green arrow C. Finally, we also initialize the unscaled friction set, F,
depicted above as a red line segment. Note that, in this example, we show the likely case where
the friction set and the contact normal directions are not orthogonal. (b) Starting with f0 = 0,
for the initial (warm start) estimate of the friction impulse, we project (x− f0) onto C to obtain
the first contact impulse estimate, c1. (c) We then scale F by α1 = |c1| and project (x− c1)
onto it, to get the first friction impulse estimate f1. This completes the first subsequence of
the staggered projection sequence. Steps (d) and (e) then repeat the process for the second
subsequence, which will converge, in this simple example, after two more subsequences are
completed, to the optimal solution shown in Figure 5.2.

and then, to simplify the discussion, we also let x = −Mq̇P denote the negative momentum of

the predictor velocity.

Using these definitions, a solution to the corrector step is given by two coupled projec-

tions [Kaufman et al. 2008],

ft+1 = PF(α t+1)(x− ct+1), (5.15)

ct+1 = PC(x− ft+1). (5.16)

See Figure 5.2 (left) for a simplified geometric example of the coupled relationship.

5.3.2 Equivalence

To see the equivalence between Equations (5.15) and (5.9), we first multiply out Equation

(5.12). We then drop the constant vT M−1v term and the minimizer remains the same. We then

substitute in u = Dβ and U = F(α t+1) into Equation 5.12 and notice that the unknown in the

minimization is now β .
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We then note that the optimality (KKT) conditions for Equation (5.9) are

0≤ β ⊥ DT q̇t+1 +Eλ ≥ 0

0≤ λ ⊥ diag(µ)−ET
β ≥ 0.

(5.17)

If we then substitute into these conditions the final discrete velocity, given by q̇t+1 = q̇p +

M−1Nα t+1+M−1Dβ , the resulting system gives the optimality conditions for the projection in

Equation (5.12), transformed to minimize the variable β , as described above.

To see the equivalence between Equations (5.16) and (5.23) we again multiply out Equation

(5.12) and drop the constant vT M−1v term. We then substitute in u = Nα and U = C into

Equation (5.12) and notice that the unknown in the minimization is now α . This resulting

minimization is then the same as the Lagrangian dual minimization form of Equation (5.23)

which is given by

α
t+1 = argmin

α

{1
2

α
T NT M−1Nα +α

T NT (q̇p +M−1Dβ
t+1) : α ≥ 0

}
(5.18)

Since Equation (5.23) is convex, solving the dual minimization is equivalent to solving the

primal minimization and we get equivalence here too.

5.3.3 A Fixed-Point Projective Property

Then, by substituting (5.15) into (5.16), we obtain the fixed-point property that characterizes

all solutions of the coupled contact problem:

Nα
t+1 = PC

(
x−PF(α t+1)(x−Nα

t+1)
)
. (5.19)

By construction, any fixed-point solution of (5.19), together with the resulting friction re-

sponse given by (5.15), defines a solution to the frictional contact problem and, as we will

show later in Section 5.6.2 effectively defines a global minimum to a nonconvex optimization

problem.

5.3.4 Base Algorithm

The Staggered Projections algorithm then applies a staggered sequence of the two projections

(see Figure 5.1), to obtain the solution to the corrector step. Each subsequence is defined so
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that we obtain the i+1 solution estimate by applying

f i+1← PF(α i)(x−Nα
i),

Nα
i+1← PC(x− f i+1).

(5.20)
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Figure 5.2: Geometric Optimality: The optimal solution at time t +1 is given by the pair ct+1

and ft+1. A simplified example of an optimal geometry characterizing this solution is depicted
above. Left: A pair, c and f, are optimal if and only if the projection of (x− f) onto the contact
cone, here depicted by the larger green arrow, C, returns c, and if the projection of (x− c)
onto the scaled friction set, here depicted by the red line segment, F(α), similarly returns f. If
this is true, then the sum of c and f gives rt+1, an optimal frictional-contact response. Right:
Equivalently, c and f are optimal when the projection of x onto both of the sets, {F(α)+ c}
(with |c| = α) and {C+ f}, return the same point. If this is true, then this projection point is
rt+1, an optimal frictional-contact response.

5.3.5 Closest Point Geometry

The proposed approach is described as a staggered projection method to differentiate it from

alternating projection methods Bauschke [2000] which superficially resemble our approach,

but have very different properties. Effectively, the staggered projection sequence maintains the

unchanging point x which is repeatedly projected, in a staggered order, onto a pair of converging

sets, {F(α)+Nα} and {C+ f}. Geometrically, convergence is satisfied when the closest points

to x, in both sets, are the same (see Figure 5.2, right). This type of minimum property can not be

satisfied by alternating projection methods which can only apply to finding arbitrary feasible

points in set intersections.

The staggered sequence of projections is thus essentially a self-correcting process, alternat-

ing between two changing sets. The output of each successive projection onto one set corrects
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for any change it might impose on the current predicted solution. From a physical standpoint

these modifications account for the effect of changes in a friction (or contact) impulse, just

obtained from the last projection, may have on the next projection. For instance, after subse-

quence i, a projection onto C, offset by the current friction impulse estimate, f i, will generate a

new contact impulse that takes into account any possible changes in constraint status that could

be caused by applying f i.

5.3.6 Subproblem Dimensions and Complexity

Both of the projections in (5.20) can be implemented as convex Quadratic Programming (QP)

solves. Roughly speaking the cost of each successive QP solve will be polynomial in its di-

mension, and linear in the number of constraints. In practice, in our implementations, for QPs

with dimension n we’ve found this to be approximately O(n3).

For systems and complex contacting scenarios where we expect the system’s DoFs to be

much smaller than the number of contacts, i.e., |q̇|� |C |, PC can be formulated as a primal QP

solves with a dimension proportional to the system’s DoFs rather than the number of contacts.

Alternately for systems where we expect |q̇| � |C | we can instead solve PC using a dual QP

formulation with a dimension proportional to the number of contacts.

In either case we note that for any solve of PC, at most min(|C |, |q̇|) entries of the output,

α , will be non-zero. This is because the associated primal QP can have, at most, |q̇| active

constraints for any given constraint set (and certainly can’t have more active constraints than the

number of contacts). This allows us to formulate, for each solve of PF(α), a much smaller QP

corresponding only to the non-zero entries in α and correspondingly bring down the dimension

of each friction solve to at most min(|C |, |q̇|) times the tangent sample size. This corresponds to

the physically intuitive restriction that inactive contacts should not generate frictional impulses.

5.3.7 Warm Start

The structure of the staggered projection formulation also encourages the reuse of computa-

tions. Because of the fixed-point property in (5.19), initializing a staggered projection algo-

rithm with either an optimal contact impulse or an optimal friction impulse brings the system
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to convergence after a single projection. Similarly, we find that initializing the algorithm with

a close to optimal impulse dramatically speeds up convergence. Because most time-steps of

contacting simulations maintain a reasonable degree of coherence, we can leverage this warm

start property to accelerate contact resolution solves. In particular, many of the most difficult

frictional-contact configurations, such as those maintaining complex but stable sticking behav-

ior, exhibit very high temporal coherence that allows for the reuse of solutions over many time

steps. Overall we typically observe up to two orders of magnitude speed-up when applying

warm starts (see §7.2).

5.4 Staggered Projections in Practice

While the essential components to the Staggered Projections Algorithm are described above, in

practice we have applied the following strategies to formulate the final version of the algorithm.

5.4.1 Sequence Ordering

Because storing and reusing prior contact correction impulses generally requires more over-

head, it is often simpler, and more efficient, to warm start using friction impulses. We thus

begin each staggered projection sequence with a contact projection that applies the friction

impulse obtained from the prior step, in order to encourage rapid convergence.

5.4.2 Graceful Degradation

Each staggered projection sequence finishes its sequence with a final contact projection. Or-

dering the sequences in this way guarantees that the final solution obtained will satisfy both

the Discrete Euler-Lagrange equation and the Signorini-Fichera boundary conditions and so

will generate robust behavior, regardless of whether convergence has been obtained. For time-

critical applications, where hard time limits may require setting a fixed upper bound on the

maximum number of iterations, this allows for graceful degradation in case of early exits from

the projective sequence.



72

5.4.3 Convergence Criteria

Given the staggered sequence ordering, we determine numerical convergence at the end of

subsequence i, to a fixed-point solution of (5.19), using the relative, kinetic metric error,

rel err=
(f i− f i−1)T M−1(f i− f i−1)

f i−1T
M−1f i−1

, (5.21)

and a user supplied friction error threshold.

5.4.4 Non-Monotonicity

While generally the decrease in residual is monotone, the staggered projection sequences often

exhibit local non-monotone residual behavior. Thus, for time-critical applications we can cache

and update current best solutions, based on residual values, for applications where early exiting

may be necessary. Here a useful residual, at the end of subsequence i, is given by the sum,

residual= ∑
k∈C

∣∣α i
knT

k (q̇
p +M−1Nαi +M−1Dβi)

∣∣. (5.22)

5.4.5 Algorithm

Once an acceptable friction error tolerance, ε , is selected, the Staggered Projection algorithm

for stepping a contacting system from time t to t+1 is given in Algorithm 1. As in the preceding

sections, we continue to use the superscripts t and t+1 to indicate discrete time increments and

reserve the superscripts i and i+1 to denote iteration numbers within a single time step.

5.5 Analysis of the Corrector Step

In this section, for convenience, we will first recover the coupled QP formulation of frictional

contact and then use it to discuss how friction-contact subspace orthogonality effects the Stag-

gered Projection sequence. As discussed in Chapter 2.8, nonorthogonality between friction and

contact vectors is a fundamental feature of Painleve’s Paradox, Erdmann’s condition and other

possible descriptions of frictional contact difficulty. We will show that in this discrete setting

the converse also holds: when orthogonality holds it implies that the frictional contact problem

is, in some senses, made much easier. Later in this chapter (and in the following chapter) we
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Algorithm 1 Staggered Projections.

1: q̇p← solve: Mq̈p = g(qp, q̇p)+ f p
ext

2: f0← ft // warm start
3: i← 1, min res← ∞, rel err← ∞

4: while rel err> ε and i < max iters do
5: Nα i← PC(−Mq̇p− f i−1)
6: f i← PF(α i)(−Mq̇p−Nα i)
7: compute rel err // Equation (5.21)
8: compute residual // Equation (5.22)
9: if residual < min res then

10: min res← residual

11: f∗← f i // cache best solution
12: end if
13: i← i+1
14: end while
15: ft+1← f∗

16: ct+1← Nα t+1← PC(−Mq̇p− ft+1)

17: q̇t+1← q̇p +M−1(ct+1 + ft+1)

will then show that nonorthogonality also implies very specific computational difficulties must

be overcome.

First, however, we will use the coupled QP formulation to clarify the relationship between

the predictor-corrector formulation and the Stewart-Trinkle LCP formulation. This will allow

us to make several general observations about the difficulty of the discrete frictional contact

problem that apply to both methods. In particular, we will use this relationship to understand

why accurately resolving Stewart-Trinkle LCPs has remained an outstanding problem.

