
Supplement to Planar Interpolation with Extreme Deformation,
Topology Change and Dynamics

Yufeng Zhu
University of British Columbia & Adobe Research

Jovan Popović
Adobe Research

Robert Bridson
University of British Columbia & Autodesk

Danny M. Kaufman
Adobe Research

..
.

/~

..
.

[]
[]

[]

[]

[] = #
Connected Sum

[] []

=
П

Disjoint Union

[] [] []

Figure 1: Non-self intersecting planar shapes can be categorized
by defining equivalent relationship as homeomorphism. Two shapes
are in the same equivalence class if one can be smoothly morphed
to the other. Different equivalence class elements can be converted
to the same element under topological operations, connected sum
and disjoint union.

1 Constructing Multimesh Structure

Given compact non-self-intersecting planar shapes, there are a pair
of ambiguities characterized by topological (in-)equivalence. When
shapes are topologically inequivalent, one shape can not be con-
tinuously morphed to the other as there is no bi-continuous map
(homeomorphism) between them. Thus we cannot build an isomor-
phism between the shapes’ standard topology. Nevertheless, one
can develop a quotient set, P/ ∼, by introducing an equivalence re-
lation, defined as homeomorphism, to the set of compact non-self-
intersecting planar shapes, P. P/ ∼ can then be generated by two
elements, equivalence class of disk, s (simply connected), and an-
nulus, m (multiply connected) under the operations, disjoint union
(
⊔

) and connected sum (#) as shown in Figure 1. Thus we require
two topological operations, cutting and opening, to convert input
shapes into an equivalence class in P/ ∼. Locations and shapes
of these cuts and openings are defined on the domain, which then
determine both how and where shapes will open and split.

When shapes are topologically equivalent, one shape can be
smoothly morphed into another. However, there then exists in-
finitely many bi-continuous maps between them as both correspon-
dences and path can vary. We provide interactive control of speci-
fying boundary correspondences and inbetweening energy parame-
ters to allow additional artistic control.

Equivalence Tool Our interactive equivalence tool allows users
to convert input artworks to the same equivalence class by outlining
and placing desired cuts and openings. We represent outlines, cuts
and openings with a planar straight line graph. Outlines define the
boundary of each drawing’s embedding shape and are equivalent to
a planar circle (S1) dividing R2 into two connected components -
the bounded inside and the unbounded outside. By specifying ori-
entation of the outline, clockwise or counter-clockwise, users define
which connected component embeds the drawings.

Input Drawing Outline & Topo Operation

Cut

Open

b

a

d

c

e

f

g

h

a

b

c

d

e

g

f

h

Correspondence

Boundary & Cohesive Zone

Cohesive Zone (Edge)

Compatible Meshing

Comesh Optimization

Figure 2: To generate consistent multimesh structure for given
input drawings, we start with specifying outlines, cuts and open-
ings; then construct S1 equivalent boundaries using directed graph
flow algorithm; next mark sparse correspondences; and compatibly
mesh all shapes to deliver an initial multimesh solution which will
be further improved by comesh optimization.

As the specified cuts and openings break the simple closed curve
property of our outlines, we need to reconstruct boundaries after
the outline & topo operation (see Figure 2). We treat the result-
ing soup of outlines, cuts and openings as a directed graph. Ori-
entations of outlines determine directions of their line segments,
while edges generated by cuts and openings are bi-directed. The fi-
nal boundaries are reconstructed by applying a directed graph flow
algorithm whose details are provided in Section 2. After bound-
ary reconstruction, each line segment belonging to a cut or opening
turns into two duplicated edges with opposing directions as shown
in Figure 5. We designate each pair of duplicated edges as a co-
hesive edge along which we will assign cohesive energies to help
form our inbetweening energy. We then call collections of cohesive
edges a cohesive zone.

