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Fig. 1. We interpolate inbetweens (unboxed images) from sparse key drawing shapes (boxed images) across arbitrary topology changes and extreme
deformations. Artists define desired correspondences to explore interpolation paths in-between key shapes and add dynamic effects when desired (bottom).

We present a mesh-based, interpolatory method for interactively creating
artist-directed inbetweens from arbitrary sets of 2D drawing shapes without
rigging. To enable artistic freedom of expression we remove prior restrictions
on the range of possible changes between shapes; we support interpolation
with extreme deformation and unrestricted topology change. To do this, we ex-
tend discrete variational interpolation by introducing a consistent multimesh
structure over drawings, a Comesh Optimization algorithm that optimizes
our multimesh for both intra- and inter-mesh quality, and a new shape-space
energy that efficiently supports arbitrary changes and can prevent artwork
overlap when desired. Our multimesh encodes specified correspondences
that guide interpolation paths between shapes. With these correspondences,
an efficient local-global minimization of our energy interpolates n-way be-
tween drawing shapes to create inbetweens. Our Comesh Optimization enables
artifact-free minimization by building consistent meshes across drawings that
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improve both the quality of per-mesh energy discretization and inter-mesh
mapping distortions, while guaranteeing a single, compatible triangulation.
We implement our method in a test-bed interpolation system that allows in-
teractive creation and editing of animations from sparse key drawings with
arbitrary topology and shape change.
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1 INTRODUCTION

Humans draw what’s on their mind: they do it to tell stories; they do it
to share with others; and they do it to reflect on their thoughts. They
use cameras when they record, but they draw when they invent. The
software industry has long recognized this need with the development
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of comprehensive products for sketching, illustration, and presenta-
tion. Brushes, layers, undo, copy, paste, and other tools can make it
easier to draw. However, when it comes to drawing animation, even
the most sophisticated products provide little assistance for changing
shape. In this work, we develop a new method to enable artist-driven
inbetweening of drawn shapes as an essential steps towards drawing
animation without having to draw every frame.

Animations change shape. Drawing software requires redrawing
each frame. Animation software does not; but it requires rigging to
articulate shape, and keyframing to change that articulation over time.
A drawer wants to draw - not rig or keyframe - but not every frame.
This gap inhibits animation. Almost every child draws pictures, but
almost none animate.

Making animation more accessible today does not require elimi-
nating drawing. It requires assistance with the creation of inbetween
drawings. We focus on enabling intuitive, rig-free control of inbe-
tweening from a set of drawn shapes. Our system delivers an initial
animation from just a few sparse key drawings and a set of user-
specified correspondences, see Figure 1 and Section 3, and then can
be refined with swapped-in and added drawings, e.g., extreme or
breakdown poses. This emulates the well established workflow from
classical (hand-drawn) animation, but with our software assisting
with the interpolation of inbetween drawing shapes.

Inbetweening with drawings should allow artists to communicate
as freely as they draw. Drawings can exaggerate and invent without
constraint. Thus computational inbetweening with drawings should
likewise be unrestricted by rigging and articulation curve constraints.
Current computational tools, however, cannot deliver this today be-
cause geometric methods do not yet support this implied full freedom
of artistic expression. Even the most simple outline drawing shapes
reveal three difficult-to-inbetween transformations: 1. large and ex-
aggerated non-uniform stretching and compression; 2. topological
change and 3. physics-based dynamics.

Contributions. To enable artistic freedom of expression, we remove
these prior restrictions on the range of possible changes between
shapes supported by computational interpolation methods. We present
a set of contributions that support mesh-based, variational interpo-
lation for interactively creating directed inbetweens from arbitrary
and unrestricted sets of 2D drawing shapes without rigging. Our goal
then is to deliver pleasing interpolation that is smooth, stable, and
consistent with extreme deformation, unrestricted topology change, and
physics-based dynamic effects.

Solving this problem led us to two mutually dependent subproblems:
1. an interpolation method for pleasing transitions requires higher
quality compatible meshes than previously available and new ener-
gies to support these transitions; and 2. compatible meshing must be
aware of the interpolation method applied. Our primary contributions
address these two subproblems:

o a Comesh Optimization algorithm that improves both the
mesh and mapping quality of compatible meshes so that we
can support pleasing interpolation across unrestricted shape
changes; and

e a Multimesh Interpolation method that extends variational
interpolation [Rumpf and Wirth 2009; Von-Tycowicz et al.
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2015] by introducing a consistent, annotated multimesh struc-
ture and a new shape-space energy that supports topology
change, can prevent shape overlap when and where desired,
and add dynamic effects as directed. The resulting interpo-
lation is efficient and enables interactive animation creation
and editing. We demonstrate this with a range of challeng-
ing animation tasks including production examples in our
supplemental video.

2 RELATED WORK

Planar Animation. Planar animation is classical topic in computer
graphics. With decades of exploration in the area, a wide range of
methods have been developed for 2D animation using strokes [Kort
2002; Whited et al. 2010], triangle meshes [Alexa et al. 2000; Baxter
et al. 2009a,b] and vector graphics [Dalstein et al. 2015], to name
just a few domains. To enhance planar animation, researchers have
also considered occlusion in 2D. Yang et al. [2012] proposed a multi-
element 2D shape representation to resolve disjoined and overlapped
parts. Sykora et al. [2010] introduce cracks in the embedding cage
by allowing discontinuities in the depth field. Embedding cages can
then be separated in two in order to improve image registration accu-
racy. Nevertheless, these approaches cannot model topology changes
such as adhesion effects during interpolated animation. Whited et
al.[2010] resolve challenges in layering and support occlusion am-
biguities with the help of artists. Research in planar animation has
also explored velocity field advection [Li et al. 2013] and data driven
strategies [Averbuch-Elor et al. 2016], inference of motion cycles from
motion snapshots of individuals captured in a stills [Xu et al. 2008],
and beautification of existing drawings via global similarity analysis
[Xing et al. 2015]. Here we introduce a novel interpolation method
to enable planar animations from sparse key shapes with extreme
deformation, topology change and dynamics—to our knowledge this
is the first time this has been possible.

Shape Interpolation. Shape interpolation has been widely explored
in geometric modeling, computer vision, imaging and computer an-
imation [Wirth et al. 2011]. As in Euclidean space, the action of in-
terpolation on shapes is induced by definition of a metric such as

Stretch

split

Fig. 2. Animating a square to an arch: depending on taste and storyline, an
animator may wish to (1) stretch the cube out in anticipation, bridging to the
arch; or (2) may instead want to first split the cube and then spread to the
arch. We provide flexible exploration of the range rather than being restricted

to one animation pre-established by a metric as in e.g., optimal transport
which captures the split but misses the stretch.
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Correspondence
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Comesh Optimization e Animating Inbetweens

Fig. 3. Our framework takes drawings as a set of images. It constructs our multimesh structure by pairing extracted shapes with annotated cuts and

correspondences to build initial embedding shapes for each with compatible meshing. Our Comesh Optimization then improves both mesh and mapping

quality of the shape to obtain high-quality, stable interpolations.

