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Fig. 1. Overview of our pipeline for predicting the wrinkled equilibrium shape of a thin shell (in this case, a cloth dress draped on a mannequin). We
approximate the coarse shape of the draped cloth using tension field theory (a), in which material forces do not resist compression. We then augment this base
mesh, which can be very coarse (around one thousand vertices), with wrinkles. We formulate the elastic energy of the shell in terms of an amplitude (b, top)
and phase field (b, bottom) over the base mesh, which together characterize the geometry of the wrinkles, and solve for these fields globally over the mesh.
Our method recovers complex wrinkle patterns with nontrivial geometry and topology (c, d), including wrinkles with wavelength much smaller than the
resolution of the base mesh.

We propose a new model and algorithm to capture the high-definition statics
of thin shells via coarse meshes. This model predicts global, fine-scale wrin-
kling at frequencies much higher than the resolution of the coarse mesh;
moreover, it is grounded in the geometric analysis of elasticity, and does not
require manual guidance, a corpus of training examples, nor tuning of ad-hoc
parameters. We first approximate the coarse shape of the shell using tension
field theory, in which material forces do not resist compression. We then
augment this base mesh with wrinkles, parameterized by an amplitude and
phase field that we solve for over the base mesh, which together characterize
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the geometry of the wrinkles. We validate our approach against both physi-
cal experiments and numerical simulations, and show that our algorithm
produces wrinkles qualitatively similar to those predicted by traditional
shell solvers requiring orders of magnitude more degrees of freedom.
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1 INTRODUCTION
Complex and high-frequency wrinkling patterns give thin-sheet and
membrane materials, like cloth and plastic film, their characteristic
fine details. Yet the rich diversity of wrinkling behaviors observ-
able in these everyday materials also pose a significant modeling
and simulation challenge: failure to represent the material using
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sufficient degrees of freedom to adequately sample the surface’s
highest-frequency wrinkle features leads to noisy, aliased results,
or else overly-smoothed surfaces whose fine wrinkles are missing
altogether. Thus computational meshes with hundreds of thousands
of vertices can be required in computer animation or garment mod-
eling applications in order to capture accurate and/or expressive
wrinkles.

Towards the efficient and accurate simulation of wrinkling we
propose a new model and algorithm to capture the high-definition
statics of thin shells via coarse meshes. Our goal is to model the
complex and fine wrinkles that arise in the interplay between ten-
sion and compression while utilizing just a small number of degrees
of freedom. For example, in the dress shown in Figure 1 we sim-
ulate with 1.4k degrees of freedom (compare to a full resolution
simulation result using 40k vertices in Figure 17). The key idea of
our approach is to split the kinematics of wrinkled shells into a
base mesh, representing the coarse envelope of the shell without its
fine wrinkles, and a wrinkle field parameterized over the base mesh,
encoding the amplitude and wavelength of high-frequency wrinkles.
In the first half of our paper, we formulate a reduced-order model
of shell statics in terms of these degrees of freedom. In the second,
we propose a concrete algorithm for computing the wrinkled static
shape of tension-dominated thin materials, such as draped garments
or inflated balloons, based on the choice of tension field theory for
computing the base mesh shape.
Our model predicts global, fine-scale wrinkling at frequencies

much higher than the resolution of the base mesh and, in con-
trast to previous heuristic approaches for wrinkle augmentation, is
grounded in the geometric analysis of elasticity, and does not re-
quire manual guidance, a corpus of training examples, nor tuning of
ad-hoc parameters. We validate our approach against both physical
experiments and numerical simulations, show that our algorithm
generates both well-known experimental results and simulations
with wrinkle quality comparable to those obtained by classical cloth
solvers utilizing orders of magnitude more degrees of freedom.

Wrinkle Fields. Augmenting a coarse simulation with additional
high-frequency detail, via techniques such as normal or displace-
ment mapping (either crafted by artists or learned from data [Lähner
et al. 2018]), is a long-standing and powerful strategy. We adopt the
approach of several prior works in physics and computer graphics
which parameterize wrinkles as spatially-varying amplitude and
phase fields. To solve for these wrinkle fields and add fine wrin-
kles to a base mesh, previous methods explore several ideas based
on local analyses of its deformation, either by assuming that the
base mesh has a very simple geometry, so that wrinkle behavior
can be predicted analytically; by restricting to materials like skin
where a volumetric substrate drives local wrinkling; or by proce-
durally modeling wrinkles based on heuristics, user guidance, or
data-driven models. While such local models can capture the wrin-
kling of pinched skin or tight-fitting spandex, where the wrinkle
frequency and amplitude are indeed determined by local rather than
long-range interactions, they are inapplicable to loose-fitting cloth-
ing (such as the dress in Figure 1) or draped cloth. In contrast, we
develop a principled global model of wrinkle fields, grounded in the
physics of thin shells.

(a) Coarse elastic simulation (b) Tension field simulation

(c) corresponding TFW result (d) corresponding TFW result

Fig. 2. Augmenting a coarse elastic simulation (left) and tension-field sim-
ulation (right) of a dress with wrinkles. Note that using a coarse elastic
simulation yields poor results: since a coarse mesh cannot represent fine
wrinkling, the simulation produces an aliased result with incorrect, coarse
wrinkling instead. Adding additional high-frequency wrinkles to this base
mesh is not useful. Instead, we propose using a tension-field simulation
of the shell as the base mesh; the TFT solution is devoid of wrinkles, and
becomes a blank canvas on which we can solve for a high-quality wrinkle
field.

Problem Scope. We apply our reduced-order wrinkle model to the
problem of simulating the static shape of thin shells under a mix of
tension and compression, subject to boundary conditions. Here we
focus exclusively on this statics problem with potential applications
to virtual try-on, garment design, draping, and modeling. We do not
consider dynamics, although see Section 7 for discussion of how
the theory we develop might be applied to dynamics. We solve the
statics problem by first computing the base mesh shape, and then
solving for the wrinkle orientation, frequency, and amplitude.
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Choice of Base Mesh. Although a coarse-resolution simulation of
the shell may be the most obvious choice of base mesh, this choice
is flawed (see Figure 2). If a shell would wrinkle at a frequency
higher than can be resolved by the tessellation, the coarse-resolution
simulated shell will buckle, but at an aliased frequency much coarser
than the physically-correct wrinkle features. Augmenting such a
basemeshwith plausible wrinkles would thus require both removing
the existing, spurious coarse buckling, and then inserting new high-
frequency wrinkles. Instead, we propose computing a base mesh
free of any wrinkles using tension field theory (TFT ); this TFT base
mesh then serves as a blank canvas upon which we can optimize
for a wrinkle field encoding fine details at the correct frequency and
amplitude.

Tension Field Theory. The key insight of tension field theory [Pip-
kin 1986; Steigmann 1990] is that tension-dominated thin shell de-
formation can be understood at two independent scales: the coarse
structure and the fine wrinkles. Consider, for instance, manipulat-
ing a piece of cloth: the cloth strongly resists extension, but allows
compression with almost no resistance. When compressed, the cloth
buckles into a wrinkled shape, at very low energy cost since the
bending stiffness of real materials is orders of magnitude weaker
than the stretching stiffness. The dominant forces determining the
coarse structure of cloth that is being tugged or draped are therefore
internal tension forces, gravity and other external loads, and bend-
ing; the internal compression forces and the buckling and wrinkling
they induce play a negligible role in the cloth’s overall shape.

Despite their relative unimportance in determining coarse shape,
compression forces are the chief source of numerical difficulty when
simulating shell statics. Not only does resolving the wrinkles in-
duced by compression require finely-tessellated elements, but the
elastic energy of compression is non-convex (since there is sym-
metry in whether a small, compressed strip of cloth will buckle
upwards or downwards; there is also phase-shift symmetry in the
wrinkle pattern on a larger cloth patch). In cases where simulating
detailed wrinkling is not required, such as when designing inflat-
able balloons [Skouras et al. 2014], there has been great profit in
neglecting the compressive forces altogether: the resulting TFT sim-
ulation minimizes a convex elastic energy which accurately predicts
a surface’s coarse-scale shape even when the simulation mesh has
few degrees of freedom. For tension-dominated problems, such as
simulating cloth drapes or deformation of pressurized chambers,
TFT is thus ideal for generating an approximate coarse base mesh
for applying our wrinkle fields (constructed in Section 3).

Contributions. To summarize, our core contributions include:

• a new formulation of thin shell kinematics that splits degrees
of freedom between coarse-scale deformation of the surface,
and high-frequency wrinkling, expressed as functions on the
coarse surface. We derive an energy model for the shell in
terms of these degrees of freedom (Section 3);

• we propose an algorithm which uses the above energy model
to solve for the static shape of cloth and other thin materials,
when subject to loads that induce a mix of tension and com-
pression (Section 4). At its heart, this algorithm first solves
for the coarse shape using TFT simulation, and then, given

the coarse mesh, solves a sequence of quadratic programs to
compute the wrinkle field parameters;

• we evaluate ourmodel and algorithm on a variety of test cases,
including experiments drawn from the physics literature, and
simulations of garment drapes and inflatable structures (Sec-
tion 6). We show qualitative agreement between our results
and those of both established experiments and full degree-of-
freedom shell solvers, even when our method is discretized
very coarsely, e.g., using ≈ 1000 degrees of freedom; and

• although low-level performance optimization is not our focus
here, we show that our method’s advantage of working on
much coarser meshes translates into speedups (up to one
or two orders of magnitude) when compared to a baseline,
optimized Newton-type solver for shell statics (Section 6).

We find that coarse base meshes, together with wrinkle fields,
are a powerful representation for simulating cloth and other thin
materials with complex, highly-detailed, high-frequency wrinkle-
like features, and yield striking results in comparison to simulations
using classic bending and stretching elements. We hope our model
will serve as a foundation for further research into simulation using
wrinkle-field kinematics, not only for forward problems, but also for
inverse design problems, where the wrinkle amplitude and direction
are more natural and semantically meaningful deformation degrees
of freedom than traditional vertex displacements.

2 RELATED WORK
Thin shell simulation has long been a research focus in both compu-
tational mechanics and computer graphics. Considerable effort has
focused on improving computational efficiency of generic cloth and
shell solvers. This work was pioneered by Baraff andWitkin’s [1998]
application of implicit time integration to accelerate cloth simula-
tion. Subsequent research proposes many improvements including
implicit-explicit methods [Boxerman and Ascher 2004], adaptive
remeshing [Grinspun et al. 2002; Li et al. 2018; Narain et al. 2013,
2012], distributed memory parallelism [Selle et al. 2009], position-
based dynamics [Müller et al. 2007], subdivision thin shell element
methods [Vetter et al. 2014], multi-grid methods [Tamstorf et al.
2015], and various approaches to incorporating yarn-level dynam-
ics [Kaldor et al. 2008], such as by homogenization [Sperl et al. 2020]
or enrichment of a triangle mesh by yarn patches [Casafranca et al.
2020].

Theoretical Analysis of Wrinkles. The interplay of thin shell me-
chanics and wrinkling has been significantly studied in the physics
community. Cerda and Mahadevan [2003] derive a scaling law that
relates the wrinkle wavelength to the material parameters of a
stretched elastic thin sheet; this experiment was analyzed system-
atically in follow-on computational work [Healey et al. 2013; Li
and Healey 2016; Wang et al. 2018]. The Cerda and Mahadevan
model was later extended to more complex deformations and ge-
ometries [Aharoni et al. 2017; Paulsen et al. 2016]. The work of
Paulsen et al. [2016] is particularly notable as it accounts for the role
of surface curvature on wrinkling: their extension can be used to pre-
dict the wavelength of wrinkles on simple, rotationally-symmetric
3D geometries like cylinders and hemispheres. However, their anal-
ysis assumes that the wrinkle direction is known in advance and
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that wavelength is constant in this direction, which is not true for
everyday, complex geometries, for example in draped dresses or
pants.