Boundary Tool Next our boundary tool lets users interactively
mark correspondences on desired boundaries. Collections of cor-
responding boundaries across shapes are then compatibly reparam-
eterized to obtain pairwise bijectively mapped boundaries suitable
for our initial meshing step.

.

.

.

Figure 3: An illustrative example of multimesh structure for two
shapes: both shape share the same mesh topology but may have dif-
ferent cohesive edges, boundary vertice and mesh geometry. Edges
colored in red represent cohesive edge.

Example B-A-H Example U-S

Input:

Output:

2

6+

4

Figure 4: Comesh Optimization improves both the mapping and
meshing quality of the multimesh structure subject to user specified
correspondences and cohesive edge constraints and keeps consis-
tent mesh topology throughout the procedure.

Initial Meshing We now have equivalent shapes with desired
cuts, openings and correspondences specified. Next, we augment
our shapes with interior meshes. Given multiple compatible bound-
aries of planar shapes, we use Triangle [Shewchuk 2005] to gen-
erate a conforming Delaunay triangulation of one shape. As this
meshing step may insert Steiner points along the boundaries, we
then upsample boundaries of the remaining shapes and ensure
that splits in cohesive edges remain consistent. Then, we apply
Schueller et al.’s LIM algorithm [2013] to map our first shape’s tri-
angle mesh to the remaining example shapes. This will build the
initial multimesh structure with mesh topology O = {V,E, T},
cohesive edge sets Ci, boundary vertex sets Bi and mesh geometry
Xi (see Figure 3 for an illustrative example.). As we will discretize
and minimize our inbetweening energy on these meshes, compati-
ble meshes with high quality elements and low distortion mappings
between shapes are required. Thus we apply Comesh Optimization
to obtain the final reliable meshes, see Figure 4.

2 Directed Graph Flow Implementation

Our interactive equivalence tool allows users to convert example
artworks to the same equivalence class by drawing desired cuts and
openings. After an editing session, we apply a directed graph flow
algorithm to construct final boundaries, as the specified cuts and
openings break the simple closed curve property of outlines. We
treat the resulting soup of outlines, cuts and openings as a directed

e1

e2

e3 e4

e5

e6

e7

e8

e9

e10

Input Drawing

e1

e2

e3 e4

e5

e6

e7

e8

e9

e10

e3 e4

e6

e7

e8

e9

e10

e7

e9

e10

e7

+ e7

-

Outline Cut & Open

Directed Graph Flow

b1

b2

b3

Figure 5: Cuts and openings (red) will break the simple closed
curve property of outlines (green). We apply directed graph flow
algorithm to construct final boundaries. We treat soup of outlines,
cuts and openings as directed graph, where edges coming from
outlines are 1-directed (directed) and edges coming from cuts and
openings are bi-directed (undirected). We iteratively look for di-
rected cycles in the graph until every 1-directed edges are visited
once and bi-directed edges are visited twice.

graph G. Orientations of outlines determine line segment directions,
while edges generated by cuts and openings are bi-directed.

We then apply the directed graph flow algorithm detailed in Algo-
rithm 1. Here we iteratively look for closed circular flows (directed
cycles) until all 1-directed edges are visited once and all bi-directed
edges are visited twice. In detail, here edge can be visited
returns an edge e∗ whose visit counter c(e∗) is not zero, while
next edge on graph returns the next edge with respect to e∗ ac-
cording to the graph topology and directions field. When there are
multiple candidates for next edge, we choose the one clockwise-
closest to e∗. After boundary reconstruction, each line segment
belonging to a cut or opening turns into two duplicated edges with
opposing directions, see Figure 5.