5.5.1 Coupled QP Form

As discussed in Section 5.2, once the predictor velocity, q̇p, has been generated by the predic-

tor step, the corrector step then resolves contact constraints and friction by solving a coupled

system of projections. Presuming the linearized Coulomb Law is enforced we then can equiv-

alently define the solution of the projective system as a pair of coupled QPs

α
t+1 = argmin

α

{1
2

α
T NT M−1Nα +α

T NT (M−1Dβ
t+1 + q̇p) : α ≥ 0

}
, (5.23)

β
t+1 = argmin

β

{1
2

β
T DT M−1Dβ +β

T DT (M−1Nα
t+1 + q̇p) : β ≥ 0,

diag(µ)α t+1−ET
β ≥ 0

}
.

(5.24)
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5.5.2 Subspace Orthogonality and Convergence of Staggered Projections

While the general convergence behavior of Staggered Projections will be discussed in the next

chapter, the special case where the friction subspace, given by the span of D, is mass orthogonal

to the contact subspace, given by the span of N, is of special interest. In particular, for this case,

we can show that Staggered Projections will converge after a single iteration.

First we notice that subspace orthogonality, as we’ve defined it, implies NT M−1D = 0.

Examining the above QP formulation, this implies, in turn, that the friction unknown, β t+1,

disappears from the contact solve in Equation (5.23). Thus we can first solve the contact QP

in Equation (5.23) independently from friction. We then can use the obtained contact solution,

α t+1, to solve the friction QP in Equation (5.24). After this single sequence we are guaranteed

a coupled solution that satisfies all frictional contact conditions.

5.5.3 Joint Optimality Conditions

Because each of the above QPs is convex, their individual KKT optimality conditions are

both necessary and sufficient for optimality [Boyd & Vandenberghe 2004]. First we note that

the KKT conditions for Equation (5.23) are (by construction) the discrete Signorini-Fischera

Boundary Conditions:

0≤ α ⊥ NT M−1Nα +NT (M−1Dβ
t+1 + q̇p)≥ 0 (5.25)

while the KKT conditions for Equation (5.24) are

0≤ β ⊥ DT M−1Dβ +DT (M−1Nα
t+1 + q̇p)+Eλ ≥ 0

0≤ λ ⊥ diag(µ)α t+1−ET
β ≥ 0

(5.26)

Then, by combining the KKT conditions for both of the above QPs, we obtain an LCP

system that fully characterizes all solutions of the frictional contact problem for the predictor-

corrector formulation,

0≤ Ay+b⊥ y ≥ 0 (5.27)
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where we let

A
def
=


NT M−1N NT M−1D 0

DT M−1N DT M−1D E

diag(µ) −ET 0

 , (5.28)

b
def
=


NT q̇p

DT q̇p

0

 , (5.29)

and

y
def
=


α

β

λ

 . (5.30)

5.5.4 Discussion: Stewart-Trinkle LCPs

If we ignore the update method by which the predictor state estimate is obtained, and likewise

the method by which the system’s state is updated after the corrector solve, then the joint

optimality conditions of Equation (5.27) generate the pure form [Anitescu & Potra 1997] of

the Stewart-Trinkle LCP formulation for frictional contact [Stewart & Trinkle 1996]. Thus any

solution of the corrector step satisfies the Stewart-Trinkle LCP and conversely any analysis of

the corrector system applies to the Stewart LCP. This important as we will be able to use these

properties in the foregoing discussion both to help understand the difficulties that are generally

encountered when attempting to solve the Stewart-Trinkle LCP directly (Section 5.6.2) and

how the Staggered Projections algorithm obtains solutions for problems where other practical

solution approaches generally fail ( Section 6.7).
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5.6 Analysis of the Corrector Step

5.6.1 LCP Properties

While it can be shown that the matrix A is Copositive [Anitescu & Potra 1997], it is neither

semi-definite nor definite and is additionally non-symmetric3 so that Equation (5.27) does not

correspond to the KKT conditions of any QP, convex or otherwise [Cottle, Pang, & Stone 1992].

By multiplying the complementarity condition through, however, and applying all inequality

constraints, we obtain a non-convex, constrained QP,

min
y
{yT (Ay+b

)
: Ay+b≥ 0, y ≥ 0}, (5.31)

whose global minima, which have the objective value of zero, all solve the above LCP (in

Equation 5.27) exactly.

5.6.2 Global Optimization Form

Substituting and simplifying, we then find that obtaining the coupled solution to Equations

(5.23) and (5.24) is equivalent to finding a global minimizer of

min
α,β ,λ

{
‖ Nα +Dβ ‖2

M−1 +(Nα +Dβ )T q̇p +λ
T diag(µ)α :

NT (q̇p +M−1Nα +M−1Dβ )≥ 0,

DT (q̇p +M−1Nα +M−1Dβ )+Eλ ≥ 0,

diag(µ)α−ET
β ≥ 0,

α ≥ 0,β ≥ 0,λ ≥ 0
}
.

(5.32)

This formulation is interesting for several reasons. First, it clearly shows that the comple-

mentarity matrix A is indeed Copositive. The second observation is that all constraints in the

above minimization are convex and, similarly, with exception of the term, λ T diag(µ)α , all el-

ements of the objective are also convex. This single non-convex term, however, is sufficient to

effectively make this global minimization problem nonconvex.

3Essentially, from the coupled minimization perspective, this non-symmetry comes from taking the Lagrange
multipliers, α , from the contact QP, and incorporating them into the Friction QP’s constraint. Otherwise we would
have a symmetric linear system. Anitescu & Hart [2004] force symmetry into the LCP matrix by effectively adding
the Coulomb constraint to the contact QP as well as the friction QP. As discussed in Section 1.3 this has several
possible negative consequences.
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5.6.3 Computational Complexity and Feasible Minima

As we will soon see in Section 5.7, existing methods for solving these LCP systems generally

have a great amount of difficulty solving frictional contact problems for higher coefficients of

friction and/or complex constraint sets. To help motivate why many methods run into trouble

and generally why these problems can be hard we will consider here the implications of Section

5.6.2.

From a worst case analysis perspective, the global minimization of a nonconvex QP is an

NP-hard problem in optimization [Murty & Kabadi 1987]. This problem, however, is far from

being a generic nonconvex QP minimization problem. There’s several elements of structure

that this problem inherits from the effective convexity of the two parent optimizations. First

the quadratic term of the QP will be nonegative in the positive orthant given by α,λ ≥ 0.

Second, unlike most nonconvex problems, the coupled optimality criteria in Equation (5.27)

offer a set of first order optimality conditions that fully describe all global minimums of the

constrained problem. Third, we know, a priori, what the minimum value of this constrained

minimization problem is, since Equation 5.32 guarantees that the minimum value at all feasible

optimal solutions will be zero.

While this is promising, the global minimization problem does not, unfortunately, inherit

the strong duality property [Boyd & Vandenberghe 2004] of convex minimizations. Because

of this, the duality gap for this problem will be, in general, non-zero, and thus first order opti-

mality (KKT) conditions for this constrained minimization are, as in the majority of nonconvex

problems, only necessary and are not sufficient – unlike a convex minimization problem [Boyd

& Vandenberghe 2004]. See the following section (Section 5.6.4) for a more detailed analysis

of Equation (5.32)’s KKT system. Also on the negative side, solutions may not be unique and,

possibly even more worrisome, the solution sets are potentially nonconvex [Anitescu & Hart

2004].

Descent methods for nonconvex problems, such as active set algorithms and, even more

generally, Sequential QP algorithms, are designed to generate descent sequences that decrease

approximations of the objective function and/or infeasibility measures along the sequence. By

construction, however, these algorithms are only guaranteed to descend to first order optimal
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points, i.e., KKT points, and do not necessarily even find true local minima. Unfortunately an

an analysis of the KKT conditions for Equation (5.32) shows that arbitrary KKT points do not,

in general, satisfy crucial aspects of the frictional contact problem (see §5.6.4). A surprising

and possibly non-intuitive corollary is that despite the reasonable expectation that local mini-

mization should be a more tractable problem than global minimization, finding local minima

for a non-convex problem is, in general, also an NP-hard problem in optimization [Murty &

Kabadi 1987; Vavasis 1991].

While it is still tempting to apply local descent methods to Equation (5.32), experiments

conducted both with active set algorithms for indefinite QPs and with more general SQP al-

gorithms have consistently returned non-minimal KKT points that do not satisfy the frictional-

contact problem (see Section 6.7).

5.6.4 KKT Points

The KKT conditions for Equation (5.32) are

0≤ NT
(

vl +M−1N(2α− γα)+M−1D(2β − γβ )
)
−diag(µ)(λ − γλ )⊥ α ≥ 0

0≤ DT
(

vl +M−1N(2α− γα)+M−1D(2β − γβ )
)
+Eγλ ⊥ β ≥ 0

0≤ diag(µ)α−ET
γβ ⊥ λ ≥ 0

0≤ NT (vl +M−1Nα +M−1Dβ
)
⊥ γα ≥ 0

0≤ DT (vl +M−1Nα +M−1Dβ )+Eλ ⊥ γβ ≥ 0

0≤ diag(µ)α−ET
β ⊥ γλ ≥ 0.

(5.33)

Here γα ,γβ ,γλ are the lagrange multipliers that correspond to the first three inequality con-

straints in Equation (5.32). If a stationary point satisfying both the above KKT conditions in

Equation (5.33) and the side condition (γα ,γβ ,γλ ) = (α,β ,λ ) is obtained, then it is a true

solution that satisfies the coupled frictional contact problem. In particular, this point will cor-

respond to a (global) minimum of the constrained problem. This can be seen by noting that, in

this special case, Equation (5.33) reduces to the joint optimality conditions given in Equation

(5.27). In general, however, these KKT conditions can also be clearly satisfied by points that

will not satisfy the original coupled frictional-contact problem.
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5.6.5 Row Sufficiency

One way to understand how arbitrary KKT points will not necessarily satisfy global optimality

is via row sufficiency. A matrixM is called row sufficient if and only if

xT
i (M

Tx)i ≤ 0 ⇒ xT
i (M

Tx)i = 0, (5.34)

for all vectors x. All KKT points of Equation (5.33) will satisfy Equation (5.27) if and only if

matrix A is row sufficient [Cottle, Pang, & Stone 1992, Lemma 3.5.4]. One way to show that

A is not row sufficient is by noting that, setting β = 0 and, for all j 6= i, λ j,α j = 0, we have

yT
i (A

T y)i = αi(N
T M−1Nα +diag(µ)λ )i = αin

T
i M−1niαi +αiµiλi. (5.35)

It then follows that

αin
T
i M−1niαi +αiµiλi ≤ 0 ⇒ αin

T
i M−1niαi +αiµiλi = 0 (5.36)

does not hold for all possible values of αi, λi so that A is not a row sufficient matrix. Applying

Lemma 3.5.4 in Cottle, Pang, & Stone [1992] we then find that first order optimal KKT points

(i.e., points satisfying Equation (5.33)) are not sufficient to guarantee a global minimum for

the optimization problem given by Equation (5.32) and so do not necessarily solve the coupled

frictional contact problem.