Physically-Inspired Wrinkle Simulation. Given the importance
of fine wrinkles to the visual quality of cloth simulation, several
methods have studied augmenting simulations to better reproduce
high-quality wrinkles, either by modifying the solve itself, or adding
wrinkles as a post-process. Bergou et al. [2007] use constrained La-
grangian mechanics to force a high resolution simulation to track
the coarse motion of an art-directed low-resolution target surface,
thereby enhancing the coarse motion with fine-scale details. Remil-
lard and Kry [2013] apply a similar idea to simulation of skin, by
using a sparse set of constraints to couple the motion of outer skin
layers to the underlying volumetric substrate. In a similar vein,
Wrinkle Meshes [Müller and Chentanez 2010] computes fine wrin-
kles by simulating high-resolution patches constrained to an initial,
low-resolution simulation. Although both methods generate a high-
resolution wrinkled surface whose coarse shape matches a coarse
target, these tracking-based methods still require simulating wrin-
kles on a high-resolution mesh, in contrast to our approach based on
coarse wrinkle-field kinematics. Several post-processing methods
have been proposed that add dynamic wrinkles based on analyzing
the strain tensor after a coarse-scale simulation [Gillette et al. 2015;
Rohmer et al. 2010]; although real-time, these methods rely on user
guidance to choose the proper wrinkle size, rather than inferring
the correct wrinkles from the cloth physics.
Zuenko et al. [2019] predict the wrinkling of human skin, and

other materials consisting of a stiff film coupled to a soft substrate.
Similar to our approach, Zuenko et al. solve for an amplitude and
phase field discretized on a surface mesh. Different from us, however,
Zuenko et al. compute wrinkle frequency based on local phenomeno-
logical laws drawn from the physics literature that relate wrinkle fre-
quency to the film-to-substrate shear modulus ratio. Their method
is thus only applicable to wrinkled skin or spandex, and not to wrin-
kling of loose-fitting cloth and other shells which are not bonded to
any substrate.

In case of no substrate, one way to extend Zuenko et al.’s approach
is to use an ad-hoc value of film-to-substrate shear modulus ratio
to control the wrinkle frequency; this appears to be how Zuenko
et al. simulated Figures 8a,b in their paper, for instance (showing
wrinkling on a toroidal balloon and a gold sheet draped on a sphere).
As in the techniques above that add dynamics as a postprocess, the
downside of this idea is that one now needs to manually tune this
parameter, rather than allowing the physics to create the wrinkles
automatically. As an alternative, for shells with no substrate, Zuenko
et al. also extended their approach by using the scaling law of Van-
deparre et al. [2011] instead of film-to-substrate shear modulus ratio
to determine wrinkle frequency. The main idea of Vandeparre et al.
is to predict the frequency of cloth wrinkles in the interior based
on inward propagation from a nearby compressed, clamped bound-
ary. This scaling law gives good results for simulations involving
hanging curtains, or other problems where wrinkling is coming
from compression at a boundary (see for instance their Figure 8c).
Note that in order to be applicable, the Vandeparre et al. scaling law

requires (1) that the wrinkling in the interior of the cloth is explain-
able by wrinkles propagating inward from a nearby boundary, and
(2) that the wrinkles at the boundary are caused by compression and
clamping at that boundary. Wrinkles due to contact and draping (see
the dress in Figure 1) in the cloth interior; or shearing of a bound-
ary that is not compressed (for instance, see our later experiments:
the sheared rectangle, Figure 9, and twisted cylinder, Figure 21); or
strain in the interior that vanishes towards the clamped boundary
(like in Cerda and Mahadevan’s model problem of a stretched elastic
sheet; see Figure 6) violate the modeling assumptions of Vandeparre
et al. See our comparison with the extended Zuenko et al.’s approach
with Vandeparre’s law on the stretched sheet and sheared rectangle
examples in Figure 8 and 10 highlighting these issues.

Finally, there has been work on augmenting fluid simulation with
high-frequencywave packets [Jeschke andWojtan 2017]; these wave
packets are “wrinkles” of a sort, but are governed by a very different
physics than the shell elasticity considered in our paper.

Tension Field Theory. As discussed above in our introduction, TFT
was successfully applied to the design of inflatable structures [Sk-
ouras et al. 2014], and has been used successfully to explain phys-
ical and biological phenomena such as the wrinkling of scar tis-
sue [Cerda 2005] and the inflation of parachutes [Baginski 2005].
The convexity of TFT was also exploited in order to optimize the
design of skin-tight clothing using sensitivity analysis [Montes et al.
2020]. Although not explicitly grounded in tension field theory, sev-
eral computer graphics techniques for simulating cloth [Choi and Ko
2002; Jin et al. 2017] adopt a similar idea of neglecting or significantly
weakening the elastic forces that resist compression. By reducing
the likelihood that small strains induce numerically-challenging
out-of-plane buckling, these methods are computationally efficient.
Likewise weakening the compression forces offers other advantages
as well, such as alleviation of membrane locking.

Data-Driven Approaches. A final stream of research on efficiently
augmenting simulations with fine wrinkles uses data (gathered
from the real world; e.g. via motion capture [Lähner et al. 2018], or
collected from offline high-resolution simulations) to learn cloth
deformation. To accelerate the latter idea, Kim et al. [2013] con-
structed a compressible secondary cloth motion graph to sample the
dynamic space and reduce storage requirements by a factor of 1000.
A common idea, especially useful for adding fine details to T-shirts
and other relatively skin-tight garments, is to condition the learned
deformation on the pose of an underlying mannequin [Hahn et al.
2014; Santesteban et al. 2019; Wang et al. 2010]. This idea can be
further applied to transfer of cloth motion from one body shape onto
another [Guan et al. 2012]. Different from the pose-based methods,
Kavan et al. [2011] and Seiler et al. [2012] learn a dense upsampling
operator to obtain more geometric details on a coarse simulated
mesh, and does not assume an underlying mannequin.

Although highly efficient, these methods suffer from the usual is-
sues of data-driven strategies: artifacts appear and quality degrades
when the method is applied to simulations that require extrapolation
rather than interpolation of existing training data. Methods condi-
tioned on mannequin pose thus cannot be applied to free-floating,
environmental cloth.
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3 WRINKLE FIELD MODELING
Wemodel the kinematics of wrinkled thin shells in terms of a coarse
base surface, augmented by wrinkles parameterized by amplitude
and phase fields over the base surface. In this section, we discuss the
mathematical details of these ideas. The main result of our analysis
is the formulation of the shell energy in Equation (27), written in
terms of the base surface and wrinkle-field degrees of freedom; a
discretization of this energy will form the basis of our algorithm in
Section 4 for computing the static shape of thin shells. Note that
for the theory we develop in this section, we do not assume any
particular choice of base surface: later in Section 4.1 we will discuss
our proposed use of TFT simulation to compute the base surface. We
then cover discretization and implementation details in Section 5.

Throughout this section we apply tools and ideas from the physics
literature on the geometry of wrinkled sheets [Aharoni et al. 2017;
Cerda andMahadevan 2003] and simple curvedmembranes [Paulsen
et al. 2016]. However, to our knowledge, the general analysis of
wrinkle shape and energy on curved shells that we perform here,
and the resulting formulas in Equation (19) and (27), are novel.

3.1 Preliminaries
We begin with conventions and notation. We assume that we are
modeling a hyperelastic shell of fixed thickness ℎ, and adopt the
usual Kirchhoff-Love assumption [Ciarlet 2000] that the shell’s 3D
volume is formed by extruding a midsurface 𝒓 (𝑢, 𝑣) : 𝑈 → R3 a
distance ℎ/2 in both directions along the midsurface normal �̂�(𝑢, 𝑣),
where 𝑈 is a planar parameter domain. For simplicity we assume
a St. Venant-Kirchhoff linear constitutive model1, in which case it
can be shown (see e.g. [Weischedel 2012]) that the elastic energy of
the shell, as a function of the midsurface embedding 𝒓 , is given by
the Koiter energy

𝐸 =
1
2

∫
𝑈

(
ℎ

4
𝑊𝑠 +

ℎ3

12
𝑊𝑏

) √
det 𝑰𝑢 d𝑢d𝑣, (1)

𝑊𝑠 =
𝑰−1𝑢 𝑰 − 𝒊𝒅

2
SV (2)

𝑊𝑏 =
𝑰−1𝑢 (𝑰𝑰 − 𝑰𝑰𝑢 )

2
SV (3)

where𝑊𝑠 and𝑊𝑏 are stretching and bending energy densities, 𝑰
and 𝑰𝑰 are the midsurface first and second fundamental forms, re-
spectively, expressed as 2× 2 matrices in the parameter coordinates.
The tensors 𝑰𝑢 and 𝑰𝑰𝑢 are “rest” fundamental forms encoding the
strain-free shell configuration. In the case where the shell is rest-flat
and the domain𝑈 represents the shell’s strain-free shape, 𝑰𝑢 = 𝒊𝒅
(the identity matrix) and 𝑰𝑰𝑢 = 0. All of our examples are rest-flat,
though we will include the rest fundamental forms in the expres-
sions we derive in this section, so that our results extend seamlessly
to shells with rest curvature. The norm ∥·∥SV is a quadratic form
depending on the material Lamé parameters 𝛼 and 𝛽 :

∥𝑀 ∥2SV =
𝛼

2
tr2 (𝑀) + 𝛽 tr(𝑀2). (4)

See Appendix A for a more detailed overview of shell theory.

1A linear constitutive model is justified for analyzing the energy of wrinkles, since we
expect the residual compressive strain in the wrinkled region (after buckling) to be
small. We discuss extending our analysis to other hyperelastic materials in Section 7.

Following foundational work in the physics community on wrin-
kling of sheets [Aharoni et al. 2017], our fundamental modeling
assumption is that the shell midsurface can be decomposed into

𝒓 (𝑢, 𝑣) = 𝒓𝑏 (𝑢, 𝑣) + 𝒓𝑤 (𝑢, 𝑣), (5)

where 𝒓𝑏 is a low-frequency base surface, from which the shell
midsurface is constructed by applying a high-frequency wrinkle
correction 𝒓𝑤 . This wrinkle correction can have components in both
the normal and tangential directions to the base surface. That is,
consider a local frame formed by

{
𝜕𝒓𝑏
𝜕𝑢 ,

𝜕𝒓𝑏
𝜕𝑣 , �̂�𝑏

}
at a point on the

base surface. The wrinkled shell 𝒓𝑤 (𝑢, 𝑣) can be expressed as:

𝒓𝑤 (𝑢, 𝑣) = 𝑓1 (𝑢, 𝑣)
𝜕𝒓𝑏
𝜕𝑢

(𝑢, 𝑣) + 𝑓2 (𝑢, 𝑣)
𝜕𝒓𝑏
𝜕𝑣

(𝑢, 𝑣) + 𝑓3 (𝑢, 𝑣)�̂�𝑏 (𝑢, 𝑣)

= d𝒓𝒃 (𝑢, 𝑣) 𝒗𝑡 (𝑢, 𝑣) + 𝑓3 (𝑢, 𝑣)�̂�𝑏 (𝑢, 𝑣) (6)

where 𝒗𝑡 = (𝑓1, 𝑓2) encodes the tangential displacement due to
wrinkling, and 𝑓3 the normal displacement. Note that 𝒗𝑡 is a vector
field on the parameter domain 𝑈 , which the embedding Jacobian
d𝒓𝒃 maps to a tangent vector on the base surface. We will write
𝑰𝑏 , 𝑰𝑰𝑏 for the first and second fundamental forms of the base surface,
respectively.

Notice that we are working with three distinct surfaces, each with
their own geometry: the (2D) parameterization domain, the (3D)
base surface, and the (3D)wrinkledmidsurface.Wewill use subscript
𝑢 and 𝑏 to denote quantities associated with the parameterization
domain and base surface respectively.