3 Comesh Optimization Energy Gradient

We compute the necessary energy gradients here. Gradient of ODT
mesh energy is

∂D(Xi,O)

∂Xj
i

=

∑
tk∈Γ̃j

(
∂ak(Xi)

∂X
j
i

·
∑
vp∈tk

‖Xj
i −X

p
i ‖

2

)
8Γj(Xi)

,

(1)
and gradient of MIPS map energy is

∂C(Xi, Xj ,O)

∂Xq
j

=
∑
tk∈Γ̃q

(
2∑
p=1

∂σ∗k
∂σpk

∂σpk(Xi, Xj)

∂Xq
j

)
ak(Xi),

∂C(Xi, Xj ,O)

∂Xq
i

=
∑
tk∈Γ̃q

(
2∑
p=1

∂σ∗k
∂σpk

∂σpk(Xi, Xj)

∂Xq
i

)
ak(Xi)

+ σ∗k(Xi, Xj)
∂ak(Xi)

∂Xq
i

,

σ∗k =
σ1
k

σ2
k

+
σ2
k

σ1
k

(2)

where Xj
i is the j-th vertex in the i-th shape, namely Xi(vj), and

Γ̃j is the one-ring triangles of the j-th vertex. Notice σ∗k(Xi, Xj) =
σ∗k(Xj , Xi) as MIPS energy is symmetric with respect to the source
and target shape under the piecewise linear setting, which can be
verified as follows: deformation gradient Fk(Xi, Xj) is a linear
map from the tangent space of k-th triangle in shape Xi to tangent
space of k-th triangle in shapeXj . For non-degenerate cases, the in-
verse map Fk(Xi, Xj)

−1 is the deformation gradient Fk(Xj , Xi)
and σpk(Xi, Xj) = 1

σ
p
k

(Xj ,Xi)
, p = 1, 2.

4 Continuous Energies for Inbetweening

Elastic Energy In the continuous setting, we reuse math nota-
tion X and x to represent continuous example and deformed shape
manifold respectively. Given the deformation map f : Xi → x
from example shape to deformed shape, the ARAP energy is

WD(Xi, x) =

∫
Xi

κ min
R∈SO(2)

‖df − R‖2F , (3)

where df is the corresponding differential map, or the pushforward,
R is a rotation, κ is a simple, spatially varying, material stiffness,
and ‖ · ‖F is the conventional Frobenius norm.

Algorithm 1 Directed Graph Flow

1: Inputs:
directed graph G = {V,E},
E = {e1, e2, · · · , ef , ef+1, ef+2, · · · , eg},
i ∈ [1, f] is 1-directed, i ∈ [f + 1, g] is bi-directed,
C = {c(ei)}, i ∈ [1, g].

2: Outputs:
boundary list B = {bi}.

3: Initialize:
c(ei) = 1 ∀i ∈ [1, f], c(ei) = 2 ∀i ∈ [f + 1, g]
B = ∅, b∗ = ∅, e∗ = e1.

4: while true do
5: if is already in(b∗, e∗)
6: add to boundary list(B, b∗)
7: b∗ = ∅
8: e∗ = edge can be visited(C)
9: if e∗ = ∅ break

10: else
11: add to directed cycle(b∗, e∗)
12: c(e∗) = c(e∗)− 1
13: e∗ = next edge on graph(G, e∗)
14: end if
15: end while

Cohesive Energy Deformation map f gives a displacement field
over Xi which can be discontinuous along artist-specified cuts and
opens, called cohesive zone Ci ⊂ Xi which is Lebesgue measure 0
subset ofXi, like graphs or nets. Here we reuse the math notationC
in the continuous setting. Cohesive energy is designed to measure
the gap of discontinuity along Ci,

WC(Ci, x) =

∫
Ci

E(J x(v) K), v ∈ Ci. (4)

We reuse the math notation v to represent point lying on Ci in the
continuous setting. The jump operator J·K evaluates the displace-
ment difference between both sides, x+(v) and x−(v), of cohesive
zone,

J x(v) K = x+(v)− x−(v), v ∈ Ci. (5)

The energy density E measures the squared norm of this difference
to compute the amount of energy accumulated in the zone. Sepa-
ration occurs when the accumulated energy exceeds the separation
threshold τ ,

E(J x K) =

{
τ̃(J x K), τ̃ < τ

τ, else.
,

τ̃(J x K) = λ ‖J x K‖2, 0 ≤ λ, τ.