5.7 LCP Algorithms

While the above observations help us to understand the potential issues and difficulties that

existing LCP solvers may face, here, in this section, to examine the practical implications for

existing LCP algorithms, we discuss problems we observe in our implementations of these

algorithms. All algorithms discussed in the following sections start with the same base imple-

mentation for collision detection, predictor generation, and contact sampling. We will cover

in this section issues pertinent to each method and also note several common problems across

algorithms. Later at the end of Chapter 6 we will also compare the behavior of the algorithms

with each other and Staggered Projections quantitatively .
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(a) (b)

(c) (d)

Figure 5.3: Pivoting LCP Example: Here we show snapshots from four early steps in a rigid
card house simulation where the frictional contact resolution (corrector) step was solved using
the PATH LCP solver [Ferris & Munson 1998]. We start the card house in a stable configura-
tion, see (a), with a high coefficient of friction (µ = 0.8). An exact solution for this simulation
problem (when left alone) generates a stable house that stays in this configuration at all steps
(see Section 5.8). Initially small, but significant, errors causes cards to incorrectly slip, as in (b).
At other steps, however, generally corresponding to reported stationary points, the contacting
system blows up. See (c) and (d).

5.7.1 Direct Pivoting Methods

Generally, it has been widely assumed that, when fully accurate and robust solutions to fric-

tional contact LCPs were desired, direct, pivoting-based LCP algorithms, such as Lemke’s [Cot-

tle, Pang, & Stone 1992], could be applied, provided enough computation time was available.

It has been recently noted, however, that direct LCP solvers do not, in practice, scale beyond

relatively small-scale examples [Anitescu & Hart 2004; Erleben 2007].

To directly examine the reported behavior of LCP pivoting methods in practice, we imple-

mented the Stewart-Trinkle LCP formulation using the PATH LCP solver [Ferris & Munson
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1998]. PATH supports large sparse LCP solves and is the most broadly referenced direct LCP

solver in the frictional contact literature. In our experience the PATH based solver, although

certainly slow, returned, for the frictionless examples, robust and accurate solutions, even for

complex and redundant contact configurations. When friction was added to the LCP the PATH

solver still sometimes returned robust and accurate solutions to individual problem instances,

in other cases it returned solutions that were robust but with error. Generally these were steps

that still maintained a relatively stable simulation, but generated incorrect frictional behavior

(e.g, sliding when there should be sticking); however, equally often, PATH instead returned

stationary-points. Unfortunately, for these cases, the returned solutions consistently generated

highly unstable solutions. See Figure 5.3 for an example.

5.7.2 Iterative LCP Methods

In part, to address the perceived high computational cost of direct LCP algorithms, recent atten-

tion has been focused on iterative LCP solution methods [Murty 1988; Cottle, Pang, & Stone

1992] customized for contacting systems [Moreau 1994; Jourdan, Alart, & Jean 1998; Jean

1998; Guendelman, Bridson, & Fedkiw 2003; Duriez et al. 2006; Erleben 2007]. These meth-

ods, generally based on Gauss-Seidel variants, can potentially be quite fast, and, for LCP prob-

lems obtained from frictionless contacting systems, have reasonably nice convergence guaran-

tees [Cottle, Pang, & Stone 1992]. When friction is added, however, these guarantees are lost

and behavior is generally inaccurate.

To directly examine the behavior of iterative LCP methods in practice, we implemented the

Stewart-Trinkle LCP formulation with two different iterative solvers. For iterative LCP solu-

tions to the frictional contact problem, far and away the most popularly referenced solver is

the Projected Gauss-Seidel method [Murty 1988], applied to the Stewart-Trinkle LCP formu-

lation with a box constraint approximation for friction (see Erleben [2007] for example). Box

constraints, in these methods, are used to approximate the friction disk with a square, i.e, four

samples.

Generally the reason cited for using the simple square approximation to the friction disk
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is computational efficiency, since this approach generally adds only four 4 extra unknowns per

contact. There is however, an additional, generally unacknowledged, reason why using the

friction box constraint is not only efficient but necessary for applying Projected Gauss-Seidel

to the frictional contact LCP.

In the simple case of a box constraint, the two friction sample directions are orthogonal so

that the magnitudes of the two friction contributions are effectively uncoupled. This allows all

friction magnitudes to be constrained independently and thus removes the lower diagonal zero

block in the LCP matrix A. As with traditional Gauss-Seidel solvers, Projected Gauss-Seidel

requires a positive block diagonal; so this simplification is necessary to implement the method.

To examine the behavior of iterative LCP methods we implemented both the usual box-

constrained Projected Gauss-Seidel method and also, for comparison in examples with better

friction cone approximations, we also implemented a regularized iterative LCP method [Cot-

tle, Pang, & Stone 1992] for the full Stewart-Trinkle LCP formulation. In our experience both

solvers returned, for the frictionless examples, reasonably robust and accurate solutions, pro-

vided we allowed for a sufficiently high number of iterations. When friction was added to the

LCP however, both solvers failed to return solutions, regardless of the number of iterations we

allowed. Generally contact constraints were reasonably well enforced in the friction case as

well, but friction behavior was generally incorrect and weak. See Figure 5.4 for an example.

5.7.3 Sequential Quadratic Programming

Finally we also implemented a solver using the NLQLP Sequential Quadratic Programming

solver [Schittkowski 2006], applied to the global minimization formulation of EQ (5.32). NLQLP

is quite robust and generally accurate, although somewhat slow in comparison to the iterative

LCP methods. In all examples NLQLP reported success according to its standards, i.e, it found

at least a local first order minimizer. As might be expected, however, the simulations gener-

ated by these stationary points and local minimizers obtained unstable behavior, similar to the

PATH implementation described above. See Figure 5.5 for an example. This is again consistent

with the above results suggesting that stationary points are insufficient for accurate frictional

4An added optimization actually reduces this to two.
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contact.

5.8 Accurate Solutions Via Staggered Projections and Experimental Validation

We note that a low error solution (residual' 10−6) for the same four level card house exam-

ple is obtained using our Staggered Projections algorithm. We do not show snapshots from the

corresponding simulation, as the card house stands stably over all times step in the simulation

given by accurate solutions and so corresponds to the initial configuration (as in Figure 5.5(a)

for example) throughout. It seems, however, fair to ask whether the accurate solution of these

LCPs correspond, in any meaningful way, to expected real-world behaviors.

To begin to answer this question we set up a simple experimental example. Starting with a

set of thin metal plates, roughened up with sandpaper, we were easily able to build a rigid card

house that maintained a long-term, stable configuration, similar to the the solution obtained by

Staggered Projections. See the first frames of Figure 5.6 top, and bottom, respectively.

Then, to examine a more dynamic problem’s behavior, we dropped small wooden blocks

on the stable structure and filmed the resulting behavior. We observed that under successive

impacts from small blocks, the house repeatedly has sections fall down and then regains equi-

librium in fairly characteristic way. See the film snapshot sequence in Figure 5.6, top. We then

attempted to duplicate the process by dropping blocks on the rigid card house example, simu-

lated using Staggered Projections. The resulting simulation qualitatively captures the stability

and characteristic falling behavior observed in the experimental example of the card house. See

simulation snapshot sequence in Figure 5.6, bottom.

5.9 Conclusion and Foreshadowing

In this chapter we’ve derived the Staggered Projections algorithm and discussed how it can

be applied to solve frictional contact resolution problems were many existing approaches fail.

We’ve also presented new results that help to clarify what the difficulties involved in solving

these problems are. In the next chapter we will analyze the Staggered Projections method. We

will attempt to clarify the stability and convergence behavior of Staggered Projections, as well

as its potential limitations and suitability in applications.
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(a) (b)

(c) (d)

Figure 5.4: Iterative LCP Example: Here we show snapshots from four early steps in a
rigid card house simulation where the frictional contact resolution (corrector) step was solved
using a Projected-Gauss-Seidel LCP solver [Murty 1988]. We start the card house in a stable
configuration, see (a), with a high coefficient of friction (µ = 0.8). An exact solution for this
simulation problem (when left alone) generates a stable house that stays in this configuration at
all steps (see Section 5.8). Nonconvergence (even for very high iteration counts, e.g.,� 1000)
causes cards to quickly begin to incorrectly slip, as in (b) eventually causing the full collapse of
the house (c) and (d). While constraint stabilization techniques can be applied to augment these
approaches [Erleben 2007], they generally make the overall behavior in difficult examples, like
this, worse. See Section 7.5.
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(a) (b)

(c) (d)

Figure 5.5: Sequential Quadratic Programming Example: Here we show snapshots from
four early steps in a rigid card house simulation where the frictional contact resolution (cor-
rector) step was solved using a Sequential Quadratic Programming solver [Schittkowski 2006],
applied to the global minimization formulation in Equation (5.32). We start the card house in a
stable configuration, see (a), with a high coefficient of friction (µ = 0.8). An exact solution for
this simulation problem (when left alone) generates a stable house that stays in this configura-
tion at all steps (see Section 5.8). While in all examples the SQP solver reported success (i.e,
it found at least a local first order minimizer) and, in some steps, only generated small slipping
errors, as in (b), solutions obtained also often generated very unstable, blow-up behaviors sim-
ilar to those obtained from the pivoting LCP implementation, shown above in Figure 5.3. See
(c) and (d).
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Figure 5.6: Top: A stable house of rigid cards is made out of thin metal plates with high fric-
tion. In an experiment, under successive impacts from small blocks, the house repeatedly has
sections fall down and then regains equilibrium. Bottom: An instrumented example simulation
of a card house composed of rigid body models using a high coefficient of friction (µ = 0.8).
We use the Staggered Projections algorithm to obtain an accurate solution to the underlying
frictional contact resolution problem. Dropping blocks in this simulation we obtain qualita-
tively similar behavior to the experiment.
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Chapter 6

Staggered Projections: Stability, Convergence Behavior, and
Performance

6.1 Overview

In the last chapter we derived the Staggered Projections algorithm and discussed its application

to difficult frictional contact resolution problems. In this chapter we will attempt to clarify

the stability and convergence behavior of Staggered Projections, as well as its potential limita-

tions and suitability for use in applications. In the following sections we will first redefine the

Staggered Projections as Quadratic Programming (QP) minimizations over unknown contact

impulse magnitudes, α , and friction impulse magnitudes, β . We will then use this reformula-

tion to derive stability results for the Staggered Projections algorithm (Section 6.3). We will

then further reformulate the Staggered Projections method in Section 6.4 to explicitly include

the extra global variable λ (originally introduced in Section 5.5.3) to facilitate a convergence

analysis (Section 6.5) performed in the full global space of the contact problem. This analysis

will lead to a pair of useful convergence bounds (Section 6.5.6) that will help to clarify con-

vergence behavior. We will then investigate the numerical convergence behavior of Staggered

Projections and perform a comparison with alternate solution approaches (Section 6.7). Finally,

we will end this chapter with some conclusions and a discussion.

6.2 Staggered Projections Reprise

To facilitate the stability and convergence analysis that will be discussed in the following sec-

tions it will be helpful to formulate the Staggered Projections algorithm using a pair of coupled

QPs once again,
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a(β )
def
= argmin

α

{1
2

α
T NT M−1Nα +α

T NT (M−1Dβ + q̇p) : α ≥ 0
}
, (6.1)

and

b(α)
def
= argmin

β

{1
2

β
T DT M−1Dβ +β

T DT (M−1Nα + q̇p) : β ≥ 0,

diag(µ)α−ET
β ≥ 0

}
.