3.2 Wrinkle Correction from Wrinkle Fields
As in the analyses of Cerda and others [Aharoni et al. 2017; Cerda
and Mahadevan 2003; Paulsen et al. 2016], we assume that the wrin-
kles in the shell have wavelength that can vary spatially over the sur-
face, but that at each point, the wrinkles have a single predominant
wavelength and locally coherent wave direction and amplitude. We
can thus write the wrinkle correction in terms of the local geometry
and deformation of the base surface, together with a non-negative
amplitude and periodic phase field

𝑎(𝑢, 𝑣) : 𝑈 → R≥0, 𝜙 (𝑢, 𝑣) : 𝑈 → 𝑆1 � [0, 2𝜋).
In particular, we can write 𝑓3 explicitly in terms of amplitude and
phase:

𝒓𝑤 (𝑢, 𝑣) = d𝒓𝒃 (𝑢, 𝑣) 𝒗𝑡 (𝑢, 𝑣) + 𝑎(𝑢, 𝑣) cos[𝜙 (𝑢, 𝑣)] �̂�𝑏 (𝑢, 𝑣) (7)

with base surface normal �̂�𝑏 , where our remaining task is to deter-
mine the in-plane part 𝒗𝑡 of the wrinkle correction (which controls
the wrinkle shape profile) as well as the wrinkle amplitude and
phase fields 𝑎 and 𝜙.
A first observation is that, to a good approximation, surfaces

wrinkle in order to compensate for surface area lost to compression.
If the strain in the wrinkle direction𝒘 is 𝜖𝒘 , we should expect the
arclength of one wrinkle period to match original material length
of that period in the shell at rest:

𝜖𝒘 ≈ 𝑎2

2
∥d𝜙 ∥2

𝑰 −1𝑢
. (8)

This relationship coupling wave amplitude and frequency has been
widely exploited, in both physics and computer graphics [Rohmer
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et al. 2010], but it does not tell us the relative magnitude of 𝑎 and
d𝜙 . We observe that this tradeoff is usually globally determined by
the boundary conditions, strain, and curvature of the base surface.
For instance, if you take a rectangular sheet of paper and shear it by
displacing its four corners, the sheet will buckle and form a single,
Ω-shaped bump. But if the entire top and bottom boundaries of the
sheet are clamped and the sheet is sheared, a high-frequency pattern
of wrinkles appears (see Figure 9). A second issue is that d𝜙 must
be integrable, i.e., it must be the derivative of some phase function
𝜙 : 𝑈 → 𝑆1 which is well-defined, at minimum, on the patches of𝑈
where 𝑎 > 0. It is therefore not possible to arbitrarily prescribe d𝜙
using Equation (8), even if the wrinkle amplitude 𝑎 could somehow
be inferred.
The punchline is that there is no general local rule for choosing

𝑎 and d𝜙 , without resorting to user guidance or ad-hoc heuristics.
We must instead solve for both terms globally over𝑈 .

3.3 Fast and Slow Variables
Before dealing with 𝑎 and 𝜙 , we begin by analyzing the in-plane
correction unknown 𝒗𝑡 . A tempting idea, which we tried in early
unsuccessful experiments, is to solve for 𝒗𝑡 along with 𝒓𝑏 , 𝑎, and 𝜙 ,
as an additional kinematic degree of freedom. To understand why
this approach was misguided, consider that even if we assume no
in-plane wrinkle correction (𝒗𝑡 = 0), the midsurface shape given by
Equations (5) and (7) is underdetermined.Wrinkles in themidsurface
could be represented either by

• adding wrinkles to the base surface 𝒓𝑏 , and setting 𝑎 = 0;
• using a smooth base surface, but absorbing all midsurface
undulation into the amplitude 𝑎 of the wrinkle field, while
keeping 𝜙 = 0;

• using a smooth base surface, and a slowly-varying 𝑎, with
the undulations of the wrinkles induced by variations in the
phase 𝜙 over the surface.

Thinking ahead to when we will want to discretize 𝒓𝑏 , 𝑎, and 𝜙 on
a coarse mesh, it is clear that only the third solution is acceptable,
since it is the only one that will not lead to aliasing of the fine
wrinkles of 𝒓 when 𝒓𝑏 , 𝑎, and 𝜙 are restricted to low frequencies.

Carrying this idea further, we classify variables as slow or fast.
Slow variables change at length scales larger than the wavelength
of a single wrinkle, whereas fast variables cannot be approximated
as constant, even at the wrinkle scale. Fast variables include 𝜙 , 𝒗𝑡 ,
and 𝒓𝑏 . We assume that the following variables are slow:

• the base surface fundamental forms 𝑰𝑏 and 𝑰𝑰𝑏 ; equivalently,
the base surface strain and curvature;

• wrinkle amplitude 𝑎;
• wrinkle frequency and orientation d𝜙 ;
• the wrinkle shape profile, so that 𝒗𝑡 is a superposition of
periodic vector fields with slow direction and amplitude.

Notice that the wrinkle frequency d𝜙 is slow despite 𝜙 itself being
fast, and that the characterization of𝑎 as slow and𝜙 as fast breaks the
symmetry between 𝑎 and 𝜙 both controlling the wrinkle frequency.
We will now derive closed-form expressions for 𝒗𝑡 , based on an
analysis of shell statics at the scale of a single wrinkle, baking

𝒓𝑏
𝒗1 = 𝒗2 = 0
𝒗1 = 0
𝒓

Fig. 3. 2D sketch of the effect that the two in-plane wrinkle correction
modes 𝒗1 and 𝒗2 exert on the wrinkle shape, at small (left) and large (right)
amplitudes. The dotted black curve is the base surface. Purely normal wrin-
kle displacements (orange) strain the surface significantly near where the
wrinkles cross the base surface; the 𝒗2 in-plane displacement modifies the
wrinkles into a more horseshoe-like shape which equidistributes strain. The
𝒗1 term introduces asymmetry between wrinkles above and below the base
surface, allowing the wrinkle shape to adapt to curvature of the base surface.

our assumptions about fast and slow variables into our wrinkle
correction model.2

3.4 In-plane Wrinkle Correction Formulae
Since we assume that the wrinkle shape is a slow variable, ∥𝒗𝑡 ∥
must be a periodic function of 𝜙 , at the scale of individual wrinkles.
Moreover, we can assume without loss of generality that there is
no in-plane translation of the wave crests and valleys: ∥𝒗𝑡 ∥|𝜙=0 =
∥𝒗𝑡 ∥|𝜙=𝜋 = 0, since any such translation could be accomplished
instead by a phase shift in 𝜙 . We thus approximate 𝒗𝑡 by the first
couple of terms in its discrete sine expansion,

𝒗𝑡 ≈ 𝒗1 sin𝜙 + 𝒗2 sin 2𝜙, (9)

with 𝒗1 and 𝒗2 slow vector fields on𝑈 .
There are geometric reasons for expecting both of these terms to

be important (see Figure 3). Consider the case of perfectly sinusoidal
wrinkles, where 𝒗𝑡 = 0. These wrinkles induce large variations in
strain in the shell over one wavelength, with maximum strain at
𝜙 = 𝜋/2, 3𝜋/2 and minimum strain at the wrinkle peaks and valleys.
The 𝒗2 term allows a redistribution of material within a wrinkle
period to equalize strain.

The 𝒗1 term accounts for strain variation over one wrinkle period,
due to curvature of the underlying base surface. Consider for in-
stance a wrinkled cylinder, where the wrinkling direction d𝜙 travels
azimuthally around the cylinder (similar to the wrinkles shown in
Figure 4). Wrinkle peaks are more highly strained than wrinkle
valleys, due to the base surface curvature, and the 𝒗1 term allows
redistribution of material within a wavelength to compensate. Ne-
glecting 𝒗1 artificially penalizes coarse wrinkles where the base
surface is highly curved in the d𝜙 direction, and relatively flat in
the perpendicular direction (see also the discussion in Section 3.6).

Finding 𝒗1 and 𝒗2. The idea now is to solve for expressions for 𝒗1
and 𝒗2 which minimize the shell’s elastic energy density, integrated
over a small neighborhood of the surface of size on the order of one

2When deriving the elastic energy of the wrinkle field (Equation (19)), we will also
assume that the covariant derivative of wrinkle orientation is negligible. This assump-
tion is justified by the observation that, to good approximation, wrinkles align with
the direction of principal tension in the shell, and that these directions do not bend
significantly within the material plane (since otherwise the material could further
deform to relax the tension).
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wavelength. Since stretching energy dominates bending energy, it
is enough to focus on the stretching energy density (2), which is
quadratic in the midsurface strain.
The directions 𝒗1 and 𝒗2 are slow variables, and so

d𝒗𝑡 ≈ (𝒗1 cos𝜙 + 2𝒗2 cos 2𝜙) d𝜙. (10)

We can use this expression, as well as the definition 𝑰 = d𝒓𝑇 d𝒓 , to
write down a formula for the strain of the midsurface:

𝑰−1𝑢 𝑰 − 𝒊𝒅 ≈ 𝑰−1𝑢 (𝑰𝑏 − 𝑰𝑢 + 1
2
𝑎2d𝜙𝑇 d𝜙)

+ 𝑰−1𝑢 (−2𝑎 𝑰𝑰𝑏 + [𝑰𝑏𝒗1d𝜙]𝑇 ) cos𝜙 (11)

+ 𝑰−1𝑢 (−𝑎
2

2
d𝜙𝑇 d𝜙 + 2[𝑰𝑏𝒗2d𝜙]𝑇 ) cos 2𝜙.

Here we use the notation𝑀𝑇 to denote the symmetrization𝑀 +𝑀𝑇 .
All variables in this expression are slow, except for the trigonomet-
ric functions in 𝜙 . Intuitively, strain, and hence elastic energy, is
minimized by minimizing each of the trigonometric coefficients; this
idea can be formalized by use of a coarse-graining operator [Aharoni
et al. 2017]

𝑋 (cg) := |Ω |−1
∫
Ω
𝑋𝑑𝐴 (12)

which estimates quantities 𝑋 averaged over a neighborhood Ω of
radius comparable to one wrinkle wavelength. Applying coarse-
graining to the thin-shell stretching energy density (2) allows us
to simplify the energy expression by eliminating oscillatory terms
which might be non-zero pointwise, but average to zero (like sin𝜙)
or a value independent of 𝜙 (like sin2 𝜙) over a wrinkle wavelength:

𝑊
(cg)
𝑠 (𝒗1, 𝒗2) =

𝑰−1𝑢

(
𝑰𝑏 − 𝑰𝑢 + 1

2
𝑎2d𝜙𝑇 d𝜙

)2
SV

(13)

+ 1
2

𝑰−1𝑢 (−2𝑎 𝑰𝑰𝑏 + [𝑰𝑏𝒗1d𝜙]𝑇 )
2
SV (14)

+ 1
2

𝑰−1𝑢

(
−𝑎

2

2
d𝜙𝑇 d𝜙 + 2[𝑰𝑏𝒗2d𝜙]𝑇

)2
SV
. (15)

Notice that 𝒗1 and 𝒗2 appear exclusively in terms (14) and (15),
respectively, and so we can solve for these variables by minimizing
each term independently:

𝒗1 = 𝑎𝑰
−1
𝑏

𝒗, 𝒗2 =
𝑎2

8
𝑰−1
𝑏

d𝜙𝑇 (16)

where

𝒗 =

(
𝛼

𝛼 + 2𝛽
tr(𝑰−1𝑢 𝑰𝑰𝑏 )
∥𝒘 ∥2𝑰𝑢

+ 2𝛽
𝛼 + 2𝛽

𝒘𝑇 𝑰𝑰𝑏𝒘

∥𝒘 ∥4𝑰𝑢

)
d𝜙𝑇 (17)

+ 2
𝒘𝑇 𝑰𝑰𝑏𝒘

⊥

∥𝒘 ∥4𝑰𝑢

(
d𝜙⊥

)𝑇 ; (18)

where to de-clutter notation we define𝒘 = 𝑰−1𝑢 𝑑𝜙𝑇 to be the vector
field on 𝑈 aligned with the wrinkle travel direction, and 𝒘⊥, 𝑑𝜙⊥

the vector field and one-form orthogonal to 𝒘 and 𝑑𝜙 under the
natural 𝑰𝑢 and 𝑰−1𝑢 inner products, respectively. The constants 𝛼
and 𝛽 are the Lamé parameters. Notice that on a flat sheet, 𝒗1 = 0,
confirming the intuition that the role of this term is to modulate the
wrinkle shape to accommodate curvature on the underlying base
surface. See Appendix C for the derivation of these expressions.