Minkowski [Kaul and Rossignac 1992], Wasserstein [Solomon et al.
2015], and Gromov-Hausdorff [Gromov 2007] distances, as well as
local distortion measures [Heeren et al. 2012; Wirth et al. 2011]. For
design purposes, interpolation should satisfy artistic intent. Yet, as a
geometric task, interpolation between arbitrary planar shapes is am-
biguous and underspecified. Consider, for example, the classic exercise
of animating a square to an arch. Depending on taste and storyline,
we may either wish to stretch the square out in anticipation, bridging
to the arch (Figure 2 stretch); or we may instead wish to first split the
square from the bottom and then spread to the arch (Figure 2 split).
Our method follows the local distortion framework, as we seek a
method that provides control via correspondences over interpolation
and topology changes so that users can control interpolation path.

Previous work includes comprehensive review of local distortion
approaches [Chen et al. 2013; Von-Tycowicz et al. 2015], but we prefer
a categorization into 1. geometric and 2. physical approaches. Geo-
metric approaches rely on purely geometric quantities such as the
pullback metric tensor (i.e., rotation-invariant right Cauchy-Green
strain); Green strain or edge length; dihedral angles; or a geomet-
ric measures of shape distortion [Chen et al. 2013; Kilian et al. 2007;
Levi and Gotsman 2015; Martin et al. 2011; Winkler et al. 2010]. Our
approach follows variational shape interpolation, based on physical
quantities [Chao et al. 2010; Heeren et al. 2014, 2012; Rumpf and Wirth
2009; Von-Tycowicz et al. 2015; Wirth et al. 2009, 2011]. Unlike pre-
vious approaches in this family, our final method does not require a
full correspondence map from users and supports interpolation with
topology changes.

Compatible Meshing. As in traditional mesh-based interpolation,
our method requires a compatible meshing of all example shapes.
Shapes with moderate deformation require no more than existing
shape modeling techniques [Barbic¢ et al. 2009]. However, shapes with
large and exaggerated deformations and/or topological changes need
higher-quality meshes adapted for these changes. We introduce new
methods here to efficiently generate high-quality compatible meshes
for collections of 2D shapes, given only a sparse set of correspon-
dences.

Locally injective mapping has been extensively studied [Baxter et al.
2009b; Lipman 2012; Poranne and Lipman 2014; Schiiller et al. 2013;
Surazhsky and Gotsman 2004; Weber and Zorin 2014]. Our problem
setting is most similar to those investigated by Weber and Zorin [2014].
Here, however, we focus only on planar shapes arising from drawings.

To do so we must solve a problem currently unaddressed by previous
methods: guaranteeing local injectivity is necessary but not sufficient
to obtain stable, consistent and smooth interpolations over extreme
shape changes. Locally injective initializations require additional op-
timization for both mesh quality and mapping quality.

Prior methods on forming compatible meshes [Baxter et al. 2009b;
Surazhsky and Gotsman 2004] similarly observe the need for optimiz-
ing meshes after initial connectivity is established. However, these
prior methods optimize only the quality of each mesh and do not fix
mapping distortions between them. Unfortunately, while optimization
of just mesh quality can occasionally be sufficient for small deforma-
tion interpolations, it is generally insufficient, see e.g., Figure 8, espe-
cially for large deformation interpolations where mapping distortion
is a critical issue. For this purpose we motivate and introduce Comesh
Optimization a new mesh optimization process for high-quality com-
patible meshing that improves both mesh and mapping quality.

3 PLANAR INTERPOLATION

As shown in Figure 3, we begin with a set of drawings, i € [1, m], in the
plane as input. We then provide an interactive tool to extract drawing
shapes and to specify desired correspondences for cuts, openings
and boundaries. We next apply our Comesh Optimization algorithm
to compute compatible, high-quality meshes, each with n vertices
X; € R?", that deliver pleasing interpolations (smooth, stable, and
consistent) when minimizing our interpolation energy. With these
generated meshes in hand, our framework provides user controls
to interactively explore inbetween synthesis by interpolating with
varied timings, energy parameters, interpolation weights and artwork
sequencings.

3.1

We compute inbetweens by interpolating variationally [Chao et al.
2010; Heeren et al. 2012; Rumpf and Wirth 2009; Wirth et al. 2009]
between our m example artwork shapes. We start by defining a poten-
tial W(X, x) to measure the energy of deforming shape x away from a
reference shape X. Variational interpolation between just two shapes,
X1 and X3, follows the approximate geodesic path [Chao et al. 2010;
Heeren et al. 2012] between them as

Inbetweening via Variational Interpolation

x(w) = argmin(1 — w) W(X1,x) + w W(X2,x), 1)

with w € [0, 1].
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Comesh Optimized Interpolation

Fig. 4. Interpolated inbetweens generated by LIM parameterization (left column) and Comesh Optimization (right column). As we explore shape variation, e.g.,
thickness of the star geometry in the two pentagon-to-star examples above, interpolation behavior should vary consistently. Without Comesh Optimization
(left) interpolating with an initial LIM parameterization generates unsatisfying animation artifacts, non-smooth interpolation sequences, and inconsistent
results for inbetweening. To see these artifacts in animation please see our supplemental videos. After Comesh Optimization (right) both mesh and mapping
quality are improved - we obtain low-distortion, smooth and consistent interpolation over varying input shapes; also see our supplemental videos.

Variational interpolation over many shapes is extended by shape
averaging [Von-Tycowicz et al. 2015; Wirth et al. 2009]. Constructing
a weighted sum of deformation energies,

m
Wilx, w) = > w; W(Xi, x), @
i=1
we interpolate with the minimization
©)

X(w) = argmin W (x, w),
X

varying convex weights w = (w1, .., w,)T € R™, ™. wi = 1. This
multishape interpolant is then effectively an equilibrating deforma-
tion that balances between weighted contributions of rest shapes. As
weights w vary, we move between the influence of multiple shapes to
create blended inbetweens.

Inbetweeing. For a set of example artworks A = {Xj,..,Xn}, a
single inbetween is given for each choice of weights w € R7*. To
build animations, we then can design sequences of inbetweens with
animation curves w(s) € R, s € R applied in x(w(s)). Keeping just
two nonzero entries in w at a time retrieves a traditional keyframe
inbetweening, while blending across many nonzero weights at a time
establishes complex inbetweens from multiple artworks simultane-
ously. See Section 6 for details.

Extending Variational Interpolation. Variational interpolation promi-
ses a powerful approach for freeform inbetweening with many shapes.
However, methods based on variational interpolation have so far been
generally restricted to shape spaces with a limited range of expres-
sion. Shapes used in these interpolations could neither contradict
one another, nor strongly counteract the underlying deformation en-
ergy [Martin et al. 2011]; e.g., by extreme deformation, change in
topology, or even scaling. See Figure 4 and our supplemental videos
for examples.

We address these limitations to enable free-form interpolation be-
tween shapes in three steps. First, we introduce here a multimesh
structure that ensures a compatible meshing across all shapes and en-
ables annotation of desired correspondences for opening (respectively
closing) and cutting (respectively merging) between shapes. Second,
we augment the standard elastic measure of deformation in the shape
average with additional energies that measure change on boundary:
separation/merging and overlap. When minimized in the shape aver-
age, these energies now allow interpolation over topology change and,
when desired, additionally preserve non-overlap in artworks. Third,
we propose a compatible meshing algorithm, Comesh Optimization,
that critically improves the quality of our multimesh to obtain high-
quality, artifact-free interpolations over extreme deformations and
topological changes.