(6.2)

The contact and friction projections defined in Section 5.4.5 can then be solved using

PC(−Dβ −Mq̇) = Na(β ), (6.3)

and

PF(α)(−Nα−Mq̇) = Db(α). (6.4)

respectively.

6.3 Lipschitz Continuity

In this section we will obtain a stability result for staggered projections by concatenating the

non-expansion property of projections with a stability result for QPs over varying parameters.

As we discussed in Section 5.4.5, Equation (6.3) effectively projects (−Dβ −Mq̇p) onto

the convex contact cone. Since projections are non-expansive maps [Clarke 1983], we obtain,

for an arbitrary x,

‖ PC(−Dβ
i +x)−PC(−Dβ

j +x) ‖M−1 ≤ ‖ Dβ
i−Dβ

j ‖M−1 . (6.5)

For a fixed value of α , PF(α)(·), can similarly be viewed as a projection onto the friction

subset. When, however, α is an input parameter to the optimization, as in the case of Staggered

Projections, non-expansion no longer necessarily holds. This is because the friction subset,

onto which each friction minimization projects, varies with each input α . We can instead,

however, apply Robinson’s [1982] sensitivity analysis that, when applied to Equation (6.2),

guarantees Lipschitz continuity for the QP over varying parameters. Thus we have a Lipschitz

constant LF > 0 such that

‖ b(α i)−b(α j) ‖ ≤ LF ‖ α
i−α

j ‖, (6.6)
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or, alternatively, in order to keep our notation consistent with Equation (6.5), we equivalently

have

‖ PF(α i)(−Nα
i +x)−PF(α j)(−Nα

j +x) ‖M−1 ≤ LF ‖ Nα
i−Nα

j ‖M−1 . (6.7)

Recalling that the staggered projections algorithm is given by the mapping

χ(Nα)
def
= PC

(
−PF(α)(−Nα−Mq̇P)−Mq̇P

)
,

and then applying Equations (6.5) and (6.7), we obtain, for arbitrary x, the bound

‖ χ(Nα)−Nα
∗ ‖M−1 =‖ PC

(
−PF(α)(−Nα +x)+x

)
−PC

(
−PF(α∗)(−Nα

∗+x)+x
)
‖M−1

≤ ‖ PF(α)(−Nα +x)−PF(α∗)(−Nα
∗+x) ‖M−1

≤ LF ‖ Nα−Nα
∗ ‖M−1 .

(6.8)

The Staggered Projections algorithm is thus Lipschitz continuous (with respect to the Ki-

netic metric) with a Lipschitz constant that is dependent only on the properties of the friction

projection.

6.4 Parallel Iterations

In order to analyze the convergence behavior of Staggered Projections we will need to re-

call the global minimization formulation in Equation (5.32) from Section 5.6.2. We note that

Staggered Projections effectively ignores the third, and so far neglected variable of this global

minimization, λ . This neglected variable is, from the perspective of the Staggered Projections

formulation, a dependent (or Lagrangian dual) variable, given by a set of optimal Lagrange mul-

tipliers associated with the Coulomb constraints in the friction minimization (Equation (6.2)).

To discuss the convergence of Staggered Projections to a global solution, however, we need

to explicitly include λ in the following. To do this, for each Staggered Projections solve, we

use the function l(α) to generate the (possibly non-unique) Lagrange multipliers, λ , consistent

with an optimal solution obtained by the QP solution b(α) generated by Equation (6.2).

Then, to examine global convergence properties, we reformulate the Staggered Projections

algorithm so that it redundantly iterates on y (i.e., doing twice the necessary work at each

iteration). For each iteration i of Staggered Projections, we solve for all of the global variables,
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simultaneously, using the update step

yi+1 =


α i+1

β i+1

λ i+1

=


a(β i)

b(α i)

l(α i)

 . (6.9)

Note that iterating in this way simply reformulates the Staggered Projections sequence as

two sets of redundant and interlacing solves.

Since this formulation unnecessarily doubles the workload of the algorithm, this is not a

computationally efficient approach; however, this is an equivalent formulation of the Staggered

Projections algorithm and will be useful for discussing convergence to optimal solutions given

by

y∗ =


α∗

β ∗

λ ∗

 . (6.10)

Using this parallel iteration formulation we are now in a position to analyze a single itera-

tion of Staggered Projections going from iteration i to i+ 1. After solving this iteration using

the two convex QPs given by Equations (6.1) and (6.2), each of these two QPs must satisfy

its first order optimality (KKT) conditions. Then if the parallel formulation (Equation (6.9))

obtained the iterates

yi =


α i

β i

λ i

 (6.11)

and

yi+1 =


α i+1

β i+1

λ i+1

 , (6.12)

these KKT conditions, of the two solved QPs, can be combined and jointly written out as the
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complementarity conditions

0≤


α i+1

β i+1

λ i+1

⊥


NT M−1N 0 0

0 DT M−1D E

0 −ET 0




α i+1

β i+1

λ i+1



+


0 NT M−1D 0

DT M−1N 0 0

diag(µ) 0 0




α i

β i

λ i

+


NT q̇p

DT q̇p

0

≥ 0.

(6.13)

Then, to simplify this complementarity system, we set

B
def
=


NT M−1N 0 0

0 DT M−1D E

0 −ET 0

 (6.14)

and

C
def
=


0 NT M−1D 0

DT M−1N 0 0

diag(µ) 0 0

 . (6.15)

Equation (6.13) can now be compactly given as

0≤ yi+1 ⊥ Byi+1 +Cyi +b≥ 0. (6.16)

6.4.1 Global Optimality of Fixed-Points

The above complementarity conditions of the parallel iteration formulation also provide an-

other way of seeing that a fixed-point obtained by Staggered Projections must satisfy global

optimality of the frictional contact problem. We note that if a fixed-point y∗ is obtained, the

fixed-point joint optimality conditions are given by

0≤ y∗ ⊥ By∗+Cy∗+b≥ 0. (6.17)

Since By∗+Cy∗+b = Ay∗+b, each such fixed-point must clearly also satisfy the global opti-

mality conditions given by Equation (5.27).
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6.5 Convergence Analysis

Despite all of the above effort to include λ in our discussion, we will now attempt to ignore

λ as much as we can. Intuitively, we can consider the λ variable as one of the chief sources

of difficulty in the frictional contact problem. One way to note this, is by observing that λ

only appears in our global objective in the nonconvex term and, in fact, without λ nonconvex

terms drop out of the optimization problem entirely. In the following, we will first examine

convergence behavior for a series of cases where we can, without loss of generality, ignore λ .

Then, we will be forced to consider cases where λ can not be excluded. As might be expected,

these will correspond to potentially difficult and even possibly expansive steps. As we will

see, however, it will still be better to consider λ in these cases than to ignore it altogether. To

help us partition off the λ terms and to better generate norm bounds in the following, we will

reformulate the joint optimality conditions of the Staggered Projections sequence in Equation

(6.16).

We first define the symmetric matrices

B̂
def
=

NT M−1N 0

0 DT M−1D

 (6.18)

and

Ĉ
def
=

 0 NT M−1D

DT M−1N 0

 , (6.19)

along with variable

z
def
=

α

β

 . (6.20)

6.5.1 Inequality

We now can use the known optimality conditions of the Staggered Projections iterate to gen-

erate an inequality that will be the basis for all of our upcoming norm bounds. Multiplying

through the complementarity conditions given in Equation (6.16) and applying the inequalities

from the same we obtain

0≥
(
yi+1−yi)T (

Byi+1 +Cyi +b− (Byi +Cyi−1 +b)
)
. (6.21)
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Rearranging we then have

0≥ (yi+1−yi)T B(yi+1−yi)+(yi+1−yi)T C(yi−yi−1) (6.22)

and, finally, substituting in the matrix and vector definitions given above we obtain the inequal-

ity

0≥ (zi+1− zi)T B̂(zi+1− zi)+(zi+1− zi)T Ĉ(zi− zi−1)+(λ i+1−λ
i)T diag(µ)(α i−α

i−1).

(6.23)

6.5.2 Preliminaries

In the following, we will ignore the case where NT M−1D = 0 since, as discussed in Section

5.5.2, in this case convergence is guaranteed by applying a single contact solve followed by a

single friction solve. We will also presume, in the following, without loss of generality, that

the matrices N and D are both full rank. If not (which will certainly be the case for D), we can

redefine the maximally independent set of columns of N and D (with respect to the inverse mass

matrix, M−1) as being the new matrices N and D, and, correspondingly, redefine all considered

values of α and β so that evaluations of Nα and Dβ remain consistent.

We then define B̃ to be the Cholseky factorization of B̂, such that

B̃
T

B̃ = B̂. (6.24)

Finally, for convenience we also define the individual terms of the above inequality

ν
def
= (λ i+1−λ

i)T diag(µ)(α i−α
i−1),

γ
def
= (zi+1− zi)T B̂(zi+1− zi),

δ
def
= (zi+1− zi)T Ĉ(zi− zi−1).

(6.25)

6.5.3 Case by Case

After a few further observations we will see that, given the above preliminaries, in order to

obtain convergence bounds on the iterates of the Staggered Projections algorithm there are

effectively only two main cases to consider along with three subcases for the latter.
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The Cases:

We first note that, for all cases, we have γ ≥ 0. Together with Equation (6.23) this implies that

we must also always have ν + δ ≤ 0. Additionally, if γ = 0 convergence has been obtained.

Thus, in the following, we will only consider cases for which ν +δ ≤ 0 and γ > 0.

Given these additional observations, there are now two remaining cases to consider:

Case 1: ν ≥ 0. This implies that γ +δ ≤ 0 and, given that γ > 0, we must also have |γ| ≤ |δ |.

Case 2: ν < 0. Here we must consider three subcases:

(a) γ ≤ δ . Given that γ > 0 this also implies |γ| ≤ |δ |.

(b) γ +δ ≤ 0. As in Case 1 this implies |γ| ≤ |δ |.

(c) γ > δ and γ +δ > 0. This final case is considered below.

We then obtain the following bounds for each case:

Cases 1, 2(a), and 2(b):

All of these cases, as discussed above, imply |γ| ≤ |δ |. In turn this inequalty implies that the

inequality

‖ B̃
(
zi+1− zi)‖2

2≤‖ B̃
(
zi+1− zi)‖2‖ B̃

−T
ĈB̃
−1

B̃
(
zi− zi−1) ‖2, (6.26)

also holds. Dividing both sides by ‖ B̃
(
zi+1− zi

)
‖2 and pulling out a matrix norm from the

right hand side we then obtain

‖ B̃
(
zi+1− zi)‖2≤‖ B̃

−T
ĈB̃
−1 ‖2‖ B̃

(
zi− zi−1) ‖2 . (6.27)

Case 2(c):

On first examination, if we, as above, only consider the α and β variables in Case 2(c), we

apparently have |γ|< |δ | . This would seem to potentially imply that iterations covered by this

case are always expansive; however, this analysis ignores the full set of global variables.