To summarize, we now can replace the wrinkle correction term
𝒓𝑤 in Equation (5) with an explicit formula in terms of 𝒓𝑏 , 𝑎, and 𝜙 ,
based on the above derivations of the in-plane part of the correction
term:

𝒓 ≈ 𝒓𝑏 + d𝒓𝒃 𝑰−1𝑏

(
𝑎 sin𝜙 𝒗 + 𝑎

2

8
sin 2𝜙 d𝜙𝑇

)
+ 𝑎 cos𝜙 �̂�𝑏 . (19)

3.5 Wrinkle Field Energy
Equipped with the formula (19) giving the geometry of the mid-
surface as a function of the base surface 𝒓𝑏 and wrinkle field 𝑎, 𝜙 ,
we can now write down an expression for the elastic energy of the
wrinkled shell in terms of these kinematics. Note that, unlike in Sec-
tion 3.4, where we were operating at the length scale of individual
wrinkles, and could assume that slow variables are approximately
constant, the elastic energy of the shell is a global quantity and we
cannot simply eliminate terms depending on e.g. the amplitude field
derivative d𝑎 which, while they might be negligible locally since 𝑎 is
slow, might integrate up into a non-negligible energy contribution
on the scale of the entire shell.
Deriving the elastic energy of the wrinkle field is, in principle,

simply a matter of plugging in Equation (19) into the Koiter en-
ergy (1) and simplifying by analyzing the scaling of each energy
contribution and eliminating negligible terms. Here we summa-
rize the results of this (in practice, rather involved) procedure (see
Appendix D for the derivation).

We consider the stretching and bending terms in the energy
separately.

Stretching Term. As discussed above, the expression in Equa-
tion (11) cannot be used to measure the strain of the midsurface
for the purpose of calculating elastic energy, since that formula
neglected terms that are non-negligible on the scale of the whole
shell. In Appendix D we derive the following energy expression,
by coarse-graining and simplifying the first term in Equation (1).
We make use of our assumptions in Section 3.3 about fast and slow
variables:

𝐸𝑠 =

∫
𝑈

ℎ

4

(
𝑊 1

𝑠 +𝑊 2
𝑠 +𝑊 3

𝑠 +𝑊 4
𝑠

) √
det 𝑰𝑢 𝑑𝑢𝑑𝑣 (20)

𝑊 1
𝑠 =

𝑰−1𝑢

(
𝑰𝑏 − 𝑰𝑢 + 1

2
d𝑎𝑇 d𝑎 + 1

2
𝑎2d𝜙𝑇 d𝜙

)2
SV

(21)

𝑊 2
𝑠 = 4𝑎2𝜅2⊥

𝛽 (𝛼 + 𝛽)
𝛼 + 2𝛽

( (
𝒘⊥)𝑇 𝑰𝑏𝒘

⊥

(𝒘⊥)𝑇 𝑰𝑢𝒘⊥

)2
(22)

𝑊 3
𝑠 =

𝑎2

32

𝑰−1𝑢 (d𝜙𝑇 d𝑎 + d𝑎𝑇 d𝜙)
2
SV

(23)

𝑊 4
𝑠 =

1
8

𝑰−1𝑢 d𝑎𝑇 d𝑎
2
SV
. (24)

where the vector field parallel to the wrinkle crests𝒘⊥ is defined
as in Equation (19), and 𝜅⊥ =

(
𝒘⊥)𝑇 𝑰𝑰𝑏𝒘

⊥/
𝒘⊥2

𝑰𝑏
is the normal

curvature of the base surface along the𝒘⊥ direction.
Although this expression is rather involved, each term can be

understood, in retrospect, in the context of the geometry of the
fine-scale wrinkling:
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• In regions of pure tension, the base surface strain tensor is
positive-definite. Since d𝑎𝑇 d𝑎 and 𝑎2d𝜙𝑇 d𝜙 are also positive-
semidefinite, any amount of wrinkling simply drives up the
energy contribution𝑊 1

𝑠 ; this term therefore inhibits wrin-
kling in regions of pure tension.

• Both d𝑎 and d𝜙 play an interchangeable role in𝑊 1
𝑠 . However

as discussed in Section 3.3, we want wrinkle frequency, and
not wrinkle amplitude, to absorb compression strain. 𝑊 4

𝑠

penalizes large variations in winkle amplitude, enforcing that
the compression is absorbed by d𝜙 , not d𝑎 in𝑊 1

𝑠 . In other
words,𝑊 4

𝑠 enforces that 𝜙 is the fast variable, and 𝑎 is slow.
• In regions of mixed tension and compression, assuming that
amplitude is constant (d𝑎 = 0),𝑊 1

𝑠 is minimized by align-
ing the wrinkle direction d𝜙 with the principal compression
direction. Moreover, we therefore recover the intuitive cou-
pling between amplitude, frequency, and strain described in
Equation (8).

• The𝑊 2
𝑠 term injects dependence on curvature into the deter-

mination ofwrinkle amplitude and frequency: high-amplitude
wrinkles whose peaks and valleys run along directions of high
curvature are penalized. Wrinkles where the isolines of 𝜙 run
along directions of low curvature do not suffer this penalty,
even if the surface is highly-curved in the wrinkle travel di-
rection d𝜙 . This behavior matches the expected effect of the
𝒗2 on wrinkle shape, as described in Section 3.4.

• Finally,𝑊 3
𝑠 penalizes large changes in amplitude along crests

of the wrinkle waves. This matches intuition: amplitude is
free to change from one wave to the next, but since wrinkle
crests align with directions of tension in the shell, we do not
expect variations in wrinkle amplitude along one wrinkle.

Bending Term. Bending of the wrinkled shell at two scales con-
tributes to the total bending energy: 1) bending of the base surface
itself, which contributes energy with formula directly analogous
to Equation (3); 2) bending at the fine scale, due to wrinkling. We
estimate this latter term from Equation (19) by assuming that the
contribution to wrinkle curvature from variations in 𝜙 dominate
any contributions from changes in 𝑎 or �̂�𝑏 . In other words, at the
fine scale 𝑰𝑰𝑢 ≈ 0 and

𝑰−1𝑢 𝑰𝑰 = 𝑰−1𝑢 d2𝑟 · �̂�𝑏 ≈ −𝑎 cos𝜙 𝑰−1𝑢 d𝜙𝑇 d𝜙. (25)

Coarse-graining this second contribution and adding it to the first
yields an expression for bending energy,

𝐸𝑏 =
ℎ3

12

∫
𝑈

(
𝑊 1
𝑏
+𝑊 2

𝑏

) √
det 𝑰𝑢 d𝑢d𝑣,

𝑊 1
𝑏
=

𝑰−1𝑢 (𝑰𝑰𝑏 − 𝑰𝑰𝑢 )
2
SV , 𝑊 2

𝑏
=
𝑎2

2

𝑰−1𝑢 d𝜙𝑇 d𝜙
2
SV
.

(26)

To sum up, the total elastic energy, in terms of the base surface
embedding 𝒓𝑏 and the wrinkle field degrees of freedom 𝑎 and 𝜙 , is

𝐸wf = 𝐸𝑠 + 𝐸𝑏 . (27)

Notice that this energy depends only on the wrinkle frequency and
direction (d𝜙) and not directly on the phase itself (𝜙); as expected
since applying a global phase shift to 𝜙 changes only fast variables,
and should not change the coarse-grained energy of the full shell.

(a) TFT base mesh (b) Our (TFW) result (c) TFW without 𝒗1 term

Fig. 4. Simulated cylinder wrinkles using our model (see Section 4) on a
cylinder whose boundaries have been clamped and twisted: (a) the 1.3𝑘-
vertex basemesh, (b) our result with the 𝒗1 in-plane correction term included,
and (c) our result with this term omitted. With in-plane correction, we get
46 waves, which is consistent with results from traditional shell solvers (see
Figure 21). Without in-plane correction that accounts for the base surface
curvature, our model predicts spuriously high wrinkle frequency (over 180
wrinkles; you may need to zoom in to see them).

We will exploit this invariance when we discretize Equation (27) in
Section 5.

3.6 Necessity of In-plane Wrinkle Correction
Given the complexity of the stretching energy 𝐸𝑠 , one might look for
further simplifications. One source of the complexity are the in-plane
wrinkle correction terms in Equation (19). Dropping one or both of
these terms (and in doing so, modifying our assumptions about the
shape of the wrinkles at the fine scale) significantly modifies the
energy 𝐸𝑠 . Without 𝒗2, there is no longer an asymmetry (from𝑊 4

𝑠 )
between frequency induced by d𝜙 and by d𝑎; in other words, there
is no longer enforcement of 𝑎 being slow and 𝜙 being fast. Dropping
𝒗1 significantly changes the curvature term𝑊 2

𝑠 . Both modifications
severely degrade the accuracy of wrinkles we recover using the
numerical procedure we next describe in Section 4, suggesting that
both in-plane correction terms, and all resulting terms in 𝐸𝑠 , are
essential to the wrinkle model. In Figure 4 we perform an ablation
study on 𝒗1.

4 SOLVING FOR STATIC WRINKLED SHAPE
We now describe an algorithm for using the wrinkle field model
of Section 3 to optimize for the static equilibrium shape of draped
cloth, inflatable structures, and other wrinkled shells.
One could entertain jointly optimizing the wrinkle field elastic

energy in Equation (27) for both the base surface shape as well as
the 𝑎 and 𝜙 fields. The challenge with this approach, though, is that
our analysis in Section 3 assumed that the base surface was smooth,
with curvature a slow variable. Optimizing jointly for both the base
surface and wrinkle fields without enforcing the slow-ness of 𝒓𝑏
leads to spurious, aliased solutions similar to Figure 2. See Section 7
for more discussion of joint optimization. Here we instead propose
a simpler scheme, where we first estimate the base surface shape,
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and then fix 𝒓𝑏 and separately solve for the wrinkle field parameters
𝑎, 𝜙 on that base surface.

4.1 Computing the Base Surface
As argued in the introduction, a low-resolution FEM simulation
of the shell is not a good choice for 𝒓𝑏 : not only does the coarse
simulation lack high-frequency wrinkles, it also already possesses
incorrect aliased, low-frequency wrinkles which our wrinkle field
model is not equipped to correct.

For tension-dominated problems, optimizing 𝒓𝑏 using tension field
theory is a better choice. A thin shell is tension-dominated if, at
most points on the surface, the shell is either in pure tension, or
in a mix of tension and compression (it is in these latter regions
that wrinkles typically form). Examples of tension-dominated shells
include garments hung or draped against gravity, chambers under
internal pressure, and fabrics or films tugged by external loads
or boundary constraints. Shells under primarily pure compression
(such as cloth that is balled up on the floor, or axially-crushed coke
cans) are not tension-dominated, and out of scope for our approach.

Tension field theory exploits the fact that wrinkles play little role
in force transmission, by formulating a simplified description of
local stresses as having only tension components, directed along
directions of positive principal stress [Mansfield 1989; Pipkin 1986,
1994; Steigmann 1990]. The theory can be viewed in terms of a
modified or relaxed variant of the membrane energy density in
Equation (2) [Pipkin 1986, 1994]; see Appendix B for an overview.
TFT optimizes for the coarse envelope of the shell, ignoring local
high-frequency wrinkling by allowing the shell to compress with-
out buckling. The TFT result is thus ideal as a base surface 𝒓𝑏 for
wrinkle augmentation, using the theory of wrinkle fields developed
in Section 3. Since the TFT solution expresses only low-frequency
geometric features, it remains accurate even for very coarse dis-
cretizations of the domain 𝑈 ; moreover the modified stretching
energy is convex and efficient to minimize [Skouras et al. 2014]. Fig-
ure 1, left, shows a TFT simulation of a dress draped on a mannequin.
Notice the smooth, wrinkle-free shape and coarse tessellation. We
present many more TFT base meshes in Section 6.

Base Surface Bending Model. Tension field theory gives a convex
replacement for stretching energy, when solving for the base sur-
face shape 𝒓𝑏 . With an eye towards additional improvements in
efficiency and robustness of the base mesh solve, for rest-flat shells
we recommend also replacing the elastic bending energy density
(Equation (3)) with Bergou et al. [2006]’s Quadratic Bending model,

𝑊
qb
𝑏

= 𝛼 ⟨Δ𝑢 𝒓𝑏 ,Δ𝑢 𝒓𝑏⟩𝑰𝑢 , (28)

where Δ𝑢 denotes the Laplace-Beltrami operator on 𝑈 with respect
to the metric 𝑰𝑢 , and 𝛼 is the first Lamé parameter. We also adopt
Wang et al. [2015]’s correction terms to account for the bending
energy at the free shell boundaries.
Advantages of quadratic bending over the full shell bending en-

ergy include:

• 𝑊 qb
𝑏

, being quadratic in the base surface embedding 𝒓𝑏 , is
convex, so that the total elastic energy of the base mesh
(TFT+Quadratic Bending) is convex;

• the energy is very easy to implement.