(6)

To further control cohesive energy, biasing towards greater resis-
tance to shear or alternatively to stretch, we decompose shear and
stretch measures of the displacement jump by redefining

τ̃(J x K) = λ
[
(1− α)‖J x K‖2// + α‖J x K‖2⊥

]
, α ∈ [0, 1]. (7)

Here ‖ ·‖//and ‖ ·‖⊥ are norms measuring input vector’s tangential
and normal component with respect to the direction x̂ of deformed
edge pair, defined in Equation (14), while a change of weights, α,
decides their relative contribution.

Non-overlap To avoid overlapping during inbetweening, we need
to ensure that points x(v) on deformed shape boundaries ∂x do not

penetrate the interior. We re-purpose the indicator function from
contact mechanics [Kane et al. 1999]

I(x(v)) =

{
0, if x(v) ∩ (x \ ∂x) = ∅,
∞, else.

, v ∈ ∂Xi. (8)

Here the indicator function I maps boundary point x(v), v ∈ ∂Xi
to an extreme penalty energy ∞ if it lies in the interior of the de-
formed shape x and to 0 otherwise.

We then integrate up the indicator function over each example
shape’s boundary to create an energy that ensures boundary points
on shape Xi avoid overlap in deformed configuration x

WO(∂Xi, x) =

∫
∂Xi

I
(
x(v)

)
. (9)

5 Cohesive Energy Discretization

In the discrete setting, cohesive zone is modeled by pairs of over-
lapping triangle edges, cohesive edge. Since we adopt P1 element
to discretize displacement field, displacement jump JxK also varies
linearly along cohesive edges. For a cohesive edge element Cji , we
can parameterize displacement jump over it by

Jx(u)K = (1− u) Jx(v0)K + u Jx(v1)K

0 ≤ u ≤1, ∂Cji = {{v+
0 , v

−
0 }, {v

+
1 , v

−
1 }}.

(10)

As v+ and v− are collocated in example shapeXi, we use v instead
to denote them. Given piecewise constant cohesive stiffness λ, the
edge element’s cohesive energy below threshold τ is then

WC(Cji , x) =

∫
C

j
i

E(J x(u) K), u ∈ [0, 1], τ̄ < τ

= λ

∫
C

j
i

‖J x(u) K‖2

= λ

∫ l
j
i

0

‖J x(u) K‖2dl.

(11)

lji is the edge length of Cji , which is linearly parameterized as

l(u) = u · lji , 0 ≤ u ≤ 1. (12)

Then

WC(Cji , x) = λ

∫ l(1)

l(0)

‖J x(u) K‖2dl(u)

= λ

∫ 1

0

‖J x(u) K‖2d(u · lji)

= λlji

∫ 1

0

‖(1− u)Jx(v0)K + uJx(v1)K‖2du

= λlji {‖Jx(v0)K‖2(
1

3
u3 − u2 + u) + ‖Jx(v1)K‖2(

1

3
u3)

+ Jx(v0)KT Jx(v1)K(−2

3
u3 + u2)}

∣∣∣∣1
0

=
1

3
λlji {‖Jx(v0)K‖2 + ‖Jx(v1)K‖2 + Jx(v0)KT Jx(v1)K}.