Here, unlike the other cases examined above, we can no longer remove the λ variable from

our inequality. Instead we actually want to find a way to nontrivially reinsert an entry into the
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γ term that includes λ . We can do this by creating new matrix B̂ε that augments the matrix B̂

with an additional row and column, to correspond to entries for λ .

Next we note that we can rule out the possibility of (λ i+1−λ i) = 0 since this would imply

that ν = 0 and thus would be covered by Case 1.

Then, with the assumption that (λ i+1−λ i) 6= 0, we define a new non-negative variable,

ε ∈
(

0,
−(γ +δ +ν)

‖ λ i+1−λ i ‖2
2

]
, (6.28)

and the augmented matrix

B̂ε

def
=


NT M−1N 0 0

0 DT M−1D 0

0 0 εI

 . (6.29)

Then the inequality in Equation (6.23) implies that the inequality

0≥ (yi+1−yi)T B̂ε(y
i+1−yi)+(yi+1−yi)T C(yi−yi−1), (6.30)

must also hold. This, in turn, allows us (in a similar fashion as above) to compose the bound

‖ B̃ε

(
yi+1−yi)‖2≤‖ B̃

−T
ε CB̃

−1
ε ‖2‖ B̃ε

(
yi−yi−1) ‖2, (6.31)

using the Cholesky decomposition

B̃
T
ε B̃ε = B̂ε . (6.32)

6.5.4 Evaluating the Matrix Norms

To understand potential convergence behavior implied by the above bounds, in both cases we

need to evaluate the matrix norms over all iterate cases. In this section we will formulate the

norms in a useful way so that, in the next section, we can determine under what conditions

these matrices indicate that each case is contractive, non-expansive, or possibly expansive.

Cases 1, 2(a), and 2(b):

To examine the behavior of Cases 1, 2(a), and 2(b), we need to evaluate the matrix norm

‖ B̃
−T

ĈB̃
−1 ‖2. Recalling the definition of the matrix two-norm and the Cholesky factorization

we have

‖ B̃
−1 ‖2

2=‖ B̂
−1 ‖2= 1, (6.33)
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so that the matrix norm can be bounded as

‖ B̃
−T

ĈB̃
−1 ‖2≤‖ B̃

−1 ‖2‖ Ĉ ‖2‖ B̃
−1 ‖2=‖ Ĉ ‖2 . (6.34)

In turn, examining the structure of Ĉ (Equation (6.19) ) we have, for Cases 1, 2(a), and 2(b),

the bound

KA
def
= ‖ B̃

−T
ĈB̃
−1 ‖2≤‖ Ĉ ‖2=‖ NT M−1D ‖2 . (6.35)

Case 2(c):

Similarly, to understand the bound in Case 2(c) we examine the matrix norm ‖ B̃
−T
ε CB̃

−1
ε ‖2.

Again recalling the definition of the matrix two-norm and the Cholesky factorization we have

‖ B̃
−1
ε ‖2

2=‖ B̂
−1
ε ‖2= ε

−1, (6.36)

so that the matrix norm can be bounded as

‖ B̃
−T
ε CB̃

−1
ε ‖2≤‖ B̃

−1
ε ‖2‖ C ‖2‖ B̃

−1
ε ‖2= ε

−1 ‖ C ‖2 . (6.37)

In turn, examining the structure of C (Equation (6.15) ) we have

CT C =


(NT M−1D)2 +diag(µ)2 0 0

0 (NT M−1D)2 0

0 0 0

 (6.38)

which implies that

‖ C ‖2
2=‖ (NT M−1D)2 +diag(µ)2 ‖2≤‖ (NT M−1D) ‖2

2 +µ
2
max, (6.39)

where µmax indicates the largest entry in the vector µ (i.e., the largest coefficient of friction in

the contacting system). Then, for case 2(c), we have the bound

KB
def
= ‖ B̃

−T
ε CB̃

−1
ε ‖2≤

1
ε

(
‖ (NT M−1D) ‖2

2 +µ
2
max

) 1
2
. (6.40)

6.5.5 Minimum Subspace Angle

The minimum principle angle between two subspaces U ,V ∈ Rn (see for instance Golub &

VanLoan [1996]) is defined as

θU ,V = cos−1( max
x∈U ,||x||=1

max
y∈V ,||y||=1

xTy
)
. (6.41)
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This gives a measure of how close these spaces are to being linearly dependent – effectively the

smaller the angle, the closer the subspaces are.

For the kinetic metric we can generalize the principle angle formulation so that, presuming

the columns of N and D are mass normalized, the minimum principle angle between the span

of N and the span of D is defined as

θN,D = cos−1( max
x∈N,||x||

M−1=1
max

y∈D,||y||
M−1=1

xT M−1y
)
. (6.42)

In our discussion this is useful, as it generalizes our notion of the degree of the possible coupling

between friction and contact subspaces and correspondingly, gives a measure for multipoint

contact configurations, of the angle from the Painlevé example for single point contacts. In

particular, notice that the recurring bound term ‖NT M−1D ‖2 effectively measures this coupling

since it is simply the cosine of this minimum spanning angle:

‖ NT M−1D ‖= max
x∈dim(D),‖x‖=1

‖ NT M−1Dx ‖

= max
x∈N,||x||

M−1=1
max

y∈D,||y||
M−1=1

xT M−1y.
(6.43)

In other words, this norm captures the degree to which the friction and contact subspaces

may overlap and thus interact. Note that, at worst, this measure is one; when the two subspaces

are linearly dependent. Otherwise, it measures the potential amount of coupling between pos-

sible friction and contact impulses.

6.5.6 Contraction and Non-Expansion Criteria

In this section we examine the conditions under which the bounds obtained in Section 6.5.4

imply contractive or nonexpansive behavior, while in the next section we will cover the impli-

cations for expected convergence rates and physical interpretation of these quantities. In this

and the following sections we will presume, without loss of generality, that the columns of N

and D are also mass normalized with respect to the Kinetic metric.

Recalling, for Cases 1, 2(a) and 2(b), that the bound is given by

KA =‖ B̃
−T

ĈB̃
−1 ‖2≤‖ Ĉ ‖2=‖ NT M−1D ‖2 . (6.44)

we find that KB ≤ 1 so that we obtain either non-expansion or contraction for all iterates. If
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the iterate case corresponds to a strict inequality of |γ| < |δ | then this corresponds to strict

inequality in Equation (6.27) and thus the corresponding iterate is a contraction.

Otherwise, the difference between a contractive and non-expansive step effectively depends

on the maximum principle angle, as discussed above, between the active constraint directions

(i.e., the span of vectors in N corresponding to non-negative entries of α) and the active friction

directions (i.e., the span of vectors in D corresponding to non-negative entries of β ). See the

next section for a more detailed discussion.

For case 2(c), based on the analysis in Section 6.5.4, we see that in order for the iterate to

contract we require

KB =‖ B̃
−T
ε CB̃

−1
ε ‖2≤

1
ε

(
‖ (NT M−1D) ‖2

2 +µ
2
max

) 1
2
< 1. (6.45)

or equivalently

ε >
(

cos(θN,D)
2 +µ

2
max

) 1
2
. (6.46)

Then, recalling the bounds on ε (Equation (6.28)) we see that if

−(γ +δ +ν)

‖ λ i+1−λ i ‖2
2

>
(

cos(θN,D)
2 +µ

2
max

) 1
2
, (6.47)

we will obtain a contraction for any iterate corresponding to Case 2(c).

While this criterion may not be particularly intuitive, the main point to take away is that,

in these potentially difficult iterates, the likelihood of a contractive step increases both as the

size of the coefficients of friction decrease and the minimum subspace angle increases. This

coincides with the reasonable expectation that problems with higher coefficients of friction are

somehow harder and that likewise problems with less coupling are easier. We will formalize

these issues some more and discuss their impact on convergence rates as well as their relation

to the underlying global minimization problem in the next section.

6.6 Convergence Rates and Their Relationship to Contacting System Properties

The above analysis implies that the difference between a contractive and nonexpansive step de-

pends both on the minimum principle angle (see above) between the active constraint directions

(i.e., the span of vectors in N corresponding to non-negative entries of α) and the active friction
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directions (i.e., the span of vectors in D corresponding to non-negative entries of β ) as well as

the size of the coefficients of friction at active contacts in each iterate.

As shown above, the matrix two-norm of NT M−1D is equivalent to the minimum principle

angle between the two subspaces spanned by N and D correspondingly. It follows for Cases

1, 2(a) and 2(b) then that if this angle is greater than zero we have a contraction and otherwise

non-expansion. More generally, we again see that as the angle between the friction and contact

subspaces increases the Lipschitz constants in Equation (6.27) and Equation (6.31) decrease

correspondingly.

At a high level, the bounds from the last section suggest that, globally, for each problem

instance, more iterations are required as the maximum µ value increases and, likewise, more

iterations are required as the minimum subspace angle decreases.

Note, however, that these global conclusions do not tell the whole story, since they do not

consider the individual, local convergence behavior at each iterate. The above bounds specifi-

cally imply that the local contractive behavior at each iterate is based entirely on the minimum

principle angle between subspaces spanned only by the the constraint and friction directions

that have been active in recent iterates and the µ values associated with those active constraints.

That is, the active constraint directions that correspond to nonzero values of α i−1,α i,or α i+1,

the active friction directions that correspond to nonzero values of β i−1,β i, or β i+1, and the

maximum among µ values that correspond to nonzero values of α i or α i+1.

This helps to explain the overall observed good behavior of the algorithm despite the regular

occurence of strong linear dependence between N and D in large and/or complex contacting

configurations. It also suggests that local convergence behavior will be strongly influenced by

the properties of the active friction and constraint sets at solutions.

6.7 Numerical Behavior

In this section we will examine the change in both residual and error, with respect to iteration

count, for the Staggered Projections algorithm. First we investigate the variation in conver-

gence behavior both when varying the minimum principle angle and the coefficient of friction.
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Next we will investigate the change in residual and error over the course of individual Stag-

gered Projections solves. Finally, we will also, in the following section, compare these results

with the final residual obtained by Lemke’s algorithm and a projected Gauss-Seidel variant,

applied to the LCP formulation of EQ (5.27) as well as SQP, applied to the global minimization

formulation of EQ (5.32).

Note that in our analysis we use the difference between the current evaluation of the global

objective given in EQ (5.32), and the known global minimum value, 0, as our residual. In this

sense the residual under discussion here does not have the usual linear relationship to error that

we would expect for linear systems. Instead, this residual gives the height of the nonconvex

energy surface at the current iterate. Error, however, is defined in the usual way as the distance

between the current iterate and a given minimizer.

6.7.1 Convergence Domains for Painlevé-Type Configurations

To examine the domain of convergence of Staggered Projections we implemented a simple two-

dimensional case where the normal cone is a single vector and the friction set is a line segment

at an angle θ to the normal direction (as in Figure 5.1). For example, this covers the case of the

Painleve rod in SE(2) for one point of contact (see below) and includes potentially problematic

configurations such as high friction and low minimum angle examples. In each of the following

graphs we will either show the number of iterations to converge to a relative error of 10−7. We

will plot these datum for each possible initial starting point for a range of predictor values.