Quadratic Bending assumes that the shell is deforming isometrically;
this assumption is violated in many of our examples, where the base
surface compresses significantly. Nevertheless, we did not observe
much change in the shape of the basemesh by substitutingQuadratic
Bending for Equation (3). For the dress examples in Figures 15 and 17,
the Hausdorff distance between the base surface computed using
full bending, and Quadratic Bending, is 1% of the dress diameter.

4.2 Computing the Wrinkle Fields
Once we have found the base surface, we compute a wrinkle field
over that surface by minimizing Equation (27). Here we describe a
couple of additional simplifications and reformulations we recom-
mend to simplify this task.

Approximation of 𝒘 . Notice that in the𝑊 2
𝑠 term in the wrinkle

field stretching energy, the direction of𝒘 is used (both in computing
𝜅⊥ and in the formula for𝑊 2

𝑠 itself), but not its magnitude. More-
over, as discussed in Section 3, the main unknown in solving for
the wrinkle field is the tradeoff between amplitude and wrinkle fre-
quency. Wrinkle direction is strongly encouraged to align with the
principal compression direction of base surface strain, by the energy
term𝑊 1

𝑠 . We therefore approximate𝒘 as a constant (rather than a
function of 𝑑𝜙) given by the solution to the generalized eigenvalue
problem

(𝑰𝑏 − 𝑰𝑢 )𝒘 = 𝜆𝑰𝑢𝒘 (29)

with most negative eigenvalue 𝜆. In regions where neither eigen-
value is negative (i.e., in regions of pure tension) we simply ignore
the𝑊 2

𝑠 term, under the assumption that 𝑎 ≈ 0 in those regions.

Solving for Frequency Instead of Phase. In our formulation in Sec-
tion 3, we assume that 𝜙 is a periodic function. The need for peri-
odicity is evident even in very simple wrinkling scenarios, such as
the drape of a square piece of cloth over a sphere (see Figure 5): ro-
tationally symmetric wrinkles appear around the circumference of
the draped cloth, corresponding to a 𝜙 which continuously linearly
increases as you circulate around the draped portion of the cloth
(as shown in Figure 5, middle-right). Since Equation (27) depends
only on the phase field derivative d𝜙 and not on the phase itself, we
eschew optimizing for 𝜙 , and instead borrow from the surface pa-
rameterization and stripe pattern optimization [Knöppel et al. 2015]
literature the idea of expressing the wrinkle field elastic energy in
terms of the one-form 𝜔 = d𝜙 . In other words, we solve

argmin
𝑎,𝜔

𝐸wf (𝑎,𝜔)

s.t. 𝑎 ≥ 0,
∀𝒑 ∈ 𝑈 , 𝑎(𝒑) = 0 or curl𝜔 (𝒑) = 0.

(30)

Here the first constraint enforces that wrinkles cannot have negative
amplitude, and the second ensures that the recovered 𝜔 can be writ-
ten, at least locally, as the derivative of a phase field 𝜙 , everywhere
where wrinkles are visible (amplitude is positive). We provide more
detail about how to discretize and solve this variational problem in
the next section and in Appendix E.
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TFT base mesh

Amplitude 𝑎

Our (TFW) result

Phase 𝜙

ARCSim result

Marvelous Designer result

TFW, normal displacement only

Amplitude, no integrability relaxation

TFW, no integrability relaxation

Phase, no integrability relaxation

Fig. 5. Draping a square piece of cloth on a sphere. Left : the base surface 𝒓𝑏 , after optimization using TFT andQuadratic Bending, on a domain with 1.6𝑘
vertices, the surface after we optimize and visualize a wrinkle field on this base surface, and a visualization of the computed amplitude and phase fields 𝑎,𝜙
over 𝒓𝑏 . Black regions are where wrinkles don’t exist and the phase is undefined.Middle: comparison to simulation results from two standard cloth solvers,
ARCSim and Marvelous Designer. To capture all detailed wrinkles, a high resolution simulation mesh was needed (here we use 72𝑘 vertices). Right : Some
ablation experiments on this example. Including the 𝒗2 in-plane wrinkle correction term when visualizing the wrinkle field is important; here we show the
unnatural undulations produced when visualizing the same amplitude and phase fields as in the bottom-left subfigures, but applying only normal displacement
(𝒗2 = 0). We also show the disastrous consequences of failing to relax the integrability constraints on 𝜔 on pure-tension faces. The recovered amplitude 𝑎 and
phase 𝜙 are not the expected smooth, periodic solution since without relaxing integrability near the north pole of the sphere, it is mathematically impossible
for an 𝜔 to circulates around the circumference of the draped portion of the cloth.

5 DISCRETIZATION AND SOLVER
Our pipeline for computing and visualizing the static shape of shells
using a TFT base mesh and a wrinkle field consists of the following
steps:

(1) We triangulate𝑈 into a coarse simulationmesh𝐾 = (𝑉𝑢 , 𝐹 , 𝐸),
with vertices 𝑉𝑢 = {v1𝑢 , v2𝑢 , · · · } (Section E.1).

(2) We solve for the base mesh embedding 𝑉𝑏 = {v1
𝑏
, v2

𝑏
, · · · } by

minimizing the TFT and Quadratic Bending energies (Sec-
tion 4.1).

(3) We represent 𝑎 as a function on the vertices of 𝐾 , and 𝜔 as a
one-form on the mesh edges. We estimate an initial guess for
these variables, based on 𝑉𝑢 and 𝑉𝑏 (Section E.2).

(4) We also locate the faces of 𝐾 on which the base mesh exhibits
pure tension. We collect these faces into a set of wrinkle-free
faces𝑊 (Section 5.1).

(5) We solve the optimization problem in Equation (30) for 𝑎 and
𝜔 , using sequential quadratic programming. We relax the
complementarity constraint in this problem by making use
of the wrinkle-free faces𝑊 (Section 5.2 and E.3).

(6) We integrate 𝜔 to recover the phase field 𝜙 . Each face main-
tains a separate value of𝜙 for its three vertices (i.e.,𝜙 ∈ R3 |𝐹 |)
to support the 2𝜋-periodicity of the phase field (Section E.4).

(7) Finally, we visualize the result by upsampling the base mesh
and wrinkle fields using Loop subdivision, and displacing the
resulting geometry using Equation (19) (Section E.5).

The output of the above Tension Field + Wrinkle (TFW) pipeline is
our prediction of the shell static shape, shown in Figure 1, right,
and throughout Section 6. In what follows, we discuss the details
most critical to understanding and implementing the above pipeline.
Further implementation details can be found in Appendix E.

5.1 Relaxed Integrability
As we wrote in Equation (30), when minimizing elastic energy with
respect to 𝑎 and 𝜔 , we will want to maintain that curl𝜔 = 0 ev-
erywhere except in regions where wrinkles do not exist (amplitude
vanishes), so that we can (locally) integrate 𝜔 into the phase field 𝜙 .
As has been observed many times by researchers in surface parame-
terization [Bommes et al. 2009; Kälberer et al. 2007], it is absolutely
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crucial that singularities, where 𝑎 = 0 and curl𝜔 ≠ 0, be allowed
to exist. These singularities are topologically required to recover
reasonable one-forms 𝜔 , even on simple examples. Consider for
instance again the example of a square cloth draped on a sphere,
shown in Figure 5. The obvious solution 𝜔 to recover correct wrin-
kling of the cloth is for 𝜔 to circulate (like a whirlpool) around the
square’s center; clearly the path integral of 𝜔 around the square’s
boundary here is nonzero. But then it is impossible for curl𝜔 = 0
at every point on the square (doing so would violate the fact that
every closed one-form on a simply-connected region is exact).
Ideally, our solver would automatically place these singularities

in the optimal location (at the north pole of the sphere, in this case),
by enforcing the complementarity constraint in Equation (30) on
𝑎 and curl𝜔 . However, we are not aware of a simple algorithm for
doing so. Instead we make the following observations, leading to a
heuristic for placing singularities in reasonable locations a priori:

• in regions under pure tension, the energy term𝑊 1
𝑠 strongly

penalizes placing any wrinkles at all. It is reasonable to there-
fore assume that 𝑎 = 0 in these regions;

• conversely, a singularity where amplitude vanishes is most
likely to be located in a region of pure tension, than in a
region ofmixed tension and compression or pure compression
(where𝑊 1

𝑠 penalizes the lack of wrinkling).

Our heuristic, therefore, is to force 𝑎 = 0 on a set ofwrinkle-free faces
𝑊 that are under pure tension, and to relax integrability of 𝜔 on
those faces, allowing the solver to anchor singularities at these faces.
To compensate for the coarseness of the base mesh (which often
only has thousands or hundreds of triangles), we perform some
smoothing before classifying triangles as being under pure tension:
we average each triangle’s most-negative eigenvalue with that of its
three neighbors, and if this average is positive, add the triangle to
𝑊 . After this procedure, we filter outliers from𝑊 by removing any
triangle in𝑊 whose three neighbors are not members, and adding
to𝑊 any triangle whose three neighbors are already members.
Figure 5, right, shows the results of TFW with and without this

relaxation of the curl constraint on wrinkle-free faces. Without
relaxation (top-right), we do not recover a reasonable phase field,
since the global integrability constraint will force 𝜙 to zig-zag as you
travel around the square’s circumference, rather than increasing in
a smooth gradient.

5.2 Optimization
We discretize 𝑎 using piecewise-linear elements over 𝐾 , and dis-
cretize 𝜔 as a one-form on the edges 𝐸, in the style of discrete
exterior calculus. On triangles where integrability of 𝜔 is enforced,
we do so via the linear constraint d𝜔 = 0. We treat first and second
fundamental forms 𝑰𝑢 , 𝑰𝑰𝑢 as constant over each triangle; see Ap-
pendix A for the relevant formulas. We can then write the energy
of Equation (30) as a sum of integrals over the triangles not in𝑊 ;
we compute these integrals using three-point quadrature [Zhang
et al. 2009].
After the above discretization, finding 𝑎 and 𝜔 amounts to min-

imizing a degree-eight polynomial objective function, subject to
linear equality constraints (enforcing integrability) and inequality
constraints (enforcing positive amplitudes). We solve this problem

via sequential quadratic programming, applying the NASOQ QP
solver [Cheshmi et al. 2020] to compute the constrained descent
directions at each iteration. For more details about the discretization
and solver implementation, please see Appendix E.3.

6 EVALUATION AND DISCUSSION
Belowwe consider the behavior of the TFW pipeline on a wide range
of test examples designed to investigate both fidelity to experimental
results as well as comparison to results obtained by large degree-of-
freedom, traditional shell simulators. For the latter we utilize three
representative simulators:

• As a best-in-class academic library for shell modeling we
applyARCSim [Narain et al. 2013, 2012], a widely deployed dy-
namics cloth simulator. Critically for our comparison,ARCSim
offers the option of adaptive remeshing, which allows tradi-
tional shell simulation to capture fine wrinkle details with
lower degree-of-freedom meshes by only refining specific
triangles. To apply ARCSim for solving statics we apply crit-
ically damped time-steps to equilibria. In the following, for
each ARCsim example, we will indicate when the adaptive
remeshing option is applied or not.

• As a high-performance commercial cloth simulator we also in-
clude comparisons with Marvelous Designer [2020], a widely-
used industrial garment-design tool that deploys its own pro-
prietary statics physics solver for predicting garment drape.
In the following we will denote this simulator as MD.

• Finally, to compare with a baseline, consistent shell model we
implement a thin shell statics simulator that solves for the St.
Venant-Kirchhoffmaterial model with constant-strain stretch-
ing elements and mid-edge bending (Morley) elements [Chen
et al. 2018; Grinspun et al. 2003; Weischedel 2012]. In the
following we will denote this simulator as StVK. We made a
best effort to optimize this baseline code, while restricting
computation to the CPU; 70% of each Newton iteration is con-
sumed by our chosen third-party linear solver (SuiteSparse’s
CHOLMOD [2008]) which gives us confidence that our code
is free of gross inefficiencies. See Appendix F.1 for a detailed
timing breakdown.

The full data set of meshes used in our evaluation is provided as
supplemental material and we will release the source code of both
our TFW and StVK reference implementations.