3.2  Multimesh

We build our multimesh structure with a single shared mesh topology
O = {V,E,T} of vertices, V, edges, E, and faces, T, and m differing

- ‘90-0

(a) cut operation (b) open operation

Fig. 5. Non-self-intersecting planar shapes are converted to the same equiv-
alence class, with continuous deformations possible between them, via two
topological operations: (a) cutting (respectively merging) and (b) opening (re-
spectively closing). Cut and opening locations are annotated by cohesive zones
defined in shapes’ interior region. Upon discretization, each cohesive zone is
a set of cohesive edges.
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vertex geometries, X; € R2" cohesive edge sets, C; ¢ E X E, and
boundary vertex sets, B; C V for all example shapes i € [1, m]. Thus,
for example, vertex vy € V will have different positions X lk = Xi(vg)
and XJ’.< =Xj(vy) € R? in shapes i and j respectively.

To enable topology change we introduce cohesive edge sets, C;, per
example shape. These are sets of cohesive edges, C{ : edge-edge pairs
on the interior (respectively boundary) of each example shape that
indicate edge-pair correspondences where a shape will open (respec-
tively close) or cut (respectively merge) for interpolation between
topologically inequivalent shapes, see Figure 5.

Currently, in our framework, cohesive edge sets are created by
artists drawing their desired correspondences. As we will see this en-
ables the exploration of an expressive range of interpolation. Looking
ahead we have also designed our multimesh structure and interpola-
tion so that it will similarly function if correspondences are alternately
discovered by other interactive or automatic workflows.

Once designated, cohesive edges =7 %d.Cohesive Edge
C} = {{va,vp}. {ve, vg}} match gen- ﬂ[
erally non-adjacent edges (X7, X lb )
and (Xl.c,lei) for correspondence in
shape i; see Figure 6. These cohesive-
zone edge-pairs are then pulled to-
wards and separated away from one X x
another in interpolation via a cohe-
sive energy we construct in Section 5.
For each shape i, we then likewise
gather all vertices on its boundary into
a boundary vertex set B; € V; we

Fig. 6. A cohesive edge, C{, isa
pair of collocated edges which
can separate apart under defor-
mation. The induced displace-
ment field in X; will be discon-
tinuous over C{.

use these vertices to prevent artwork
overlap, when desired, during interpo-
lation.

We then have multiple compatible boundaries of non-simply con-
nected planar shapes (multiply connected and disjoint). Compatible
piecewise linear maps, i.e. triangle meshes, could then be intuitively
established in three ways: 1. triangulate one shape and map it to
the others [Lipman 2012; Schiiller et al. 2013]; 2. compatibly triangu-
late multiple shapes simultaneously [Baxter et al. 2009b; Surazhsky
and Gotsman 2004]; or 3. triangulate each shape separately and then
reparameterize them compatibly [Weber and Zorin 2014].

Here we adopt the first approach and use Triangle [Shewchuk 2005]
to generate a conforming Delaunay triangulation of one shape first.
As this meshing step may insert Steiner points along the boundaries,
we then upsample boundaries of the other shapes and keep any splits
in cohesive edges consistent. Finally, we adopt Schueller et al’s LIM
algorithm [2013] to establish locally injective mappings of the triangle
mesh to all other shapes. We note that this approach does not guaran-
tee an initializer for arbitrary cases; we could, for instance, follow the
third approach as our workflow can start with results produced by
any of the above three strategies. However, in our experiments and
for our examples, we have so far found strategy 1 with LIM to be most
effective to bootstrap our multimesh construction. For further details
on the creation of our multimesh structure with correspondences we
refer the interested reader to our supplemental material.

In Section 5 we will construct and detail our deformation energy
over meshes, cohesive energy over cohesive edges, and non-overlap

213:5

Table 1. Notation

Notation Definition
|4 shared mesh vertex set
E shared mesh edge set
T shared mesh face set
n=|V| number of vertices
O={V,ET} shared mesh topology
X; e R™" ith example-mesh’s vertex positions
m number of example shapes
A={X1, .. Xm} set of example-shape meshes
x € R?" deformed-mesh vertex positions
w e R interpolation weights
s€eR timing parameter
w(:): R —> R animation curve
%(-): R - R2? variational interpolation
ar(-) :R?® - R signed area of triangle ¢ € O in input mesh
Ci CEXE cohesive edge set for ith mesh
B;cV boundary vertex set for ith mesh

X{= X[(Uj) eR?
x) = x(vj) € R?

vertex v; € V in mesh X;
vertex v; € V in deformed mesh x

energy over boundary vertices. However, the resulting interpolation
we will obtain using the default multimesh will lead to unsatisfying
animation artifacts during interpolation (see e.g., Figure 4) due to,
as we will soon see, both poor intra-mesh element quality and poor
inter-mesh mapping quality. In Section 4, we thus first introduce our
Comesh Optimization algorithm to improve both the mesh and map-
ping quality of our multimesh structure to resolve these interpolation
artifact problems for freeform shape collections. Here and in the fol-
lowing sections we adopt the notational conventions summarized in
Table 1.

4 COMESH OPTIMIZATION

Artifact-free interpolation over changing shapes requires high-quality
mappings between well-formed, compatible meshes. Mesh quality,
per shape, is essential for the stability of minimizations performed
on discretized energies for variational interpolation. Mapping qual-
ity, between shapes, ensures local similarity for high-quality visual
interpolations. In this section we propose a Comesh Optimization
method that jointly improves both mesh and mapping quality of ini-
tial, inversion-free multimeshes. Our resulting optimized multimeshes
then give smooth, stable and consistent interpolations that are visually
pleasing over extreme changes in shape.

Goal. Given multiple, compatibly parameterized boundaries of non-
overlapping planar shapes we seek meshes with 1. individually well
formed elements and 2. bi-directionally optimal piecewise-linear maps
between all shape pairs.

Input. We bootstrap this process, as described above in Section 3,
with an initial, locally injective parameterization of shapes annotated
with correspondences. We apply Schiiller et al’s [2013] LIM algorithm
to obtain a single mesh topology, O, for m differing shapes with vary-
ing vertex positions, X;, i € [1, m]. This common connectivity delivers
dense mappings from the specified correspondences defined in Sec-
tion 3.2.
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Fig. 7. A low resolution example highlights how initial, locally injective, com-
patible meshes of example shapes (pentagon and star on far left and right) will
produce poor interpolation results (top); note sliver triangles and large distor-
tion maps between triangles. Comesh Optimization of this initial mesh then
generates pleasing interpolations (bottom) after improving triangle quality
and mapping distortion of the meshes.

Other options for bootstrapping to an initial connectivity are also
possible [Baxter et al. 2009b; Surazhsky and Gotsman 2004; Weber and
Zorin 2014]. However, while initial meshes found by these alternate
approaches are also often locally injective, they too have no guarantee
of quality. In practice output meshes from all such methods, including
LIM, require additional optimization to avoid interpolation artifacts;
see e.g., Figures 4, 7 and 8.

We have so far found LIM to most consistently deliver good ini-
tializations for our approach. Nevertheless, on its own, LIM produces
unacceptable artifacts upon interpolation, see e.g., Figures 4 and 7 and
our supplemental videos. This motivates our Comesh Optimization
algorithm for improving the quality of both mesh element shapes and
inter-mesh mapping.