(13)

In order to have control over connecting/separating mode behav-
ior, we further split the displacement jump JxK into tangential and
normal component with respect to x̂. Even though v+ and v− are
collocated in example shape X , it’s not necessarily true for x(v+)

and x(v−) in deformed shape x. For the consistency of math no-
tation convention, we use x+(v) and x−(v) instead to represent
x(v+) and x(v−) respectively. Thus x̂ of Cji is defined as

x̂ =
x+(v0) + x−(v0)− x+(v1)− x+(v1)

‖x+(v0) + x−(v0)− x+(v1)− x−(v1)‖ (14)

under the piecewise linear setting. Then we can define ‖ · ‖// and
‖ · ‖⊥ with respect to x̂ as follows,

JxK = JxK//+ JxK⊥,

JxK// ..= x̂JxKT x̂, JxK⊥ ..= JxK− x̂JxKT x̂,

‖JxK‖// ..= ‖JxK//‖ = (x̂JxKT x̂)T (x̂JxKT x̂)

= x̂T JxKJxKT x̂ = JxKT (x̂x̂T)JxK,

‖JxK‖⊥ ..= ‖JxK⊥‖ = JxKT (I2×2 − x̂x̂T)JxK.

(15)

By adopting a relative weighting parameter α ∈ [0, 1] to control
shear/stretch contribution and substituting Equation (15) into Equa-
tion (11), we get

WC(Cji , x) = λ

∫
C

j
i

(1−α) · ‖Jx(u)K‖2//+α · ‖Jx(u)K‖2⊥. (16)

Following similar derivations above, we finally achieve the
discretization of cohesive energy with control over connect-
ing/separating mode behavior.

6 Transitivity of MIPS

We optimize cyclic summation, instead of full graph summation,
of MIPS energy in our comesh algorithm to account for inter-mesh
quality. This is due to the fact that MIPS is transitive: if the confor-
mal distortion between Xi and Xj , as well as Xj and Xk are both
small, then the conformal distortion between Xi and Xk is also
small. Before we provide the proof for it, we first prove a lemma
that will be used later.
Lemma 1. For matrix A,B ∈ Rn×n, the following inequality
holds,

‖AB‖F ≤ ‖A‖F ‖B‖F . (17)

Proof. According to the definition of matrix A’s Frobenius norm,
we have

‖A‖2F =
∑
i,j

|ai,j |2 =
∑
i

‖Ai∗‖22 =
∑
j

‖A∗j‖22, (18)

where Ai∗ is the i-th row vector and A∗j is the j-th column vector.
Due to Cauchy-Schwarz inequality, we have

‖Ax‖22 =
∑
i

|Ai∗x|2 ≤
∑
i

‖Ai∗‖22‖x‖22 = ‖A‖2F ‖x‖22, (19)

where x is a column vector. Thus we have

‖AB‖2F =
∑
j

‖AB∗j‖22 ≤
∑
j

‖A‖2F ‖B∗j‖22

=‖A‖2F
∑
j

‖B∗j‖22 = ‖A‖2F ‖B‖2F .
(20)

By taking square root of the inequality’s both sides, we prove the
lemma.

Figure 6: MIPS energy has transitivity property. It is enough to
optimize the cyclic summation instead of the full graph summation.
We prove this property by considering chain of maps between single
triangle tu from three shapes, Xi, Xj and Xk.

Next we show the transitivity of MIPS, which is defined as

σ∗u(Xi, Xj) =
σ1
u

σ2
u

+
σ2
u

σ1
u

=‖Fu(Xi, Xj)‖F ‖F−1
u (Xi, Xj)‖F ,

(21)

where Fu(Xi, Xj) is the deformation gradient of triangle tu by
deforming from Xi to Xj .

Lemma 2. If the MIPS distortion betweenXi andXj as well asXj
and Xk are both small (bounded above), then the MIPS distortion
between Xi and Xk is also small (bounded above).

Proof. We consider the distortion of a single triangle, tu, among
three shapes Xi, Xj and Xk as shown in Figure 6 and assume the
following upper bounds hold,

σ∗u(Xi, Xj) =‖Fu(Xi, Xj)‖F ‖F−1
u (Xi, Xj)‖F ≤ p,

σ∗u(Xj , Xk) =‖Fu(Xj , Xk)‖F ‖F−1
u (Xj , Xk)‖F ≤ q.