6.1 Draping Behavior
We begin by analyzing the qualitative behavior of TFW on a series of
real-world draping examples exhibiting complex wrinkling geome-
tries and nontrivial wrinkle topology. Notice that unlike data-driven
wrinkle-recovery methods, our method is purely model driven. No
user guidance nor extra data beyondmaterial parameters and bound-
ary conditions are required. For examples with this level of com-
plexity, exact comparisons do not make sense (many of these drapes
likely have multiple metastable states, even before taking differ-
ences in how each solver models physics and frictional contact into
account). In later sections we will perform exact comparisons on
simpler model problems where experimental and/or analytic results
are known; here, instead, we show that TFW results are comparable
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qualitatively to those generated by traditional solvers. To set the
material parameters, we first choose one of the predefined fabrics
given in ARCSim (Navy Sparkle Sweat), then derive approximate
physical parameters from the provided bending and stretching stiff-
nesses. We get the following material parameters for TFW and StVK :
density 200kg/m3, 0.3 Poisson’s ratio, 0.1MPa Young’s modulus and
thickness 1mm. MD does not expose these same material parame-
ters, so we instead manually select a material fromMD’s predefined
palette of material types that gives us closest-matching results to
StVK/ARCSim.

Sphere Drape. Wefirst drape a square cloth (1m×1m) over a sphere
of radius 0.2m. In Figure 5 we demonstrate the resulting base surface
𝒓𝑏 , from the joint TFT and Quadratic Bending modeling on a domain
with 1.6k vertices, and the resulting TFW-generated surface after we
visualize the wrinkle field on the base surface. We also show results
for ARCSim (with adaptive remeshing) and MD: for the former, the
final adaptive mesh has 32k vertices. For MD, we manually search
for the coarsest mesh able to resolve the cloth’s wrinkles; in this case,
72k vertices. The resulting TFW wrinkles are qualitatively similar in
frequency and amplitude, especially compared to MD, although, as
discussed, it is hard to infer ground truth here since we see broken
symmetry in both ARCSim and MD results, where two sides of the
front corner have differing shapes, suggesting that there are many
metastable solutions. One noticeable difference is that TFW does not
“puff out” as much as the other two simulations; and the wrinkles
do not collapse and flatten under their own weight in the manner
that is seen in the ARCSim and MD results. See Section 7 for more
discussion of these limitations.

Garments. We next consider garment drapes. We pose two dress
patterns (from the Berkeley Garment Library) and a pair of pants
on mannequins. Figures 15, 16, and 17 detail results and relevant
mesh resolutions for all solvers. These examples all demonstrate
complex geometry and topology; notice that our results recover
wrinkle fields with widely-varying frequency and direction, and
that despite the coarse base mesh employed, TFW generates results
qualitatively close to the three traditional, high-degree-of-freedom
cloth solvers. The last column in Figures 15, 16, and 17 present final
results when employing ARCSim with adaptive remeshing enabled.
Here these adapted-mesh examples give a sense as to why tradi-
tional simulations generally succeed in recovering wrinkle details
only when the simulation mesh is at quite high resolution (over 40k
vertices were needed for these three garment examples). Our TFW
model generates comparable wrinkle patterns with just a few thou-
sands vertices per example (3.4k, 1.4k and 4k for the two dresses
and pants respectively).

6.2 Resolution Analysis
We consider the sensitivity of traditional shell simulators to their
mesh resolution, and contrast with the TFW pipeline’s low-resolution
requirements for its base mesh. To do so we study the asymmetric
dress as well as a new example, a twisted cylinder (see Figure 21):
here a cylindrical (but rest-flat) shell of radius 1m, height 5m, and
thickness 0.1mm, clamped at the top and bottom boundaries, is

twisted at the top boundary by 10◦ while keeping the distance be-
tween the top and bottom boundaries constant. This example uses
0.44 Poisson’s ratio and 10MPa Young’s modulus. The cylinder ex-
ample is ideally suited for a convergence analysis, as the number
of wrinkles around the cylinder is objective, discrete, and easily-
counted. We can thus use the number of wrinkles as a proxy for
how rapidly each simulation method converges under refinement.
We first test TFW on irregular meshes for these examples with

increasing resolutions. For the dress, we start from a base mesh with
only 382 vertices and monotonically increase the mesh resolution.
We observe that our model converges to a consistent shape at ≈1.4k
vertices (see Figure 20). Applying the same test on the twisted cylin-
der yields an even more impressive result, where a consistent shape
emerges at ≈180 vertices (see Figure 21).

We next probe the behavior of the traditional solvers by perform-
ing the following experiments: (1) we run StVK, for irregular meshes
of increasing resolution; (2) we do the same for ARCsim, with adap-
tive remeshing disabled in order to force use of a mesh with given
resolution; and (3) we runARCSimwith adaptive remeshing enabled.
See Figures 19 and 21 for results. Clear aliasing of high frequen-
cies are evident, as expected, at coarse resolutions. For the twisted
cylinder, it is difficult to say how close StVK and ARCSim are to con-
verging, as the wrinkle number keeps changing for them even for
meshes with over 96k vertices. Similarly, adaptive remeshing also
has trouble determining a final, consistent state. Here we show the
result of adaptive meshing after waiting two days (8,000 simulation
steps). This example illustrates that adaptive meshing is not a silver
bullet for effectively resolving wrinkle features: adaptivity does not
provide appreciably smaller meshes in examples like this when fine
wrinkles cover a large portion of the shell surface. Moreover, this
example illustrates how local refinement can introduce artifacts in
the final shape: earlier decisions about where to refine biases how
the shell later deforms; see the unequal wrinkle spacing in Figure 21,
left column.

Unlike the cylinder example, a careful convergence analysis is not
possible for the dress example, as we observe that for all methods,
the same code and the same mesh with different initializations can
converge to different solutions. We can determine that the tradi-
tional simulators all appear to roughly converge for this example
with meshes in the range of about 20–40k vertices for each solver.
We also observe that ARCSim, both with and without remeshing,
yields qualitatively different solutions for the dress example. De-
spite the lack of quantitative certainly, we can confidently conclude,
however, that the resolution required to reproduce wrinkles with
frequency and fidelity qualitatively equal to those predicted by our
method generally requires approximately an order of magnitude
higher resolution than TFW for all three simulators (ARCSim, StVK,
and MD) for both the cylinder and dress examples.

6.3 Meshing Independence
We next probe mesh-dependence of TFW by testing four differently
generated simulation meshes for the same dress-drape example. We
consider meshes generated by: (a) direct Delaunay triangulation
(via the Triangle library [Shewchuk 1996]); (b) upsampling from a
lower-resolution Delaunay mesh, where we use a modified Loop
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subdivision to keep vertices along seams of the garment stitch pat-
tern unchanged; (c) downsampling from a finer Delaunay mesh,
where we also keep the seam vertices unchanged; and (d) extracting
a mesh from ARCSim after allowing it to take one step with its adap-
tive remeshing enabled. We run our TFW pipeline for each of the
four simulation meshes. Figure 18 demonstrates that, despite these
variations in triangulation, the final wrinkled shapes are consistent.

However, as the tension field theory provides no penalty on com-
pression, a given amount of compression applied to region of a
surface may not equidistribute within that region, so that com-
pressive strain may end up concentrated in only a narrow strip of
triangles. In practice we do observe some inconsistency (≈15%) in
our model (see the third and fourth columns of Figure 21) for regular,
structured meshes, due to this phenomenon. For example, while for
the irregular Delaunay mesh (1.3k vertices) we get 46 waves, for
the regular mesh generated by diagonalizing a regular 𝑁 × 𝐾 quad
mesh, where 𝑁 refers to the number of uniform azimuthal samples,
and 𝐾 the number of uniform axial samples, we get varying wave
numbers: for the ones diagonalized to align with the twist direction,
we have 39 and 38 waves, and for the ones with opposite diagonal-
ization, this number is 40, where we tested with 𝑁 = 80, 𝐾 = 12,
and 𝑁 = 120 and 𝐾 = 9.
In turn, we observe that traditional solvers can also suffer from

artifacts on regular meshes aligned unfavorably with the wrinkles.
First consider the StVK simulator. The last three columns in Figure 21
illustrate this effect, where we test the StVK simulator with mesh
resolutions ranging from 6k vertices and then doubling resolution
until 96k. The seventh column in Figure 21 shows the results for
irregular Delaunay meshes, where the wrinkle frequency increases
from 10 to 19. For the regular mesh diagonalized along the twist
direction, the number of wrinkles oscillates (the eighth column in
Figure 21), whereas for the meshes diagonalized in the opposite way,
this number increases from 12 to 20 (the ninth column in Figure 21).
For such problems, we observe that even ARCSim has convergence
issues, ultimately producing an irregular wrinkle pattern with 69k
vertices; see the first two columns in Figure 21.

6.4 Accuracy
To further investigate accuracy of the TFW model we now consider
examples where the wrinkling behavior is known either through
analysis or experiment.

Stretched Sheets. In a pioneering experiment, Cerda and Mahade-
van [2003] studied wrinkling in a thin sheet whose left and right
boundaries are clamped and then pulled apart. The sheet compresses
in the perpendicular (vertical) direction due to Poisson’s ratio and
horizontal wrinkles appear. They provide scaling laws for deter-
mining the wrinkle frequency and amplitude. A range of successive
works have extended the detailed study of this problem analytically
and numerically with varying elasticity models [Healey et al. 2013;
Li and Healey 2016; Wang et al. 2018].

We simulate this model problem with a rectangular sheet of size
0.25m × 0.1m, with thickness 0.1mm, Poisson ratio 𝜈 = 0.5 and
Young’s modulus 𝑌 = 1MPa. TFW produces wrinkles with 5 wave
periods and a peak amplitude 0.42mm on a base mesh of 522 vertices.
These values are within 20% of the results determined by Wang et

(a) TFT base mesh (b) TFW

(c) StVK with 260k vertices (d) ARCSim

Fig. 6. Simulation of wrinkles in a highly stretched sheet [Wang et al. 2018].
(a) TFT base mesh with 522 vertices. (b) TFW predicts correct wrinkling to
within 20% of theoretical values with the given base mesh. (c) StVK will also
predict qualitatively-correct wrinkles, however only starting with meshes at
a resolution of 260k-vertices and higher. (d) ARCSim’s result, with adaptive
remeshing. The final mesh has 13k vertices.

(a) 16k vertices (b) 32k vertices

(c) 65k vertices (d) 130k vertices

Fig. 7. Simulation of wrinkles in a highly stretched sheet [Wang et al. 2018]
using the StVK model on a sequence of Delaunay meshes. (a) No waves ap-
pear in the mesh with 16k vertices. (b) 3 waves with 0.17mm peak amplitude
appear when mesh resolution increases to 32k. (c) A 65k-vertex mesh yields
3 waves but 0.27mm peak amplitude. (d) Mesh with 130k vertices ends up
with 3 waves and 0.31mm peak amplitude.

(a) TFW (b) [Vandeparre et al. 2011]

Fig. 8. Comparison of (a) our method and (b) wrinkles generated using the
scaling law of Vandeparre et al. [2011] for the model problem of a highly
stretched sheet [Wang et al. 2018]. In examples where the wrinkles are
not caused by wrinkles propagating inward from a clamped boundary, the
analysis of Vandeparre et al. does not apply.

al. [2018] (0.35mm for peak amplitude). In comparison, ARCSim
with adaptive remeshing enabled, generates a mesh of 13k vertices,
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producing 5 wrinkles and peak amplitude of 0.34mm. See Figure 6
for visualization of these results.

Despite the seeming simplicity of this example set-up, traditional
simulation methods struggle to correctly predict the wrinkling be-
havior here and so it provides a simple “unit-test” for accuracy.
StVK can produce wrinkles, but success is sensitive to resolution.
We test StVK on a sequence of Delaunay meshes of the rectangle,
doubling the number of vertices each time. Wrinkles first appear
at 32k vertices, but the predicted pattern still does not converge to
a consistent result even as we extend StVK to a 260k vertex mesh.
For this highest-resolution mesh StVK generated a solution with 3
wave periods and peak amplitude 0.33mm (Figure 7 and Figure 6(c)).
Given that the amplitude of the wrinkles is quite small compared to
the dimension of the overall structure, membrane locking [Chapelle
and Bathe 2011] is likely responsible for artificially stiffening the
material, especially on “coarse” meshes.