4.1

We measure the mesh quality of each shape i’s triangulation with Alliez
et al’s [2005] Optimal Delaunay Triangulation (ODT) energy,

Mesh and Mapping Energies

D0 =7 Y IXIPGC0) - g, @

v;EV

and measure the map distortion from shape i to shape j with the Most-
Isometric Parameterizations (MIPS) energy [Hormann and Greiner
2000],

% . %
&(Xi,X;,0) = Z a(Xi) | — + | 5)

feT O 9%
For the variational Delaunay ODT energy above, I';(X;) is the one-
ring area of vertex X{ while g; is a constant term for fixed-shape
boundaries!. For the MIPS energy, ax(X;) is the area of triangle t;, in
shape X;, while 0']1, 0']% are the first and second singular values of the
2 X 2 deformation gradient for triangle t € T, when treating shape
Xj as a deformation away from shape X;.

'In our setting q; thus has no effect over gradients with respect to interior vertices, but
its inclusion does cancel out gradient components due to boundary vertices, see Alliez et
al. [2005].
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o % %

Fig. 8. Optimizing only the mesh quality of example shapes and ignoring map
distortion as in [Baxter et al. 2009b; Surazhsky and Gotsman 2004] improves
triangle shape but leaves distortion (colormap) largely unimproved (top right).
In turn, resulting variational interpolations in between the shapes (bottom
row) then suffers from symmetry breaking, inconsistency and instabilities.
Compare with our Comesh Optimized results in Figure 4.

4.2 Optimizing Solely Mesh or Mapping is Insufficient

Comesh Optimization is built from our observations that 1. only opti-
mizing triangle quality per mesh, as done previously, will not prevent
high-distortion mappings between meshes; and 2. only minimizing
mapping distortion between meshes, irrespective of choice of distor-
tion measure, will not guarantee good-quality triangulations for stable
interpolation.

Minimizing solely distortion, irrespective of distortion measure, re-
sults in ambiguity—many mesh solutions are possible and they rarely
provide well-shaped triangles; see below. We choose to jointly apply
the ODT energy and a cyclic sum (detailed below) of MIPS energies
to optimize triangle quality and map distortion respectively. For mea-
suring distortion in Comesh Optimization we initially investigated
other energies including the isometric energy from Smith and Schae-
fer [2015] and ARAP [Sorkine and Alexa 2007]. However, they both
resist scaling and so fight the exaggerated scaling behaviors we want
to allow. In the end we choose conformal MIPS as it limits angular
distortion and allows large scale changes while preventing inversion.

For very similar shapes, e.g., be-
tween squares of similar orientation
and size, if we optimize just mesh qual-
ity alone, we will sometimes also ob-
tain a close-to-optimal, low-distortion
map. However, for a general collec-
tion of different shapes, optimizing
solely mesh quality will produce a set
of meshes that are individually well
formed yet work poorly for interpola-
tion due to large map distortions be-
tween them. See for example Figure 10 (ODT), where we optimize
solely mesh quality with the ODT energy and so still obtain high
distortion; correspondingly, in Figure 8 we see that optimizing just
mesh quality introduces unsightly artifacts during interpolation.

On the other hand, if we optimize only map quality, e.g., here with
the MIPS energy, our problem is ill defined. Consider Figure 9 where
both maps are conformal yet they present different meshes. There
exists ambiguity in optimally low-distortion piecewise-linear maps

1

== -
- | Conformal Map 1

== -

Similar Input Shapes ;  conformaivap 2

Fig. 9. Ambiguity in optimal,
low-distortion, piecewise-linear
maps: here both maps minimize
the same distortion measure (in
this case MIPS) yet Map 1 has
better mesh quality.
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Example Square-Hexagon

Angle Distribution

Input:

co:

MIPS:

ODT:

Asym:
Fig. 10. Here we visualize the change in map quality (colormap) and mesh
quality (angle distribution) for a range of multimesh optimization alternatives.
Minimizing only MIPS accounts for only distortion and so still obtains poor
quality elements (MIPS) while a solution minimizing ODT considers solely
mesh quality and so obtains poor mapping quality (ODT). Likewise, mini-
mizing distortion asymmetrically, in this case from just square to hexagon,
will still produce poor solutions as in (Asym); compare to the (MIPS) solution
that minimizes distortion symmetrically. Our Comesh Optimization seeks a
symmetric solution optimizing both per-shape mesh quality and all shape-

pair mappings and so obtains both low distortion and well-formed triangle
elements (CO).

between shapes and so, unless we are exceedingly lucky, optimizing
for map quality alone will not give us well-formed meshes for pleasing
interpolation. For example, in Figure 10 (MIPS) optimizing with the
MIPS energy we obtain poor-quality meshes even though we generate
a low-distortion map.

These issues only worsen as we consider general, multishape in-
terpolations between m > 2 shapes and so we design our Comesh
Optimization method to optimize both mesh quality with ODT and
map quality with MIPS. However, to optimize map quality we must
somehow efficiently minimize mapping distortion bi-directionally
between all shape pairs from our m example shapes. We address this
challenge next.

213:7

4.3  Multishape MIPS and Symmetry

As we have many shapes to be compatibly meshed, our goal is distinct
from many traditional mesh optimizations task. Each example shape is
effectively treated as a rest shape for measuring distortion energies in
variational interpolation and so requires well-formed mesh elements.
At the same time, for measuring mapping quality, each mesh is also
a deformed shape with respect to all other example shapes in our
collection.

In our setting interpolation is thus not a one-way trip from one
shape to another. It can take any direction in shape space with any
combination of shapes participating and so our mappings should
likewise minimize distortion for all possible paths between shapes.
Consider again the simple square-to-hexagon example in Figure 10
where square and hexagon respectively have vertex positions X4 and
Xpe- Following standard distortion minimization we first try optimiz-
ing over our target hexagon’s vertices, miny, . &(Xsq, Xpe, O). This,
however, gives us the “Asym” solution in Figure 10 where we see that
distortion after this optimization remains poor. Why does this hap-
pen? The full degrees of freedom in this problem have been ignored:
we can and should optimize distortion in all directions by treating
each shape as both a rest and deformed shape when we optimize total
mapping quality.

Cyclic Summation. Hence we seek symmetric, optimally low dis-
tortion maps for both X; — Xj and X; — X; Vi,j € [1,m]. For
square-to-hexagon this simply amounts to minimizing the sum of
E(Xsq> Xpe> 0) and E(Xpe, Xs¢, O) giving us the low distortion solu-
tion in the “MIPS” row of Figure 10.

More generally we seek to minimize all possible distortions between
example pairs. While this is straightforward to do for two example
shapes as above, optimizing this explicitly as an objective over all pair-
wise distortion measures between m example shapes is prohibitively
expensive.

We side-step this potential computational obstruction by observing
that MIPS is transitive: if the conformal distortion between X; and
Xj and between X; and X} are both small (bounded above), then the
conformal distortion between X; and X}, is also small (bounded above).
See our supplemental material for proof and details. This allows us to
construct our symmetric, all-pairs distortion energy with just a cyclic
sum of the MIPS energy over our m example shapes as

> E(Xi, X;,0) =E(X1, Xz, 0) + E(Xz, X3, 0)+
cyc

(6)
s S(Xm—l,Xm,O) + S(Xm,Xl,O)-

In practice we observe stable traversals of the shape space when
optimizing with our cyclic MIPS energy, ill-posed results without it,
and also confirm in experiment that we obtain the same interpolation
behavior even as we vary the order of example shapes in the cyclic
summation; see our supplemental videos for details.