(22)

As the deformation gradient Fu(Xi, Xj) is a linear map from tu in
Xi to tu in Xj , it can be defined as

Fu(Xi, Xj) = Au(Xj)A
−1
u (Xi),

Au(Xi),Au(Xj) ∈ R2×2,
(23)

for non-degenerate triangles. Au(Xi) and Au(Xj) are defined as

Au(Xi) =
[
X1
i −X0

i , X
2
i −X0

i

]
,

Au(Xj) =
[
X1
j −X0

j , X
2
j −X0

j

]
.

(24)

Thus we can rewrite Equation (22) as

‖Au(Xj)A
−1
u (Xi)‖F ‖Au(Xi)A

−1
u (Xj)‖F ≤ p,

‖Au(Xk)A−1
u (Xj)‖F ‖Au(Xj)A

−1
u (Xk)‖F ≤ q.

(25)

Then we have

‖Au(Xj)A
−1
u (Xi)‖F ‖Au(Xi)A

−1
u (Xj)‖F

·‖Au(Xk)A−1
u (Xj)‖F ‖Au(Xj)A

−1
u (Xk)‖F ≤ pq,

⇒ (‖Au(Xk)A−1
u (Xj)‖F ‖Au(Xj)A

−1
u (Xi)‖F)

·(‖Au(Xi)A
−1
u (Xj)‖F ‖Au(Xj)A

−1
u (Xk)‖F) ≤ pq.

(26)

According to Lemma 1, we have

(‖Au(Xk)A−1
u (Xj)Au(Xj)A

−1
u (Xi)‖F)

·(‖Au(Xi)A
−1
u (Xj)Au(Xj)A

−1
u (Xk)‖F) ≤ pq,

⇒ ‖Au(Xk)A−1
u (Xi)‖F ‖Au(Xi)A

−1
u (Xk)‖F ≤ pq,

⇒ σ∗u(Xi,Xk) ≤ pq.

(27)

Thus the MIPS distortion betweenXi andXk is also bounded.

7 Automated Blending of Dynamic Effects

We propose a simple blending control method to balance between
hitting keyframes and satisfying dynamics. Instead of utilizing ex-
ternal force to control dynamics like other space-time optimization
approach, our blending method makes use of numerical stiffness
depending on timestep size hs, material stiffness κ and material
density ρ. We automate the blending of dynamics by reparameter-
izing the blending weight ξ with a user set compliance control ε,

ξ(s) =
ε · h2

s · κ
ρ · (δ(s) + 1)

, (28)

which cancels out the influence of timestep size, material stiffness
and material density to turn a multi-parameter control into a single-
parameter control. δ(s) measures deformation between the previ-
ous frame x̄(w(s − 1)) and the target inbetweened shape without
dynamics Φ

(
A, w(s)

)
,

δ(s) = WD(Φ
(
A, w(s)

)
, x̄(w(s− 1))). (29)

As the difference between the dynamic and non-dynamic inbetween
frames grow, δ(s) increases and the inbetweening x̄(w(s)) is driven
towards the interpolated shape without dynamics Φ

(
A, w(s)

)
.

References

KANE, C., REPETTO, E., ORTIZ, M., AND MARSDEN, J. 1999.
Finite element analysis of nonsmooth contact. Comp. Meth.
Appl. Mech. Engrg. 180 (1999).

SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2013. Locally injective mappings. Computer
Graphics Forum 32, 5, 125–135.

SHEWCHUK, J., 2005. Triangle.

8 Experiment Statistics

In this section, we provide detailed statistics tables corresponding
to the comesh optimization evaluation discussed in the paper.

8.1 Relative Weighting of Energies in Comesh Opti-
mization Objective

Table 1: We take the square-to-hexagon example and evaluate the
impact of relative contribution of the ODT mesh and the cyclic
MIPS mapping energies in the objective on our Comesh Optimiza-
tion’s solution by varying relative weighting as (1 - weight) for
meshing and weight for map energy. The starting map and mesh
energy are 36.394 and 0.516 respectively. Note that except for this
experiment we use an equal weighting (relative weight of 0.5) in all
of our examples and evaluations.