We also use this model problem to probe the scaling law proposed
by Vandeparre et al. [2011], and suggested by Zuenko et al. [2019] for
use in cases where a wrinkling shell is not bonded to a volumetric
substrate. As shown in Figure 8, although the Vandeparre et al.
scaling law is suitable for predicting frequency cascades in wrinkles
that propagate inward from clamped boundaries, it is not suitable
for predicting more general wrinkling patterns, even in simple cases
like the stretched sheet experiment.

(a) The experimental result (b) TFW

(c) StVK (d) ARCSim

Fig. 9. A thin rectangular sheet sheared in the horizontal direction. (a) The
experiment result from [Wong and Pellegrino 2006] yields 19 wrinkles, (b)
our method (TFW) produces 25 wrinkles, (c) StVK generates 13 wrinkles,
and (d) ARCSim gives 26 waves.

Sheared Rectangles. Wong and Pellegrino [2006] study the wrinkle
profile of a sheared rectangle whose top and bottom boundaries
are clamped and sheared in the horizontal direction while its left
and right boundaries are left free. We reproduce their experimental
set-up in simulation, where TFW generates 25 wrinkles with 1k
vertices. As in the previous experiments, we search for theminimum-
resolution of the simulation for which ARCSim and StVK does not
exhibit significantly degraded wrinkling; under this methodology
ARCSim gives 26 wrinkles using an 18k-vertex mesh, and StVK
produces 13 wrinkles on a 20k-vertex mesh. Wong and Pellegrino
report 19 wrinkles in the actual experiment. Visually, as presented
in Figure 9, TFW shows consistency with the real world example,
where both the simulated wavelength and wrinkle direction are

(a) TFW (b) [Vandeparre et al. 2011]

Fig. 10. Comparison of wrinkles generated using (a) our method and (b)
the scaling law of Vandeparre et al. [2011] for shearing a rectangular
sheet [Wong and Pellegrino 2006]. Again, in this example, the interior wrin-
kles are not caused by boundary wrinkles that propagate inward from a
compressed, clamped boundary (here the boundary is sheared inextensibly),
so the analysis of Vandeparre et al. does not apply. You can see unnatural
wrinkles near the top and bottom boundaries in (b).

well-aligned with the experimental result. Finally, notice from the
experimental photograph that our assumption of a single dominant
wavelength is valid over most of the wrinkled surface, and that our
model recovers these dominant wrinkles; however there is also a
thin boundary layer near the clamped edges of the sheet where a
superimposed second frequency of wrinkles can be seen. Our model
cannot currently resolve these secondary wrinkles; see Section 7
for discussion of how our model might be extended to the case of
multiple superimposed wrinkles.

For this problem, we also compute the wrinkles using the scaling
law proposed by Vandeparre et al. [2011], which is suggested by
Zuenko et al. [2019] as an extension of their method for shells with
no substrate. Similar to the stretched sheet experiment, we observe
unnatural behavior near the boundaries (see Figure 10).

Inflated Structures. Inflatable structures exhibit a wide range of
complex wrinkling behaviors that have been modeled with direct
application of tension-field simulations [Skouras et al. 2014]. Here
we consider TFW’s behavior on a range of inflated examples by
augmenting our TFT model with Skouras et al.’s [2014] pressure
force. In each of the following three examples we inflate a balloon
design formed by sewing together two copies (panels) of a planar
domain along their boundaries: an annulus, disk, and rectangle.
Sewing two annuli (Poisson’s ratio 𝜈 = 0.44, Young’s modulus

𝑌 = 10MPa) together (inner radius 0.04m and outer radius 0.1m)
yields a torus. We observe fine wrinkling around the outer equator
of the torus when simulating TFW with a 2k vertex base mesh. We
perform the same experiment with StVK, observing that wrinkles are
not fully resolved until we reach a mesh of 40k vertices (Figure 11).
Two disks (radius 0.1m) sewn along their boundary yields the

classic Mylar balloon, with wrinkles around the equator. Here we
use the same material parameters as in the previous example. Inter-
estingly, for this example, inspecting a real-world balloon reveals
features at two scales: a small number of coarse creases appear
equally spaced around the equator, with fine wrinkles in between.
Both features can also be seen in the StVK simulation of the Mylar
balloon, and in previous simulations of this problem using adaptive
subdivision finite elements [Vetter et al. 2014]. Here we find that
StVK requires a simulation mesh of at least 40k vertices to resolve
these features. TFW also produces a result with both scales of fea-
tures, despite its wrinkling model assuming only a single wrinkle
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frequency (Figure 11). This behavior is surprising at first until we
observe that the creases already begin in the TFT base mesh. The
TFWwrinkle model then appropriately augments these creases with
the fine wrinkles. We are currently uncertain when and why these
sharp creases appear in the base mesh, but do verify that this is
not an artifact due to the choice of our bending model: these sharp
creases appear even if there is zero bending energy (Figure 12). We
do observe that resolving the sharp creases requires a relatively
high base mesh resolution relative to correctly predicting the com-
pression field and fine wrinkling; in this case we get sharp creases
if our base mesh has at least 5k vertices. There has been relatively
little work in the physics literature studying TFT in this regime;
better understanding of creasing behavior in TFT base meshes and
likewise its corresponding implications for TFW wrinkling remains
promising future work.

(a) TFT base mesh (b) TFW (c) StVK

(c) TFT base mesh (d) TFW

(e) StVK (f) Real balloon

Fig. 11. The simulated results of inflated annulus and disk experiments. Top:
from left to right, a 2k base mesh, the TFW solution, and the StVK solution,
on a mesh with 40k vertices. Middle left: the simulated TFT base mesh for
the disk balloon, with 5k vertices.Middle right: the wrinkled mesh produced
by TFW. Bottom left: simulated result on 40k-vertex mesh. Bottom right:
the real-world balloon.

Two rectangular patches (width 1.4m, height 0.74m), with thick-
ness 1mm, Poisson’s ratio 0.3 and Young’s modulus 0.1MPa, when
inflated yield the classic “teabag” shape. Understanding the coarse
shape and wrinkling of this teabag is a classical problem in math-
ematics [Pak and Schlenker 2010; Paulsen 1994]. TFW with a 1k-
vertex mesh predicts fine wrinkles around the boundary of the
teabag, but here we do not additionally recover the coarse creases
evident in a 30k StVK simulation (Figure 13). Again, as in the “Mylar
balloon” discussion above, this behavior is closely related to how
well the base mesh resolves creasing. Here we only start to see
creases in the base TFT mesh at finer resolutions (≈30k vertices).

Lastly, we simulate wrinkles on the Teddy bear example from
Skouras et al. [2014]. This bear hasmore complex inflated geometry—
it is sewn from 17 planar patches. TFW generates wrinkles in a 2k-
vertex base mesh that are qualitatively similar to those that appear
in a StVK simulation starting at around 98k vertices (Figure 14).

6.5 Performance and Numerical Convergence
In this work we have focused on accurately capturing the wrin-
kling features of thin shell elastica with as few computational de-
grees of freedom as possible. In so doing we have derived the TFW
model which successfully obtains fine wrinkling behavior over a
wide range of examples, with generally an order-of-magnitude less
degrees-of-freedom than standard shell methods; our method gen-
erally requires an order of magnitude less computation time as well.
We summarize the resolution and timing of our experiments in Ta-
ble 1. We ran our experiments on a desktop with a 8-core Intel Core
i9-9900K CPU, clocked at 3.6 GHz and 128 GB of memory.

Resolution Comparisons. We compare TFW, StVK, and ARCSim
in terms of the lowest-resolution mesh required in order to resolve
the wrinkles without significant degradation. For TFW and StVK,
we begin with a lowest-resolution Delaunay mesh, and solve for
the static wrinkled shape; we double the resolution of the mesh
and repeat the experiment until the wrinkle pattern converges to
a consistent shape, or until the simulation takes more than a week
to terminate (in which case we halt the experiment). The resolu-
tion in the table is the lowest at which the result is the consistent
wrinkled shape. We indicate with a “−” superscript the simulations
where the coarsest-resolution simulation is already consistent (so
that potentially even lower-resolution consistent simulations are
possible) and with a “+” superscript those simulations that became
too computationally expensive before yielding consistent results.

ForARCSim, we enable adaptive remeshing and list the final mesh
resolution in Table 1. ARCSim requires specification of additional
parameters, including most notably a minimum triangle size, which
significantly affects the quality of the solved static shape. We set
frame time to 0.04s, frame steps to 8, and end time to 40s; for the min-
imum triangle size, we try 0.01m, then 0.005m and finally 0.001m,
accepting the first result in which the wrinkles are not aliased. Note
that we do not report ARCSim results for the inflated structures,
since ARCSim does not implement a pressure force. For the other
examples, we disable the ARCSim “popfilter" module, as well as the
“collision" module for examples without collisions.

Timing Comparisons. Computation of the TFW base mesh is now
reduced via our choice of TFT and quadratic bending to an entirely
convex problem on a coarse mesh. Similarly, computation of the
wrinkle field is then likewise a small, sparse optimization of our
discretized wrinkle energy subject to sparse curl-constraints and
simple bound constraints on the amplitude degrees of freedom. In
our experiment, the reduction in mesh resolution directly translates
into reduction in computational cost, when comparing TFW to tra-
ditional solvers. That said, apples-to-apples comparisons are not
straightforward: unlike for the resolution experiments above, timing
comparisons depend significantly on the low-level implementation
details of both our method and the baselines. Moreover, it is not
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TFT bending type 2k 3k 5k 10k 20k 40k

Quadratic bending

No bending

Fig. 12. The simulated tension field result of the inflated disk experiment. From left to right the resolutions are 2k, 3k, 5k, 10k, 20k, 40k. Top row : simulated TFT
model with quadratic bending. Numbers of sharp creases are 1, 4, 8, 10, 11, 12. Bottom row : the simulated TFT model without bending term; the corresponding
wrinkle numbers are 2, 5, 8, 10, 10, 10.

(a) TFT base mesh (b) TFW

(c) StVK (d) MD

Fig. 13. The simulated result of inflated teabags: (a) the TFT base mesh
with 936 vertices; (b) shape recovered using TFW; (c) StVK simulation on a
30k-vertex mesh, and (d) Marvelous Designer simulation with 30k vertices.
Among all these results, StVK achieves themost natural shape (sharp creases
+ small wrinkles). TFW will need a much higher resolution to capture these
sharp creases in the TFT base mesh.

clear how to determine a termination condition that is consistent
across all methods: gradients with respect to vertex positions, and
with respect to wrinkle field variables 𝑎 and 𝜔 , have different units
and cannot be compared.
Despite the above difficulties, we provide some timing data in

Table 1. For each experiment that does not involve collision re-
sponse3, we run TFW and StVK for 1000 SQP iterations, or until
the residual infinity norm is below 10−6, whichever comes first. For
both methods, 1000 iterations is far more than necessary to reach
a visually-stable static shape. We visually inspect the intermediate
configurations and select the earliest iteration where the solution

3We do not perform timing comparisons for the examples involving contact, since our
(very naive) contact solver is very slow and dominates the cost of both the TFW and
StVK optimizations.

(a) TFT base mesh (b) TFW (c) StVK

Fig. 14. Inflated Teddy bear: (a) the 2k-vertex TFT base mesh, (b) corre-
sponding TFW result, and (c) simulated result with StVK (98k vertices). We
can see TFW predicts a similar wrinkle patterns as StVK , but requires 50
times fewer vertices.

matches the visually-stable shape; the wall-clock time of this itera-
tion is listed as the stable time in Table 1. We use the TFT base mesh
as the initial guess for both TFW and StVK (and the timings in the
table do not include this preprocessing step); the time needed to
compute the initial guess is negligible compared to the subsequent
solve times. See Appendix F.1 for timing numbers.
Although inherently subjective, this methodology allows us to

give some sense of the relative performance of TFW versus base-
lines, and we observe that the manually-selected visually-stable
frame matches a “dogleg” in each example’s stationarity residual
plots. See Appendices F.2 and F.3 for additional data and residual
plots for all examples listed in the table. We observe that TFW of-
fers a speedup ranging from 1.28x (for the torus) to 345.1x (for the
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stretched sheet experiment) compared to StVK. For all the experi-
ments, TFW succeeds in reaching a visually-stable wrinkled shape
within one minute.