4.4 Comeshing Constraints

We have so far focused on constructing a suitable objective for opti-
mizing our multimesh. To maintain prescribed correspondences, i.e.,
points and cohesive zones, and to maintain consistent mesh topol-
ogy we must also impose constraints on our optimization. We begin
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Fig. 11. Comesh optimization improves both map and mesh quality of our multimeshes subject to position and topology constraints. Here we visualize the
change in map quality (colormap) and mesh quality (angle distribution) for our cell splitting example. Designated cohesive edges (red) are preserved by both

vertex improvement and topology update steps.

by constraining feature points on boundaries and correspondences
that can be specified as positional constraints on vertex positions
per shape, P(-) = 0. To preserve multimesh structure we implicitly
constrain mesh topology O to remain consistent across all meshes.
We then enforce local injectivity, ag(-) > 0, explicitly so that topology
optimization steps (e.g., edge flips and edge collapses, see below) do
not cause our inter-mesh mapping energies, (6), to go towards infinity
as area becomes small.

Finally, to maintain pre-defined co-
hesive zones, we constrain edge topol-
ogy and vertex positions to stay equiv-
alent on both sides of all cohesive
zones. Recall that each cohesive edge : Xib

X¢

1

j-th cohesive edge

C{ corresponds to two edges in the
edge set E, with respective end ver-
tices, {lel,Xib} and {Xi”,lei} in shape
i. We constrain all such pairs to be
collocated, during all topological steps
with the constraint Z(:, ) = 0, requiring

X X' )fb _ Xd
P=X5 X7 =X )
See Figures 11, 12 and 13.

Fig. 12. We require the two
pairs of end vertices on a cohe-
sive edge to be collocated.

4.5 Comesh Optimization

In summary our Comesh Optimization seeks a piecewise-linear map
that jointly minimizes our cyclic MIPS and area-scaled ODT ener-
gies to find a compatible Delaunay triangulation satisfying position,
cohesive zone, and local injectivity constraints,

m m
D(X;, 0

min DO, Z &(Xi,X;,0)
X1 X X, 0 4 Dyer ak(Xi) G54
PXi)=0, Vie[l,m],
ap(Xj) >0, Vtp €T and i € [1,m],
Z(Ci,Xi)=0, Vie[l,m].
Here note that we normalize each shape i’s ODT energy by its area
2 teeT 4k (Xi). This scales the energies D and & in our objective to
common units of squared length.

s.t. ®)

A note on relative weighting. Comesh Optimization minimizes a
multi-objective function formed by the sum of the cyclic MIPS ener-
gies for mapping and the area-scaled ODT energies for meshing. Note

that we choose to scale both terms equally in our objective above in
(8). We base this choice on our prior observation that the space of
conformal piece-wise linear mappings is generally ambiguous with
respect to mesh quality. This, in turn, suggests that we can find a wide
range of conformal mappings with differing mesh qualities. To better
understand how the relative weighting of these two terms, mapping
and meshing, can actually vary in practice in our results, we experi-
mented with changing their relative weights in our optimizations. For
all combinations of finite, nonzero weights we observe qualitatively
and quantitatively (see our supplemental material) similar results from
our Comesh Optimization and so keep them equally weighted in our
objective.

4.6 Solving Comesh Optimization

To solve Comesh Optimization we construct an algorithm that min-
imizes our constrained problem (8) with block, cyclic descent over
example shapes [1, m]. Our algorithm is detailed in Algorithm 1. Our

ALGORITHM 1: Comesh Optimization

Input: multimesh data structure O, {X;}, {C;}, {Bi}, i € {1, ---, m}.
Output: O, {X;}, {C;}, {Bi}.
Initialize: max_outer_itr =500, max_inner_itr = 100,
outer tol =107° inner tol = 1077,
['1:2Z > Z/mZ.
for loop_outer = 0 to max_outer_itr
total res=0
fori=1tom
inner_res =0
for loop_inner =0 to max_inner_itr
edge_flip(X;, O, C;, B;)
edge_split(X;, O, C;, B;)
sub_res = gradient_descent_step(X|;_1}, Xi, X[i+1])
edge_collapse(X;, O, Cj, B;)
if inner_res < sub_res
inner_res = sub_res

end if
if sub_res < inner_tol break
end for
total_res = total_res + inner_res
end for
if total_res < outer_tol break
end for
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Fig. 13. We apply three local operations to update mesh topology: edge flips, edge splits and edge collapses. These operations are constrained in order to
satisfy our Comesh Optimization constraints. Each operation is applied to the multimesh topology shared by all example shape meshes. It propagates to all

meshes (or none) to maintain consistent topology across all shapes.

outer loop iterates block-wise, by shape. For each outer iterate on
shape i € [1, m] we solve for an update of shape i’s vertex positions
X; and shared multimesh topology O, while holding all other X, j # i
fixed, subject to our compatibility and feasibility constraints. Then,
within each inner iteration on shape i, we optimize mesh X; and topol-
ogy O applying one step of vertex optimization with gradient descent,
and three steps of mesh optimization and refinement applying edge
flips, edge splits and edge collapses. All four operations are constructed
to preserve local mesh constraints and maintain compatible meshing
across all m shapes.

Each vertex optimization step improves current mesh coordinates
by applying a single step of projected gradient descent on vertices
Xi. The gradient of our objective in (8) with respect to shape, X, is

V)Q{% + &(Xi, Xi+1,0) + E(Xi-1,X;, 0)]. For a detailed

derivation of this gradient see our supplement. Each gradient descent
step applies bisection correction, per vertex, to find a conservative
improvement along the gradient that both respects our constraints on
vertex position and does not invert triangles in the one-ring neigh-
borhood.

Mesh optimization and refinement applies edge flips, edge splits and
edge collapses. Edge flips improve mesh connectivity. For each can-
didate edge, we accept a flip when it both decreases the Delaunay
objective over all meshes and respects our constraints in (8). We alter-
nate between evaluating feasibility and evaluating energy decrease.
For our feasibility evaluation we check 1. if the flip candidate is a
boundary or cohesive edge; and 2. if flipping leads to an inversion
and so violates local injectivity (see Figure 13). If either feasibility
condition is violated we do not consider the candidate flip further. If,
however, the flip is feasible we evaluate energy decrease by checking
the largest angle in the edge-adjacent triangle pair both before and
after the candidate flip is performed over all triangulations. If this
largest angle decreases across meshes we flip the candidate edge to
improve local mesh quality.

We apply edge split and edge collapse operations to bound edge
lengths and angles to reasonable ranges while preserving our con-
straints. For each candidate edge, we consider an operation when it
is 1. feasible with respect to our constraints in (8) 2. out of relative
bounds over all shape meshes, and 3. will locally improve the mesh.
For our feasibility evaluation we check 1. if the operation leads to an
inversion and so violates local injectivity, 2. if the operation would
delete a feature point (e.g., ruling out collapse of sharp corners), and 3.
if the operation would change the boundary topology (e.g., ruling out
collapse of internal edges with both endpoints on the boundary). If
any of these feasibility conditions is violated we do not consider the
candidate operation further. Feasible edge splits are then applied when
the edges relative length is too long in all meshes and the operation
would improve the worst edge length and local angles in the imme-
diate neighborhood over all meshes. In turn, feasible edge collapses
are applied when the edges relative length is too short in all meshes
or if its opposite angles in incident triangles are too small. Please see
Figure 13 for illustration and Section 7 for additional evaluation of
our Comesh Optimization solver.