In each plot we also draw the generalized normal direction as a white arrow, the feasible

half-space boundary, as a white dotted line, the generalized friction set, as a red dotted line

segment , and the two boundaries of the generalized friction cone [Erdmann 1994] (which will

be useful in the following analysis) as two yellow dotted lines.

Note that in the plotted domain, each point represents the location of the starting negative

predicted velocity. Thus all points corresponding to locations below the feasible boundary

actually correspond to problems that began with predicted velocities that were feasible and

so converged after a single iteration in all cases. Points corresponding to locations above the

feasible boundary begin with predicted velocities that are infeasible and so are the interesting

(and potentially difficult) cases to examine in each plot.
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Figure 6.1: Painlevé Rod Example

A Single Point Painlevé Rod Example

To help build physical intuition for this example we revisit the Painlevé rod example discussed

in Section 2.8.3. The Painlevé rod is one possible physical configuration that corresponds to the

above problem. Consider the simple R2 Painlevé Rod example illustrated in Figure 6.1. Recall

that we have a one dimensional rod with a single point of contact at x. to a fixed surface with

the normal n and tangent t. Here the degrees of freedom of the system are given by

q = (a,p)T ∈ SE(2), (6.48)

where a gives the angle of rotation about the center of mass, and p indicates the R2 coordinates

of the center of mass. The generalized velocity is then

q̇ = (ȧ, ṗ)T ∈ se(2). (6.49)

The body coordinates of the contact point could then be given by

x̂= (0,−1)T . (6.50)

The world coordinates of the contacting point are the given by

x(q) = R(a)x̂+p, (6.51)

Where R(a) is the rotation specified by a; i.e.,

R(a) =

cos(a) −sin(a)

sin(a) cos(a)

 . (6.52)

Then, we have

ẋ=

cos(a) 1 0

sin(a) 0 1

 q̇, (6.53)
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so that the jacobian for contact point x is

Γx =

cos(a) 1 0

sin(a) 0 1

 , (6.54)

with ẋ= Γxq̇.

Because there is only a single point of contact, we can formulate the Staggered Projection

minimizations in the two-dimensional contact space of the contact location rather than in the

effectively three-dimensional space of planar rigid-body impulses (i.e., se∗(2)). In particular

we can define the magnitude of the friction impulses along t1
def
= t and t2

def
= − t, as β1 and

β2 respectively so that the friction unknowns are β = (β1,β2)
T , while, as usual, the magnitude

of the contact impulse, along n is given by α . Finally we let ẋp denote the initially predicted

velocity.

Then, by rescaling, the resulting contact QP minimization can be given as

a(β ) = argmin
α

{1
2

α
2 +αnT ΓxM

−1ΓT
x(t1,t2)β +αnT ẋp) : α ≥ 0

}
, (6.55)

and similarly the friction QP is

b(α) = argmin
β

{1
2

β
2 +β

T (t1,t2)
T ΓxM

−1ΓT
xnα +β

T (t1,t2)
T ẋp) : β ≥ 0, µα−β1−β2 ≥ 0

}
.

(6.56)

Next, to simplify even a bit more, presumeM = I3. Then notice that, in the above, the matrix

U
def
= ΓxM

−1ΓT
x (6.57)

effectively rotates and scales the tangent vector t, so that the tangent and normal are no longer

orthogonal. I.e., nUt 6= 0. In particular, for this simple case, the minimum principle angle is

then given by

θ =
∣∣∣nT Ut

‖Ut ‖

∣∣∣. (6.58)

Staggered Projections can then be solved (in this particular case) using the very simple contact

and friction projections

Pn(−U(t1,t2)β − ẋp) = na(β ), (6.59)

and

P
αU (t1,t2)

(−nα− ẋp) = (t1,t2)b(α). (6.60)
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Variations of θ and µ for Solutions Over the Predictor Domain

Varying θ (the angle between the friction subspace and the normal direction), and µ (the coeffi-

cient of friction), for a set of solves each of which ranges over the domain of possible predictor

velocities we observe that globally (see Figures 6.2 - 6.5) , for each Staggered Projections solve:

1. More iterations are required as the value of µ increases.

2. Likewise, more iterations are required as the minimum angle between the friction sub-

space and the normal direction decreases.

Both of these observations correspond well with the bounds developed in the last three

sections. We also, however, based on the above bounds expect to see an interaction between

how changes in the minimum angle and µ effect convergence behavior.

In these examples we notice that, holding θ fixed, as we vary µ , a distinct border between

better and worse convergence behavior clearly follows the two edges of the configuration space

friction cone:

• For large values of µ the better convergence behavior is clearly inside the cone, which

corresponds to the sticking case.

• As we decrease µ , there is always comes a transition point where there’s a flip. At this

point the interior of the cone becomes harder to converge and the exterior easier.

Having the interior of the friction cone converge faster for large values of µ is consistent

with the above bounds. Points starting in the interior of the cone will all correspond to sticking

cases (i.e., zero final velocity) where λ = 0 at the solution. Then near these solutions we can

expect iterates to have ν = 0 so that the first case, where the contraction bound is given only by

cos(θ) can be expected to dominate. An alternate and complementary viewpoint is that since

λ = 0 near these solutions we can also expect non-convexity to correspondingly also not be an

issue near these solutions.

Decreasing the value of µ , the observed switch to where convergence behavior inside the

generalized friction cone becomes harder, generally always occurs when the farther edge of the
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friction cone becomes orthogonal to the friction segment. See Figure 6.2 examples. Interest-

ingly, this corresponds to the moment when the cosine term in the bound begins to dominate

the friction term. I.e., at the orthogonal point we have cos(θ) = µ and then as we decrease µ

further, cos(θ) > µ . At this point the lower values of µ dominate the convergence behavior

outside the friction cone, while the larger cosine term dominates the interior of the cone.

Finally, for the extreme cases of θ = 0 (equivalently π) and θ = π/2 (equivalently 3π/2)

convergence occurrs after 1 and 2 iterations respectively, for all values of µ . These are simply

the cases where friction is either exactly colinear or exactly orthogoal to the normal, so the

issues with the principle angle are not at play here.

Note that overall, however, despite this observed switching behavior, the global conver-

gence behavior still follows observations (1) and (2) above. The local switching behavior sim-

ply differentiates which regions of the predictor domain have worse convergence behavior as

we vary µ and/or θ .

Finally, in all of the above examples, we tested physically plausible coefficients of fric-

tion. In most engineering texts, experimentally obtained values of dry friction generally have

a ceiling of around µ ' 1.2 (e.g., for dry aluminum on aluminum sliding). Of course, we may

wish to examine behavior at higher coefficients and here, in this simplified example, Staggered

Projections starts hitting some potential limitations for larger values. For larger coefficients of

friction the generalized friction cone widens and thus correspondingly increases the area of the

stick region were we continue to experience good convergence behavior; however, at the same

time, the sliding region becomes correspondingly more difficult to converge.

As µ continues to increase we eventually transition (see Figures 6.6 - 6.8) into the case

where the sliding region changes from a high, but converging, iteration count, to non-convergence.

Past this point the sliding region does not generally converge, although the residual generally

remains low in most of this region. As as we increase µ further, the number of iterations re-

quired to converge, inside the generalized cone remains essentially static, while the absolute

residual, in a relatively narrow subset of the non-converging region hits a maximum value of

∼ 3 (with respect to the usual residual of ∼ 10−6 in the converging region). This final configu-

ration corresponds to cases where a combined low angle and high µ value, in the above bounds,

no longer necessarily guarantee convergence. Interestingly, we note that we still obtain good
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convergence to solutions for sticking behavior, as suggested above, while, for sliding behavior,

we only note large residual error for some cases. Finally, overall we observe the interesting

relationship that while, effectively, convergence generally becomes harder as we increase µ ,

the region of greater difficulty correspondingly becomes smaller.

6.7.2 Convergence Behavior: Residual and Error

While the above examples may be useful to understand the general behavior of the Staggered

Projections algorithm, they also miss the additional complexities imposed in the more general

case when there are a large number of possibly redundant constraint and friction directions. In

this section we instrumented an example of a larger scale difficult frictional contact configura-

tion to examine the individual behavior of Staggered Projections iterates over the course of the

algorithm.

Card House Example

We instrumented a four level rigid card house example with a high coefficient of friction (µ =

0.8). See Figure 5.6 (bottom) for snapshots from this example. For each time-step’s Staggered

Projections solve we compute the error and global objective value at each iteration. In Figure

6.9 we show the results for the first four time-steps.

In each case we see a (characteristic) close to monotonic decrease in error, with a few

small regions of expansion. This is consistent with the analysis in Section 6.5. Similarly, as

suggested by the analysis in Section 6.3, we also see that the error appears to be well bounded.

Interestingly, however, the change in the objective value (residual) is strongly non-monotonic.

Effectively we see that both hill climbing and gradient descent occur regularly throughout the

iterations of the Staggered Projections sequence.

Finally, combining these observations, it is suggestive that smooth paths of mostly decreas-

ing error follow such a non-monotonic energy trajectory. This too may help us understand why

gradient descent approaches might be expected to have difficulty in these problems.
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6.7.3 Solution Comparison

Using the same base code we also attempted to solve the corrector step by applying Lemke’s

algorithm to the LCP formulation of Equation (5.27), using the PATH solver [Ferris & Munson

1998], and applying Sequential Quadratic Programming to the global minimization formulation

of Equation (5.32), using the NLQLP solver [Schittkowski 2006]. Instrumenting the same four

level card house example, as above, we compare the obtained residuals for all three algorithms

over a simulation sequence stepped at h = 10−3 with µ = 0.8. In general, we observe close

to zero residual for Staggered Projections throughout. PATH generates low residual in many

instances but also produces large positive and negative residuals at many steps. In general these

steps physically correspond in the generated simulation to incorrect sliding and blowup behav-

iors as discussed above. Finally, in many steps NLQLP generates large, but always positive

residuals, which again correspond to incorrect sliding and blowup behaviors in the simulation.

Note also that the positivity in NLQLP is obtained because SQP always finds a feasible, but not

necessarily optimal point. See Figure 6.10 for the results. The average time for a call to PATH,

NLQLP, and Staggered Projections over these simulations, was 57 seconds, 123 seconds, and

0.8 seconds respectively.

6.8 Conclusions and Discussion

In this chapter we analyzed the stability and convergence behavior of the Staggered Projec-

tions Algorithm, as well as its potential limitations and suitability for use in applications. This

analysis lead to a pair of useful convergence bounds (Section 6.5.6). We then discussed the

potential implications of these bounds for the practical application of the Staggered Projections

algorithm and confirmed that this behavior was reflected in our numerical results.

In particular, we found that, as might be expected, there is a strong correlation between re-

ducing the coefficient of friction and the number of iterations needed. Unlike prior algorithms,

however, we found that Staggered Projections converged over a large range of plausible larger

coefficients.
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Perhaps less obvious, we also found that the subspace angle between the friction and con-

tact subspaces equally dominates the convergence behavior of Staggered Projections (in con-

junction with µ). In particular, we observed that for a large number of cases the convergence

bound for individual iterates was actually independent of µ , and only dependent on this angle.