Weight Ver(#/#) Total(s) Map Mesh
0.13 467/358 2.329 2.114 0.494
0.21 467/331 1.881 2.095 0.494
0.33 467/340 2.034 2.065 0.494
0.44 467/332 3.473 2.054 0.494
0.5 467/345 2 2.056 0.494
0.62 467/337 2.245 2.052 0.494
0.7 467/335 1.186 2.055 0.494
0.85 467/327 1.263 2.050 0.495
0.93 467/360 1.072 2.046 0.495

8.2 Mesh Resolution

Table 2: We evaluate the scaling behavior of comesh optimization
solver by refining mesh resolution of square-hexagon example. As
the resolution is doubled, we observe almost linear scaling behav-
ior in terms of timing.

Ver(#/#) Inner(#) Outer(#) Total(s)
98/98 59 5 0.065

278/277 50 7 0.181
545/544 50 8 0.41

1057/1046 131 13 2.181
2087/2074 127 13 4.691
4331/4296 117 10 12.243
8649/8611 209 17 58.011

17131/16963 361 18 220.362
35386/35114 311 21 838.025
73072/71870 382 26 3358.401

165107/164638 447 33 13650.724
311522/311183 495 34 51253.368

8.3 Number of Example Shapes

Figure 7: It is easy to blend dynamics or secondary motion into the inbetweening using our method to create more expressive and vivid
animation. In this flying bird example, we also use inhomogeneous material by making bird body and wing skeleton much stiffer than head,
feet and end of wings region.

Table 3: We evaluate the scaling behavior of comesh optimization
solver by increasing number of meshes in the walking character ex-
ample. As the number of meshes increases, we also observe almost
linear scaling behavior in terms of timing.

Shape(#) Ver(#/#) Inner(#) Outer(#) Total(s)
2 1639/1514 81 6 2.566
3 1639/1509 419 13 12.548
4 1639/1482 482 12 16.776
5 1639/1483 554 16 21.146
6 1639/1482 197 7 9.894
7 1639/1446 471 16 23.526
8 1639/1427 529 12 27.953
9 1639/1425 825 11 42.558

10 1639/1380 1273 24 77.621
11 1639/1380 818 14 85.71
12 1639/1357 643 13 56.014
13 1639/1342 742 12 94.933
14 1639/1314 843 18 82.283
15 1639/1337 723 11 104.171
16 1639/1357 883 16 78.754

8.4 Problem Difficulty

Table 4: We evaluate the performance behavior of comesh opti-
mization solver by increasing the problem complexity of pentagon-
star example. The solver produces consistently good solutions as
we increase variations between pentagon and star. We also observe
that similar input shapes require more time to converge.

Ver(#/#) Inner(#) Outer(#) Total(s)
hard 1 1683/1516 3149 96 82.906
hard 2 1683/1546 1391 53 40.188
hard 3 1683/1556 479 13 14.508
hard 4 1683/1574 484 22 14.347
hard 5 1683/1539 205 9 6.444
hard 6 1683/1376 233 9 9.46

9 Animation Results

Our method can generate high quality results for difficult anima-
tion problems consisting of extreme deformation (see Figure 8) and
dynamics (see Figure 7). Our system is easy to use and capable
of generating large variety of animation. To verify this claim, we
reproduce the benchmark examples from 12 basic principles of an-
imation, as shown in Figure 9, using very few input drawings (at
most 4).

Figure 8: Our inbetweening method uses local-global solver and
interpolates shapes with extreme deformation, also shown by Chen
et al., without any artifacts.

Sliding

Waving

Jumping

Rolling

Squashing

&

Stretching

Aligator

Figure 9: We evaluate our animating method by reproducing ani-
mation benchmark tasks from the 12 basic principles of animation.
We achieve almost the same animation results using just few input
drawings (2 to 4).