5 INTERPOLATION ENERGIES

With the well-formed multimeshes generated by our Comesh Opti-
mization we can now apply physically-motivated quantities as metrics
for smooth, stable, and consistent interpolation over extreme changes
in shape. We apply an elastic energy, Wp(Xj, x), to measure defor-
mation of shape x away from each example shape X;, and introduce
two new energies for interpolation, defined on shape boundaries. We
construct a cohesive energy, We(Cj, x) to achieve topology changes
for deformed shape x across example shape cohesive edges C;, and
a non-overlap energy, Wo(B;, x), to avoid overlap of example shape
boundaries B; during variational interpolation, when desired. With
these new energies shapes can now also separate, merge together, or
even be prevented from overlapping during variational interpolation;
see e.g., Figures 1, 14 and 16.
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Fig. 14. Our cohesive energy integrates over cohesive zones (blue) that, to-
gether with sparse correspondences between shapes, resolve mapping am-
biguity to guide interpolation. Our cohesive energy and dynamic blending
enable adhesion and separation for topology change as well as secondary
physical effects in shape interpolation.

To interpolate between shapes X;, i € [1, m], with topology changes
and non-overlap, our full interpolation energy is

Wi, w) = ) wi[We(Crux) + Wo(Bi,x) + Wp(Xe )| )
i=1

with interpolation weights w = (wy, ..., wm)T € R Note that enforc-
ing non-overlap is optional: when we wish to allow overlap in shape
x, we simply omit the energy Wo (-, -) in Equation (9); see Figure 16.
To find an interpolated shape x(w) we solve (3) with interpolation
energy (9).

5.1

We introduce a new quadratic poten-
tial model, a cohesive energy, Wc, that L
pulls cuts and holes open and closed as 3
we near example keyframes with dif-
fering topology in our interpolation.
Recall that cohesive edge sets, Ci,
are collections of edge-edge pairs.

Cohesive Energy

. . . . j _
Each pair in shape i, given by C; =
{{va,vp}, {ve,vg}} matches gener-
ally non-adjacent edges (X, X lh ) and

Fig. 15. We measure displac-
ment jump over cohesive edges
using a clamped quadratic to
model cohesive energy.

X7, X ld) for correspondence. They are
created on the interior and boundary
of example shapes to indicate edge-
pair correspondences where an inter-
polated deformation will open as it moves towards example shapes
where edges are separated, and to merge together as the interpola-
tion moves towards example shapes where cohesive edge-pairs are
colocated. To do this we augment the standard elastic measure of
deformation in the shape average, Wy, with an additional cohesive
energy, We(Cj, x) for each example shape i, with cohesive edge set,
Ci.

Unlike an elastic potential, which integrates over the entire domain,
our cohesive energy integrates solely along cohesive-zones. Thus
each cohesive energy Wc(C;, x) integrates across the corresponding
cohesive edge set C; of example shape i. Figure 14 illustrates cohesive
zones (blue) needed to separate individual shape (yellow and red; red
and purple; yellow and purple) or to open a hole in the interior (pink).
Our cohesive potential measures the displacement difference with

Yufeng Zhu, Jovan Popovi¢, Robert Bridson, and Danny M. Kaufman

a quadratic form to enable efficient optimization with a local-global
solver; see Section 7.
To construct W we start by defining a quadratic measure of sepa-
ration on cohesive edges
T
i x4 — x¢ P 1p][x%-x°
d(Cl,x)= A 2 .
(@) [xb—xd %P P||xb—x4

(10)

Here A € R, enables control of cohesive stiffness and P is an R2¥2
matrix that provides control over topology change behavior to bias
towards greater resistance to shear or stretch. Minimizing separation
distance alone draws cohesive-zone edge-pairs together. To enable sep-
aration as deformation grows we then construct our cohesive energy
by clamping the quadratic, d, to an controlled maximum threshold 7;
see Figure 15. Our cohesive energy is then

1 . .
We(Cx)= Y. min( SHd(clx), r).
clec;

(11)

When We is minimized in the shape average (9), cohesive-zone edge-
pairs are drawn towards each other when our distance measure is
below 7, and separate from one another as the threshold is exceeded.
Here the multiplier %l{ is obtained by piecewise-linear discretization
of our energy (see our supplement for details) along cohesive edges
C{ in shape X;, with

J _ by _ d
=X = X7 = 1X7 - X{ . (12)
Our shear and stretch control matrix P are then defined by
P=ald+(1-2a)ix7 e R®?, with
x9 + x€ — xb — x4 (13)

X =

llx@ + x¢ —xb — x|’

and a € [0, 1] giving weighted control of the relative contributions
of shearing to stretching in the cohesive energy. Shearing effects
becoming more significant as we increase . Here Id is the 2 X 2
identity matrix and X is the edge-pair averaged direction defined
on deformed shape x. Note that our cohesive energy then models
both separation and merging behaviors. Separated edge pairs that
come close enough to reduce the displacement field difference below
thresholds 7 are once again drawn together to merge.

5.2 Non-overlap and Deformation Energies

When interpolating it is often desirable to additionally avoid overlap-
ping shapes. For this we need to ensure that boundary vertices B; do
not penetrate the interior of example shape i in deformed shape, x.
To do this we construct our non-overlap energy

Wo(Bi,x) = Z T (Bi, x(v)), x), (14)
v; EB;
with the indicator function
) , if ¥/ € Q(x,T, B;),
I(Bi,x),x)= o X (x 2 (15)
0, else.

Here Q(x, T, B;) gives the interior domain of our mesh at x, composed
by the cover of deformed triangles in T, excluding boundary edges.
The indicator function, 7 (Bi, X, x), then correspondingly evaluates
to an extreme penalty of oo if a boundary vertex x/ is inside any

ACM Transactions on Graphics, Vol. 36, No. 6, Article 213. Publication date: November 2017.



Planar Interpolation with Extreme Deformation, Topology Change and Dynamics « 213:11
with a blending parameter & € Ry,
¢
Wr(x, §) = == (x = xp() T M(x = xp(s)). (18)
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Fig. 16. Applying our non-overlap energy enables variational interpolation to
preserve the concentric layout of this circles-in-circles example (bottom). Inter-
polation without our non-overlap energy ignores overlap and so interpolation
will then break the concentric layout (top).

triangle in the deformed configuration x. While standard minimiza-
tion techniques can be challenged by such nonsmooth objectives,
within the local-global framework we employ, see Section 7, we can
enforce our nonoverlap potential by direct projection in the local solve
step [Bouaziz et al. 2014].

Deformation Energy. Finally, To measure internal deformation, in
this work, we use the discrete, triangle-based as-rigid-as-possible
(ARAP) energy [Chao et al. 2010; Liu et al. 2008; Sorkine and Alexa
2007] ,

Wp(X1.x) = > roap (Xl F(Xex) = Rea)lE. (g4
teel

with Fi(X;, x) retrieving the deformation gradient of triangle 3 €
T with respect to deformed shape x and rest shape X;. Here Ry is
then the projection of F onto rotations and k. is the local material
stiffness weighted per triangle, ¢, € T, for fine-grained control of
local resistance to deformation.