This might help explain the strong performance of Staggered Projections for reasonably high

coefficients of friction.

We have shown that, in the discrete setting, this subspace angle analagously encodes the de-

gree to which Painlevé-Type Conditions may manifest for individual multi-point contact prob-

lems and, specifically, via the bounds in this chapter, have shown that this angle, together with

µ , is an equally necessary parameter for understanding the computational difficulties of fric-

tional contact problems.
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Example 3: µ = 1

Figure 6.2: Painlevé Convergence Examples: keeping µ fixed at three successively higher
values in these examples, we varying θ and examine the number of iterations to converge over
the domain of possible predictor points. Note that convergence behavior is symmetric on all
three other quadrants. The residual was ∼ 10−6 over the domain.
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Figure 6.3: Painlevé Convergence Example: keeping θ = 2π

3 fixed, we varying µ over a range
of realistic values and examine the number of iterations to converge over the domain of possible
predictor points. The residual was ∼ 10−6 over the domain.
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Figure 6.4: Painlevé Convergence Example: keeping θ = π

5 fixed, we varying µ over a range
of realistic values and examine the number of iterations to converge over the domain of possible
predictor points. The residual was ∼ 10−6 over the domain.
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Figure 6.5: Painlevé Convergence Example: keeping θ = π

9 fixed, we varying µ over a range
of realistic values and examine the number of iterations to converge over the domain of possible
predictor points. The residual was ∼ 10−6 over the domain.
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Figure 6.6: Painlevé Convergence Example: keeping θ = 2π

3 fixed, we varying µ over a range
of larger friction values. In the left column we show the number of iterations to converge, while
in the right column we show the corresponding absolute value residual.
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Figure 6.7: Painlevé Convergence Example: keeping θ = π

5 fixed, we varying µ over a range
of larger friction values. In the left column we show the number of iterations to converge, while
in the right column we show the corresponding absolute value residual.
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Figure 6.8: Painlevé Convergence Example: keeping θ = π

9 fixed, we varying µ over a range
of larger friction values. In the left column we show the number of iterations to converge, while
in the right column we show the corresponding absolute value residual.
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Figure 6.9: Staggered Projections solves from the first four time steps of the four level rigid
card house example. Red plots the objective value of the corresponding nonconvex minimiza-
tion which will be zero at an exact solution. Blue plots indicate reanalysis error to the global
minimizer.
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Figure 6.10: Algorithm Comparison: This plot shows a comparison of the residual values,
for each of 500 simulation steps of the standing card house example, obtained by the Staggered
Projections (green line), Lemke’s (blue line) and Sequential Quadratic Programming (red line)
algorithms. The average time for a call to Staggered Projections, Lemke’s (implemented us-
ing PATH), and Sequential Quadratic Programming (implemented using NLQLP) over these
simulations, was 0.8 seconds, 57 seconds, and 123 seconds respectively.
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Chapter 7

Applications and Examples

7.1 Overview

In this Chapter we investigate the use of Staggered Projections in several applications. We also

investigate the plausibility and validity of the behavior of the obtained simulations and compare

with several popular frictional contact simulation packages.

7.2 Implementation

All timings in the following sections were measured on a PC with a 3 GHz Intel Pentium

D processor, 2G RAM. We used Java (JDK 1.6) for our implementation. Note that while

faster timings could be obtained via parallelization (Section 7.4) all simulations were run single

threaded to get accurate timings.

In all of the following applications we simulate contacting systems composed of large-

deformation reduced St.Venant-Kirchhoff (StVK) models [Barbič & James 2005] and/or linear

modal models [Shabana 1991], both augmented with a floating frame [Shabana 2005]. We

also include rigid body models. In our implementation, narrow-phase collision detection is

performed using a sphere-based Bounded Deformation Tree (BD-Tree) [James & Pai 2004] for

reduced deformable bodies, a customized bounding-sphere hierarchy for rigid bodies [Kauf-

man, Sueda, & Pai 2007], and a uniform subdivision for broad-phase culling. No stabilization

was employed. Contact samples are generated by sampling the base geometries of deformable

bodies, and the zero level set of pre-computed distance fields of rigid bodies [Kaufman, Sueda,

& Pai 2007]. To facilitate comparison with existing packages, we wrote a Java wrapper for

ODE’s [Smith 2006] box/box collision detection and contact sampling implementation. We

use this to compute narrow-phase collision detection and contact sampling between box-based
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rigid body geometries.

A variety of numerical integrators can be used to both advance the unconstrained state and

to generate predictor velocities during contact. In this example implementation, we use a hybrid

implicit-explicit (IMEX) integration scheme that is explicit in rigid motion and the quadratic

velocity forces gqv, but implicit in the internal deformation forces (and damping). For the latter,

we use the semi-implicit Newmark subspace integrator of Barbič & James [2005].

All convex QP solves were implemented using QL [Schittkowski 2005], a robust imple-

mentation of the dual active set algorithm of Goldfarb & Idnani [1983]. QL is a dense solver

so speedups could potentially be obtained with sparse solvers.

7.3 Validation Tests

We tested our algorithm on a wide range of difficult frictional contact scenarios to verify that

we obtain plausible and expected frictional contact behavior.

Figure 7.1: Hanging woven elastic-frictional composites: We increase stiffness (bottom to
top) and the coefficient of friction (right to left). The woven composites come apart for all cases
where the combined friction and stiffness are insufficient to resist gravity.

7.3.1 Elastic-Frictional Composites

We wove flattened strands of a stiff rubbery material into frictional composites. These struc-

tures demonstrate the importance of tight coupling between friction and deformation. In our

first experiment we hang a grid of composites on pegs. We vary µ , the coefficient of friction,

right to left, with the increasing values 0.1,0.3, and 0.5, and increase stiffness slightly for the

upper row. On the top row the two leftmost composites stay cohered, due to a combined high

friction and stiffness, while the right hand composite comes apart due to low friction. On the
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Figure 7.2: Thrown woven elastic-frictional composites: We throw stiff composites, with
µ = 0.5, at a peg board. The composite’s cohesive behavior varies with the type of the impact.

bottom row the two rightmost composites come apart quickly due to a combined low friction

and stiffness, while the left composite slowly creeps apart due to low stiffness but high friction.

See Figure 7.1. In our second example we throw stiff composites, with µ = 0.5, at a peg board.

The composite’s cohesive behavior varies with the type of the impact, in some cases deforming

as a whole, while for other impacts coming apart quickly.

Figure 7.3: Stick-slip instability: Plastic chair legs chatter while sliding on an inclined surface
due to fictionally induced oscillations. This behavior is obtained from accurate solutions of the
coupled friction, contact and deformation modes.

7.3.2 Stick-Slip Instability

Stick-slip oscillation is an important frictionally induced instability in deformation dynamics.

High friction during sliding creates a buildup of elastic energy in contacting systems. This

energy is partially stored in the global deformation of the system, but also builds up at con-

tacting interfaces. Elastic energy is then released suddenly when the magnitude of the friction
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force, opposing sliding contact, is exceeded by the tangential stiffness at the contact. This in-

teraction between the friction forces and the sliding velocities is generally periodic, and so can

induce self-excited oscillations that involve the buildup and dissipation of significant amounts

of energy. In this example we show that accurate solutions of the coupled friction, contact and

deformation modes in our algorithm capture the stick slip induced instability behavior in the

chattering legs of plastic chairs sliding on an inclining surface. See Figure 7.3.

Figure 7.4: Jamming: Stable deformable jamming is obtained for a range of tight fitting con-
figurations.

7.3.3 Jamming

Another behavior that arises due to deformation and friction is jamming. Stable deformable

jamming is another difficult frictional phenomenon to simulate. We dropped deformable and

rigid objects into tight configurations with varying coefficients of friction, obtaining stable and

plausible changes in jamming behavior as µ decreases. See Figure 7.4 for examples. We also

demonstrate robust and stable deformable frictional jamming at real-time rates in our haptics

examples. See Section 7.8, below.

7.3.4 Friction-Dependent Masonry

For suitably high coefficients of friction, complex masonry structures, such as arches, can be

constructed without adhesives. Difficulties in accurately simulating such structures are dis-

cussed in Section 2.8.1. We stably simulate a catenary arch using rigid blocks with µ = 0.6.

We first drop blocks onto the arch’s keystone (the most stable point in the arch) and note that

the structure deforms globally but does not fall apart; instead it finds a new stable equilibrium.
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(a) (b)

(c) (d)

Figure 7.5: Friction-Dependent Masonry: A stable Catenary arch is constructed in this sim-
ulation with high friction (µ = 0.6), and without adhesives. (a), (b): We drop blocks onto the
arch’s keystone and it remains standing. (c), (d): We throw blocks at one of the arch’s legs (a
less stable point) and the arch falls apart.

We then throw blocks at one of the arch’s legs (a less stable point) and the arch falls apart. See

Figure 7.5.

7.3.5 Rigid Card House

In this example, a stable house of cards is made out of rigid cards with high friction. We use

e = 0.1 and µ = 0.8 for all cards. The card house stands stably long term and then, under

successive impacts from small blocks, it repeatedly has sections fall down and then regains

equilibrium (see Figure 7.6). Difficulties in accurately simulating these behaviors are also

discussed in Section 2.8.1.
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Figure 7.6: Rigid Card House Example: A rigid card house (µ = 0.8) is initially stable and
then partially knocked down by dropping blocks.

7.3.6 Large Deformation Frictional Contact

In these examples we simulate large deformation frictional contact using reduced StVK models.

In the first example dinosaurs are dropped together undergoing fast impacts with µ = 0.5 (see

Figure 7.7). In a second example we drop two groups of bunnies, with differing coefficients of

friction, onto a ramp and then into collision with semi-circular arches composed of rigid blocks.

The red bunnies use µ = 0.4, blue bunnies, µ = 0.1 and the rigid arch blocks, µ = 0.5 (see

Figure 7.8). The bunnies exhibit differing sticking, and stick-slip sliding behaviors depending

on the incidence of impact and µ . In both examples the models end the simulation in stable

piles.
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Figure 7.7: Nonlinear Deformation Example: A nonlinear deformation example using re-
duced, deformable StVK dinosaur models.

scene solve (s) contacts iters. DoFs time-step (s) models

composites 0.56 921 6.4 192  3e-3 modal
chairs 0.72 9,025 2.9 1,766  1e-2 modal
catenary arch 1.2 2,042 5.6 162  1e-2 rigid
card house 4.7 528 3.2 348 1e-3 rigid
dinosaurs 0.61 4,690 2.7 315 1e-2 StVK
haptic 0.0032 117 2.4 72 1e-2 modal & rigid

Table 7.1: Performance Evaluation: This table summarizes the average solve time, number
of contacts and iterations, per simulation step, for the validation examples. The tangent sample
size was 8 for all friction solves.

7.4 Algorithm Behavior

Stability and Long Term Integration

To test long term integration and stability properties, all of the above validation examples were

stepped for 10 minutes of simulation time. All simulations ran without blow-up, or constraint

drift other than possibly initial (small) penetrations sometimes caused by the collision of sharp

asperities (bunny ears, cow horns, etc.) during the fast phases of impacts.

7.5 Algorithm Comparison

While in the last chapter we compared and discussed the results of side by side tests of Stag-

gered Projections with industrial grade optimization solvers, all of which use the same base
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Figure 7.8: Hybrid Scene Example: Reduced deformable StVK bunny models with varying
coefficients of friction collide with each other and with initially stable semi-circular arches
composed of rigid blocks.

code, here, in this section, we will compare the performance of the Staggered Projections imple-

mentation with two popular contact simulation packages, ODE and Open-Tissue. ODE Smith

[2006] is an open source project and is perhaps the most popular contact resolution package in

general use. We will also include our the direct (Lemke’s) LCP solver implementation for a

second base-line comparison here as well.

7.5.1 Comparison with LCP-based Frictional Contact Simulation Packages

For the following examples we implemented our base collision and contact sampling code with

the Stewart-Trinkle [Stewart & Trinkle 1996] velocity-level LCP using the PATH solver [Ferris

& Munson 1998]. We also tested examples with the Projected Gauss-Seidel based iterative

LCP solvers in the ODE [Smith 2006] and the Open-Tissue [Erleben 2007] packages. In these
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examples, all methods employ semi-implicit Euler for non-contacting integration. For colli-

sion detection and contact sampling direct LCP, Staggered Projections, and ODE apply ODE’s

box/box implementation; Open-Tissue applies a box/box variant.

Stacking: Both the ODE and Open-Tissue iterative solvers generate sidewise sliding er-

rors for simple rigid stacking block examples. While these errors build more slowly in Open-

Tissue, for both systems this results in stacks falling over after a few seconds. We find that

this occurs even when large iteration counts (100) and very small step sizes (10−4) are applied.

If we make the influence of dynamics negligible in Open-Tissue, however, by setting Open-

Tissue’s fraction parameter to ∼ 0.002, and thus make Open-Tissue’s stabilization method,

shock-propagation, almost entirely dominant, we can obtain stable stacks of blocks. The direct

LCP slowly generates stable stacking for small numbers of blocks (≤ 15) but can not scale,

and begins failing for larger problems. This is consistent with the results reported in Anitescu

& Hart [2004]. Finally, the Staggered Projections implementation generates long term stable

stacking 1 for both rigid and deformable bodies.

Rigid Card House: We also attempted to duplicate the card house example from the val-

idation tests using both direct and iterative LCP methods. Direct LCP generates, very slowly,

a stable solution for a small, two-level card house, but again, does not scale and fails on card

house examples of larger sizes. ODE’s iterative solver fails for card houses at all sizes. Again

this is caused by a sidewise sliding error, no matter how high we set friction. Open-Tissue’s

iterative solver fails similarly. If we, in addition, also apply Open-Tissue’s shock-propagation

based stabilization, some of the sliding error is reduced. However, vibratory artifacts induced

by the stabilization method still cause the Open-Tissue solver to fail on card houses of all sizes.

7.6 Convergence

While, as discussed in the last chapter, we do not guarantee convergence, all validation exam-

ples obtained convergent solutions. All of the above validation examples were run to conver-

gence with a tolerance of ε = 10−4. A tolerance of ε = 10−1, however, was generally sufficient

to generate convincing frictional behavior, while convergence was also tested for tolerances

1These S.P. simulations were also run out to 10 minutes of virtual time.
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down to ε = 10−8. In general, setting ε in this range allows the user detailed control over the

accuracy of the frictional response obtained by the algorithm.

scene warm w/o warm

composites 6.4 25.8
chairs 2.9  30.9
catenary arch 5.6  133.7
card house 3.2 57.1
dinosaurs 2.7  18.3

scene solve (s) DoFs

log house 4.9  414
log house dec. 0.061   414
bunny drop 37.5   12,276

Table 7.2: Convergence Behavior (left): The average number of iterations for the validation
examples. Decomposition Performance (right): The average solve time for the decomposi-
tion examples.

7.7 Warm Starts

We note an appreciable acceleration in convergence when warm starting is applied in these

examples. In Table 7.2 (left) we summarize the number of iterations to convergence for the

validation examples with and then without warm starts. In many cases a speed-up of up to two

orders of magnitude was obtained. Warm starting also generated faster simulations in examples

were a hard maximum iteration limit was enforced. In these simulations convergence may not

be obtained for individual steps. When temporal coherence is sufficiently high, however, warm

starting appears to help convergent behavior emerge over multiple steps.

(a) (b)

Figure 7.9: (a): A ∼ 100 Hz, force-feedback, haptic simulation of deformable and rigid fric-
tional contact using Staggered Projections. (b): A preliminary decomposition approach as val-
idated on a high-dimensional, high-contact count scene, composed of two-thousand rigid-body
models.
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7.8 Haptic Rate Interaction

We also implemented a highly unoptimized prototype force-feedback haptic rendering of de-

formable and rigid frictional contact interactions by plugging a Phantom Premium 1.5 haptic

device directly into our existing integration cycle. A timing and convergence summary for the

interaction session depicted in Figure 7.9 (a) is given in Table 7.1, bottom. Note that, here,

hard time limits required us to implement graceful degradation. Even so we found that most

(∼ 80%) of the integration steps were still convergent and that complex frictional behaviors

such as jamming, sticking and stick-slip were obtained. See Figure 7.9 (a).

7.8.1 Future Work

While the timings for the haptic demo (∼ 100 Hz.) are sufficient for rendering soft contact,

a separate code base specifically optimized for haptic rendering should be able to scale the

timings down to enable haptic update rates of 1000 Hz.

7.9 Decomposition

Without constraints, each body in a multibody system can be integrated independently. When

contacts are imposed, however, the DoFs of individual bodies are effectively “glued” together.

Generally, though, multiple independent connected sets of bodies are formed by contact con-

straints, each of which can be solved separately, and, if parallel processing is available, each

such set can be solved in parallel. This is a standard feature in multibody packages (e.g., “is-

lands” in ODE Smith [2006]).

Additional decompositions can be applied to Staggered Projections steps to extract further

sparsity. This allows us to effectively decompose the contacting system down to even smaller

independent sets. Initial investigations reveal the potential for large speed-ups. While all of the

above examples and timings provided were obtained without decomposition, we implemented

two examples with a preliminary decomposition approach. We constructed a “Lincoln Log”

scene composed of a rigid log house frictionally sliding, jumping a ramp and then colliding.

The scene was simulated twice, once with decomposition and the second time without. We also

simulated a larger drop of rigid bunnies using decomposition (see Figure 7.9 (b)). The average
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solve time, per step, and the number of DoFs per scene for these three simulations is given in

Table 7.2 (right).
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Chapter 8

Conclusion

In this thesis we have reformulated time-continuous, frictional contact dynamics as a pair of

coupled variational principles to explicitly partition the frictional contact problem into two

naturally convex subproblems. Using this formulation we exposed and clarified the two mech-

anisms by which these principles are coupled:

1. Coulomb-type friction constraints,

2. Non-orthogonality of contact and friction subspaces.

We then suggested that both of these coupling mechanisms are fundamental sources of difficulty

in accurate frictional contact simulation and showed that the removal of either one makes the

frictional contact resolution problem in many senses much easier.

As a useful measure of the degree of this coupling we then introduced the minimum sub-

space angle as a generalization of the conditions that allow for the so-called Painlevé Paradox.

We suggest that these generalized “Painlevé Conditions”, along with the coefficients of fric-

tion, are important measures of the potential degree of difficulty of related frictional contact

simulation problems.

We then motivated the desirability of obtaining discrete variational integrators for frictional

contact simulation and discussed known problems and issues with existing variational integra-

tion methods for this problem domain. Combining our Coupled Principles Formulation with

discrete variational integration methods we then derived new variational integrators that pose

the discrete frictional contact problem as a system of coupled minimizations. We showed, by

discussion and example, that solutions to these systems avoid known issues with existing vari-

ational integration approaches for friction and contact, and capture accurate conservative and

dissipative behavior.
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We then focused on a specific two-step variant of these variational schemes. We showed

how this variant generates a simple generalization of the popular Stewart-Trinkle model [Stew-

art & Trinkle 1996] and thus essentially requires the solution of the same underlying Linear

Complementarity Problem (LCP). Applying the coupled minimization perspective, we sug-

gested that difficulties that have been encountered in solving these LCP systems can be ex-

plained, in part, by noting that optimization problems, that are obtained from these frictional

contact formulations, are equivalent to nonconvex problems in global optimization (which are

generally NP-hard).

We then illustrated, by discussion and example, that existing solution methods, that have

generally been presumed suitable for solving these contact-related optimization problems, fail

entirely for many important examples of frictional contact and addressed these limitations with

our Staggered Projections algorithm. Deriving a fixed-point scheme from our Coupled Princi-

ples formulation we obtained the Staggered Projections algorithm and showed that it effectively

generates accurate solutions to optimization problems for many frictional contact problems that

were previously impractical to solve.

To better understand the suitability of Staggered Projections for practical applications and

its potential limitations, we performed a detailed convergence analysis of the algorithm. We

observed that the generalized Painlevé Condition, introduced earlier, plays a fundamental role

in the convergence behavior of Staggered Projections and helps to clarify its good behavior in

many cases.

Finally, by offering simulations and instrumented examples, we validated that Staggered

Projections performs well in practice; capturing convincing and accurate frictional contact be-

haviors for both rigid and large deformation models. We also compared our Staggered Pro-

jections implementation with other available popular frictional contact solvers and presented

sample applications of Staggered Projections for both simulation and haptics.
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8.1 Future Work

The variational methods we have discussed and validated in this thesis are still in their early

stages. While we have shown that the proposed methods already improve on existing ap-

proaches for discrete variational integration of frictional contact, many practical numerical is-

sues for efficiently scaling these methods to large scale systems still remain to be addressed.

Other interesting directions to investigate would be the inclusion of viscoelastic and plastic

models into the formulation. In some senses the addition of inelastic models into discrete

variational integration formulations might be somewhat direct, as suggested by Pandolfi et al.

[2002]; however, our sense is that many new and challenging problems might need to be ad-

dressed.

As we discuss in our convergence analysis in Chapter 6, for combined high coefficients of

friction and small subspace angles, we can not necessarily expect Staggered Projections to con-

verge in all cases. While to some degree the fail-safe option of graceful-degradation potentially

mitigates this possibility, understanding such cases better, and formulating efficient strategies

for handling them, is also an important ongoing project. A related issue is finding additional

methods to improve convergence speeds for slower cases and general improved scaling to larger

problems for increased efficiency.

While we have shown that Stewart-Trinkle-type problems require the solution of noncon-

vex problems in global optimization, an interesting question is whether all accurate numerical

methods for discrete frictional contact do as well. In other words, can we expect both non-

convexity and global optimization to always be features of accurate numerical methods for

frictional contact, or are they just artifacts of certain discretization choices? This is an impor-

tant question as we attempt to construct new methods for accurate frictional contact simulation.

Our current research, based on the Coupled Principles Formulation, suggests that nonconvex,

global optimization, is in fact an intrinsic, unavoidable feature of discrete frictional contact

simulation; this is still, however, a subtle and difficult question to fully address and an area of

ongoing investigation.
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