6 ANIMATING INBETWEENS

We have so far shown how to interpolate inbetweens from sets of arbi-
trarily drawn shapes. To build animations we can design sequences of
inbetweens with animation curves w(s) € R, s € R. Our animation
function is then x(w(s)) = argmin, W;(x, w(s)). Varying w(s) with s
gives us control and exploration of timing and spacing, e.g., ease-in
and ease-out, while explicitly treating s as a time variable enables the
addition of physics-based dynamic effects to our inbetweens.

6.1
Subdividing the animation curve w(s), s € [0, S] into sequential frames
{x(w(0)), ..., X(W(s)),.., X(w(S))}, we construct a discrete velocity for
each frame with finite differencing as %(s) = hl (%(w(s)) - x(w(s—1)))

Dynamic Effects for Variational Interpolation

where hj is the length of the desired time interval between frames s
ands—1.

A new, time-stepped position for frame s due only to dynamics and
thus without any interpolation is then

xp(s) = F(w(s — 1)) + hex(s — 1) + hRZM ™ £(s). (17)

Here M = pI € R?™2" js a lumped mass matrix with material density
p while f(s) adds user specified forces, e.g., gravity, wind, damping
and so forth, at time s.

To blend dynamic effects into our interpolation we then construct
an additional energy that biases towards a dynamics step for frame s,

2h?
Minimized on its own, Wr(x, &) with respect to x this energy applies
a forward time step of dynamic motion and ignores interpolation
altogether.

To inbetween with dynamic effects from frame s — 1 to frame s, we
then compose Wr with the variational average to build a blending
between variational interpolation and dynamics effects

*(w(s), £(s)) = argmin Wy (x, w(s)) + Wr(x, £(s)). (19)

Here, the time varying blending parameter &(s) balances between
interpolated shapes and dynamics-driven deformation. When we set
&(s) = 0, inbetweening returns us shapes x that reproduce interpolated
frames while, as &(s) grows, dynamics pushes us farther from artist-
designed shapes.

While some artists may prefer to directly control the blending pa-
rameter £(s), we also provide a blending controller that automates the
process of balancing between dynamic effects and hitting keyframes
in example shapes. Effectively, as the difference between the dynamics
and and keyframe shapes grow, our controller adaptively drives down
&(s). Our controller then allows greater physics-driven deformation
as it more coincides with drawn keyframe shapes. Artist-level control
is then simplified to a single guiding compliance term € € [0, 1] that
indicates how tightly inbetweening should follow keyframe shapes.
See our supplemental materials for details.

7 EXPERIMENTS AND EVALUATIONS

In this section we evaluate the performance of our Comesh Opti-
mization solver; discuss and demonstrate our workflow for creating
animations from examples; and present statistics and examples from
animation synthesis with our methods. For Comeshing we examine
our solver’s scaling behavior as we increase mesh resolution, add more
example shapes, and as we increase problem difficulty. For animation
applications, we examine our method by recreating the benchmark
animation tasks from The 12 Basic Principles of Animation (see our
supplemental) and on a range of challenging animation examples with
timing statistics.

7.1

All evaluations and experiments are performed on a four-core Intel
3.50GHz CPU with our C++ implementation of the system. Our imple-
mentation stores the input multimesh data in an augmented half-edge
data structure that we use throughout comeshing and interpolation.

For Comesh Optimization we adopt the fixed parameters in Algo-
rithm 1 for all examples. That is max_outer_itr and max_inner_itr
are set to 500 and 100 respectively, while outer_tol and inner_tol
are set to 107% and 1077 respectively. For our mesh optimization and
refinement we set angles and relative edge length bounds following
Brochu et al. [2009].

For interpolation we apply local-global iterations [Bouaziz et al.
2014; Liu et al. 2008] to compute inbetweened animation frames. Our
stopping criteria for the solver is set to terminate when the inf-norm
of our relative residual is less than 1073, In our examples we set our
cohesive potential stiffness A = 4 x 103 while we vary 7 (see our

Implementation
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supplemental videos for examples exploring variation with this term).
For dynamics we need not explicitly set timesteps, h, material stiff-
nesses, k, nor material density, p, as our dynamic blending model
re-parameterizes these effects with the single user compliance term
€; see our supplement for details and Table 3 for parameters used
to finalize each animation example. Numerical entries for quadratic
terms in the global matrix of our interpolation solve, i.e., P in our
cohesive energy (11), are updated in each global step. We then corre-
spondingly update our linear system and numerically factorize once
per iteration. Finally, in each local step, along with standard ARAP
projections [Bouaziz et al. 2014], wherever non-overlap energies are
active intersections are simply back-projected to the closest feasi-
ble point while, for the cohesive energy, edge-pair directions x are
updated.

7.2 Comeshing

Mesh Resolution. We first investigate the scaling of our Comesh
Optimization solver’s performance as we increase problem size in
terms of number of vertices. In Figure 17 (a) we test the scaling of
our Comesh Optimization solver with square-to-hexagon examples
increasing vertex count up to well over 300K vertices and see that
our solver scales efficiently. Statistics for all examples in the plot are
fully detailed in our supplemental material. An example of which, at a
mesh resolution of over 17K vertices, is shown in Figure 20 left. Here
our unoptimized solver converges in under 4 minutes while achieving
a low-distortion mapping with high-quality elements.

Number of Example Shapes. We next investigate scaling behavior
of our Comesh Optimization solver as we increase problem size in
terms of the number of provided example shapes In Figure 17 (b)
we see that the Comesh solver also scales efficiently as we increase
the number of input shapes from 2 to 16 for our walking character
example in Figure 20, right. As detailed in the supplemental material,
the solver remains convergent in under 2 minutes, while achieving
a low-distortion mapping with high-quality elements, see Figure 20
right.

Problem Difficulty. We then investigate the performance of our
Comesh solver as we increase problem complexity. In Figure 18 we
illustrate a series of examples where we increasingly thin out the
spokes in the star shape example to increase complexity. As shown

Time (s)

Time (s)

100 1000 1x10° 2 4 6 8

Number of Shapes

10t 10 12 1416

Number of Vertices

(a) mesh scale vs timing (b) mesh number vs timing

Fig. 17. Comesh Optimization statistics: our Comesh solver has efficient
scaling as we increase both (a) mesh resolution and (b) number of example
shapes used to build our interpolation.
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Fig. 18. Comesh Optimization examples over increasing problem complexity.
Here our Comesh solver consistently produces low-distortion mappings and
high-quality elements as we increase variation between input shapes. We visu-
alize input/output map distortions and angle distributions here and compare
the improvement of our resulting Comesh Optimized interpolations for hard
3 and hard 6 examples over unoptimized LIM initializations in Figure 4.
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in the left column of Figure 18, this introduces increasingly more
distorted and challenging Comesh Optimization problems. In the
right column of Figure 18 we show the low-distortion mappings and
high-quality elements we compute with our Comesh solver, while in
the top two rows of Figure 4 we compare the improvement of our
Comesh Optimized interpolations for hard 3 and hard 6 examples over
unoptimized LIM initializations. Finally, we observe that similar input
shapes generally require greater time to optimize; for timing statistics
see our supplemental. Currently, we conjecture that this may be due to
similar input shapes having greater ambiguity in conformal mapping
and so requiring greater effort to converge; we plan to investigate this
further.

Comesh Solver Statistics. In Table 2 we detail the performance of
our Comesh Optimization solver on our animation examples, see our
supplemental videos. Maximum iteration and timing were 29 outer
iterations with 18 seconds of compute time in our prototype code. In
all example so far, with the exception of our alligator example, we
observe that Comesh Optimization additionally reduces the number
of triangles from the input, but not significantly, as its goal is refining
topological connectivity of the initial meshes.

7.3 Animation

Control. Our system exposes a small number of parameters for
interactive exploration of animations. These terms are listed in Table 3
and are summarized here. The blending compliance parameter e,
indicates the desired balance between dynamic effects and example
shape conformance; it is used to control how tightly interpolated
dynamics match keyframe shapes; smaller values give interpolations
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Table 2. We list the comesh optimization statistics for our video examples: number of example shapes, input/output mesh information like number of vertex,

triangle and cohesive edge; inner iteration number shows the total loops of geometrical and topological optimization while outer iteration number shows the
number of outer loops; flip, collapse and split timing show the amount of time spent on respective topological operation while total timing shows the overall

cost of the whole algorithm.

Shape(#) Ver(#/#) Tri(#/#) CoE(#/#) Inner(#) Outer(#) Flip(s) Collapse(s) Split(s) Total(s)
aligator 4 297/358 | 485/593 174/162 1051 19 1.722 1.615 0.857 7.589
cell splitting 3 573/570 | 978/972 142/142 572 15 1.009 0.547 0.487 4.078
chinese character 2 277/277 | 382/379 10/10 36 4 0.023 0.012 0.012 0.119
circle in circle 2 201/201 | 241/241 126/126 70 3 0.024 0.012 0.013 0.137
continental drift 4 271/269 | 362/357 104/104 2565 29 8.841 5.539 1.067 18.322
growing flower 4 163/159 | 213/205 24/24 54 5 0.023 0.018 0.028 0.104
flying bird 3 226/226 | 265/265 0/0 60 7 0.028 0.018 0.016 0.141
stylized walk 16 132/132 | 161/161 0/0 243 6 0.311 0.166 0.166 0.824
walk star 8 89/89 93/93 24/24 243 7 0.085 0.049 0.051 0.284

Table 3. We list the animation statistics and parameter settings for the video examples, including maximal iteration number per frame, maximal time spent on

a single local-global step, compliance parameter €, cohesive zone parameter 7, model control «, damping paramter p as well as material type (homogeneous

or inhomogeneous) and with or without animation curve tuning.

Iteration(#) Local Step(s) Global Step(ms) € T a 4 Uniform Material ~Animation Curve
aligator 47 0.194 2.113 0.02 | 1e5 | 0.7 | 0.5 v v
cell splitting 173 0.202 6.144 1.7 | 2e6 | 0.2 | 1.0 v X
chinese character 38 0.133 1.307 0 2e5 | 0.5 | - v X
circle in circle 52 0.007 2.106 1.5 | 4e5 | 0.5 | 1.8 v X
continental drift 79 0.085 1.817 0 2e5 | 0.5 | - v X
growing flower 53 0.089 0.592 0 2e5 | 0.5 | - 4 X
flying bird 43 0.052 0.502 1 - |- Tos X v
stylized walk 40 0.038 0.441 0 = - = v v
swirl 406 0.04 0.273 0 = - = v X
walk star 36 0.027 0.286 0 6e5 | 0.2 | - v v

that matches the keyframes better while larger value bias towards
more exaggerate dynamics. The cohesive threshold, 7, controls the

effective stickiness of separation and merging during interpolation.

Our mode control parameter, ¢, then determines whether stretch or
shear dominates the topology change. The damping force scaling
term, y, is enabled when dynamics are applied and helps guide how
excited secondary dynamics remain over time. Finally, we enable the
ability to paint multiple material stiffnesses, k, with a brush interface
to control the degree to which shapes resist deformation. Interaction
with all of these user parameters is illustrated in our demo session in
the supplemental videos.

Fig. 19. Trumperfly: interpolation from a sparse set of production frames
enables experimentation and variation.

Range. Our method generates interpolated animations for a range
of challenging animation problems consisting of extreme deforma-
tion, topology changes and dynamics. Some of these examples are
illustrated in Figure 1. Our system enables the generation of a wide
variety of animations from sparse input drawings. As a baseline test
we reproduce a set of benchmark examples from the 12 Basic Prin-
ciples of Animation, as shown in the supplemental. For this task we
use a small number of input drawings; always less than five. In our
supplemental videos we additionally duplicate a professional, hand-
drawn animation that includes extreme transitions with topology
change and extreme deformations; see Figure 19 for sample inter-
polated frames. We use just a sparse subset of the frames and then
demonstrate freeform experimentation on the resulting interpolation
to interactively explore animation variations without having to draw
new frames.

Statistics. Our interpolation provides interactive feedback so that
artists can quickly iterate in creating final animations. Performance
statistics for interpolating our animation examples (both with and
without dynamics) are summarized in Table 3 with a maximum of
less than 10ms per local-global iteration across all examples in our
unoptimized code.

We have presented an interpolation system that allows artists to
interactively animate and interpolate inbetweens from arbitrary key
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Fig. 20. Our Comesh Optimization algorithm scales well to large size meshes (left) and large number of inputs (right). In both cases, our method efficiently

generates meshes with high-quality elements and maps.

drawing shapes. We demonstrate that this framework enables ex-
ploration of a wide range of 2D animations from sparse drawing
inputs. Our method provides artists the flexibility to specify desired
correspondences and topology changes, and to create and edit inbe-
tweening for animation. To achieve artifact-free interpolation, we
introduce a Comesh Optimization method and solver that builds con-
sistent meshes across drawings while respecting correspondences
and cuts. Our optimization algorithm improves both the energy dis-
cretization on each mesh, by enhancing element quality, as well as the
mapping distortion across meshes. Given our Comesh Optimization,
we then introduce two boundary energies, a cohesive energy and a
non-overlap energy. Finally, we demonstrate how to add dynamic
secondary motion effects to our keyframe interpolation.

Looking ahead we believe that a complete system for drawing
planar animation should also support layered drawings. A few of our
examples use two layers (near and far) and rely on interpolation to
preserve coherence. More elaborate drawing arrangements will likely
be enhanced by multilayer support: techniques to extract layers from
drawings and techniques to attach them together explicitly. Comesh
Optimization could also be further improved with a smooth spline-
defined boundary. As is, a feature point, such as a sharp corner, on the
boundary will not move during optimization. Likewise, we expect that
the numerical solver for our Comesh Optimization could be enhanced
with improved convergence.

Our approach could be extended to 3D. Our main contributions,
Comesh Optimization and our Multimesh Interpolation with boundary
energies appear to generalize quite easily to 3D. However, we also
depend on topology optimization and piecewise linearly injective
mappings, which remain challenging to extend reliably and efficiently
in 3D.

Finally, we note that in this work we do not address the interesting
and important question of how to meaningfully automate correspon-
dences for artists. Instead, we sought to expand the expressive range
of interpolation so that artists can accomplish more with less, such

as complex animation of cell splitting with only three keyframes. In
doing so, we also recognized that correspondence plays a key seman-
tic role and designed a solution that could work for correspondences
discovered by either interactive or automatic workflows. As detailed
here and illustrated in our videos our current method uses interac-
tively defined correspondences from artists. Optimal transport based
methods are one interesting avenue of future exploration for automa-
tion. Currently, however, as we illustrate in Figure 2, such methods
generally choose one path and not always the desired one. Thus we
see an investigation of automated and semi-automated methods for
providing correspondences remains an avenue of exciting future work
here.
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