Since commerical shell solvers like ABAQUS emphasize accuracy
and generality over performance, and since we are not aware of
any established computer graphics software for shell statics, we
used our own implementation of Morley shell elements (based on
the implementation hints provided by Grinspun et al. [2003] and
Weischedel [2012]; see Appendix A) as the StVK baseline. We made
best-effort optimizations to improve performance of both the TFW
and StVK algorithms; in both cases the majority of the time spent
each iteration is in the third-party solver (NASOQ [Cheshmi et al.
2020]) in the case of TFW, and SuiteSparse’s parallel implementation
of supernodal sparse Cholesky decomposition [Chen et al. 2008] in
the case of StVK). See Appendix F.1 for more information including
data about the timing breakdown within each optimization iteration.
Finally, in Figure 22, we visualize the progress of the TFW and

StVK solvers on a wall-clock time axis, to give an equal-effort com-
parison of the two methods. On the timeline (which is in log scale)
we indicate the range of times during which each simulation has not
yet reached a visually-stable state in red. The visually-stable time
(as listed in Table 1) corresponds to the transition on the timeline
from red to blue. In cases where we terminate a simulation early,
due to having reached very low stationarity residual (10−6), the ter-
mination time corresponds to the transition from blue to green. We
show representative stills of each simulation; each still was sampled
at the wall clock time of its left edge. Please see Appendix F.3 for
raw data and discussion of the blue-to-green transition, and the
supplemental material for videos showing 𝑎,𝜔 (for TFW) and vertex
displacement (for StVK) versus wall clock time.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK
We have introduced TFW, a new model and algorithm for high-
fidelity modeling of wrinkling thin shells suitable for low-resolution
computational meshes. The key insight is that by decoupling the
wrinkled shape into slow and fast variables, and deriving an approx-
imate elastic energy in terms of the slow amplitude and frequency
variables, high-resolution, physically-principled detail can be added
to a wrinkle-free coarse mesh without aliasing. We have demon-
strated TFW ’s ability to generate realistic and often predictive
results across a wide range of challenging examples with an order-
of-magnitude less degree of freedoms and speedups of between
1.28x and 345.1x compared to traditional finite elements.

Although our solver implementation in Section 5 serves as proof
of concept for applying wrinkle fields as a new approach to static
simulation of fine wrinkling, many avenues of future work remain
before a wrinkle-field approach is industry-ready as a practical
replacement for the current, triangle-element-based approach:

Performance. This paper largely focused on foundational the-
ory, rather than low-level performance optimization (nevertheless,
in the experiments of Section 6.5 we were able to achieve signif-
icantly faster performance with TFW compared to baseline StVK,
due to the vastly coarser mesh needed by TFW). To compete with
commercial GPU-based cloth solvers, TFW would need additional
performance improvements. The performance bottleneck for TFW

(see Appendix F.1 for a breakdown) is the SQP solve for amplitude
and frequency (Section 5.2); at a mininum, a high-performance im-
plementation of TFW would need to use a parallelized QP solver
on the GPU instead of the CPU-based NASOQ library. Other po-
tential optimizations include starting from a better initial guess for
amplitude and phase (based on additional analysis of the physics of
wrinkling, or provided by a data-driven approach), simplifying the
discretization of the reduced-order elastic energy (for example, by
replacing three-point quadrature of the integrals in Equation (30)
with simpler expression derived using Discrete Exterior Calculus),
or replacing our SQP strategy for minimizing elastic energy with a
different optimization strategy.

Two-way Base Surface-Wrinkle Field Coupling. We derived an ap-
proximated elastic energy 𝐸wf (Equation (27)) that involves both a
base surface 𝒓𝑏 and wrinkle field variables 𝑎,𝜔 . In this paper, we
solve first for the base surface using tension field theory (TFT ), and
then fix this surface and optimize independently for the wrinkle
variables. A natural question is whether the TFT base mesh is truly
optimal in terms of minimizing 𝐸wf . As we can see from Fig. 5,
in some cases it is clear that the TFT solution does not “puff out"
enough: the wrinkling of the draped cloth corregated the surface,
which in turn penalizes bending of the cloth perpendicular to the
wrinkles, near where the cloth breaks contact with the sphere, so
that the draped cloth has a more conical than cylindrical coarse
shape. As discussed earlier, jointly optimizing 𝐸wf for both 𝒓𝑏 and
𝑎,𝜔 does not work, since 𝐸wf assumes that the base surface strain
and curvature are slow variables, which is no longer necessarily
true if 𝒓𝑏 is allowed to vary arbitrarily. One idea might be to parame-
terize 𝒓𝑏 using differential coordinates, a low-resolution subdivision
surface, or some other space of deformations that ensures the base
surface strain and curvatures stay slow. Another potential approach
to two-way coupling would be to alternate solving for 𝒓𝑏 and the
wrinkle field, where an “effective” rest curvature is computed for 𝒓𝑏
based on the current wrinkle field at each iteration.

Other Base Surface Limitations. Even when using TFT to compute
the base surface, sometimes the base surface mesh can have large
variations in strain, or defects such as inverted or collapsed trian-
gles, which can cause TFW to struggle. For example, the relatively
slow performance of TFW on the inflated torus example is due to
high noise in the amount of compression in the corresponding base
mesh. The root cause of this noise is that TFT has multiple possible
solutions in regions of compression. For example, if a square piece
of cloth is compressed in the horizontal direction, both the deforma-
tion where the entire cloth has equal compression strain (desirable),
and the deformation where only a thin vertical column of the cloth
compresses while the rest of the cloth translates isometrically (un-
desirable), are minimizers of the TFT energy. The quality of the
TFT base surface might be improved by adding some regularization
terms to the TFT energy, or by incorporating two-way coupling of
the base surface with the wrinkle patterns, as discussed above.

Phase Ambiguity. Our approach computes wrinkle amplitude and
frequency, and then solves for phase 𝜙 as a post-process, with 𝑑𝜙 =

𝜔 . This recovery procedure can determine phase only up to a global
phase shift, 𝜙 → 𝜙 + 𝑘 ; this shift cannot be determined from the
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Models StVK ARCSim TFW
#verts #iterations stable time (s) #verts #verts #iterations stable time (s)

sphere drape — — — 32k 1.6k− 30 11.08
symmetric dress 40k — — 8k 1.4k 20 8.18
asymmetric dress 52k− — — 13k 3.4k 30 23.19
pants 60k− — — 15.8k 4k 25 38.94
stretched sheet 260k+ 13 886.80 11k 522− 13 2.57
sheared rectangle 20k+ 220 673.11 13k 1k− 50 9.63
torus 40k 7 57.29 — 2k 55 44.81
balloon 40k 10 76.52 — 5k 30 52.33
teabag 30k 24 148.37 — 936− 13 1.98
teddy 98k 10 251.91 — 2k− 75 26.29
twisted cylinder 96k+ 120 1528.68 68k 688 400 50.94

Table 1. Timing and resolution information for the examples we show in the paper. Reported mesh resolutions are generally the coarsest-possible that do
not exhibit degradation of the wrinkle shape; see main text for details of the methodology. A superscript − means that the lowest-resolution mesh we tried
produced good results (so that the true minimum-required resolution might be lower); a superscript + indicates that the highest-resolution mesh we tried
(listed in the table) failed to produce acceptable results after one week of simulation; we did not continue to probe higher resolutions for these examples. We
did not simulate the inflatable structures using ARCSim as the simulator does not include a pressure model. For examples that do not involve contact, we also
report timing information for TFW and StVK. We list the iteration number and wall-clock time for when each simulation converges to a visually-stable result
(see main text for methodology).

TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Fig. 15. An asymmetric dress draped over a mannequin. The first row shows the front view of the dress after simulation and the second row shows the back
view of the same dress. From left to right: the 3.4k-vertex base mesh, simulated using TFT ; the simulated wrinkled shell using TFW on that base mesh; the
result from StVK on a Delaunay mesh with 50k vertices; the result from MD on a 50k-vertex mesh; the result from ARCSim, with adaptive remeshing enabled;
a wireframe rendering of that same ARCSim result (the mesh has 13k vertices). For StVK and MD, we tuned mesh resolution to be about as coarse as possible
without causing significant degradation in the wrinkle pattern.

wrinkle field. For statics problems the shift is unimportant, as it
affects the precise wrinkled geometry, but not coarse-scale features
of the wrinkled surface such as wrinkle orientation, amplitude, and
frequency. The phase shift ambiguity does mean that the wrinkled
surface 𝒓𝑤 cannot be used to measure convergence of the wrinkle
field optimizations, in experiments such as we did in Section 6.5. Any

use of wrinkle fields for dynamics would also need to account for this
phase ambiguity across time, as otherwise, sudden changes in the
global phase shift would be perceived as “popping” in animations.

Dynamics. This paper considers only shell statics. Extending TFW
to dynamics is a natural follow-up direction; the simplest approach
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TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Fig. 16. A mannequin wearing simulated pants. The first row shows the front view of the pants after simulation and the second row shows the back view of
the same pants. From left to right: a 4k-vertex base mesh, simulated using TFT ; the simulated wrinkled shell using TFW on that base mesh; the result from
StVK on a Delaunay mesh with 60k vertices; the result fromMD on a 60k-vertex mesh; the result from ARCSim, with adaptive remeshing enabled; a wireframe
rendering of that same ARCSim result (the mesh has 15k vertices). For StVK andMD, we tuned mesh resolution to be about as coarse as possible without
causing significant degradation in the wrinkle pattern.

would be to animate the base mesh and then add wrinkles quasi-
statically. The main new feature needed for such quasi-static simula-
tion is a method for solving for a temporally-coherent global phase
shift in 𝜙 at each time step (see previous point) so that wrinkles
appear to change smoothly over time. More interesting, and more
challenging, would be to equip the wrinkles themselves with inertia,
and implement two-way coupling of the wrinkles and base mesh
(see above).

Collisions. We currently consider only collisions of the TFT base
mesh against the environment. There are many interesting direc-
tions for future work improving collision handling of wrinkled
surfaces, such as taking into account collisions when solving for the
wrinkle field (so that wrinkles in contact with other objects have
flattened shape), detecting and resolving self-contact of the wrinkled
surface (where 𝒓𝑤 self-collides but 𝒓𝑏 does not), anisotropic friction
models that account for the wrinkling direction and amplitude when

a wrinkled surface slides against another object, etc. Most of these
future directions will first require research into handling two-way
coupling of the base surface and the wrinkle field (see above).

More General Constitutive Models. Real-world textiles are woven
or knitted, and obey macroscopic constitutive laws that are far
more complex than the StVK isotropic material we assume in our
derivations. Theoretically, there is no obstruction to extending our
derivation in Section 3 to other constitutive laws. For orthotropic or
anisotropic linear materials, the St. Venant-Kirchhoff material norm
∥ · ∥SV would need to be replaced by a different quadratic norm,
new expressions for the in-plane correction terms (Equation (16);
see also Appendix C and Equation (36)) would need to be derived
for the new norm, and the in-plane energy term (Equation (22))
updated accordingly. In our derivation we exploited symmetries of
the STVKmaterial norm to simplify these calculations, and for other
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TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Fig. 17. A symmetric dress draped over a mannequin. The first row shows the front view of the dress after simulation and the second row shows the back view
of the same dress. From left to right: a 1.4k-vertex base mesh, simulated using TFT ; the simulated wrinkled shell using TFW on that base mesh; the result from
StVK on a Delaunay mesh with 40k vertices; the result fromMD on a 40k-vertex mesh; the result from ARCSim, with adaptive remeshing enabled; a wireframe
rendering of that same ARCSim result (the mesh has 7.8k vertices). For StVK andMD, we tuned mesh resolution to be about as coarse as possible without
causing significant degradation in the wrinkle pattern.

constitutive models, the corresponding equations may be less pleas-
ant. Nonlinear materials would require more extensive rederivation,
while still following the roadmap we sketch in Section 3. However,
we suspect general nonlinear constitutive models would produce
results that differ little from those of their linearizations, since all
hyperelastic material models reduce to an (isotropic or anisotropic)
linear material in the small-strain limit, and note that in regions of
wrinkling, the strain in the compression direction is typically small
since most of it has been relieved by buckling.

More General Wrinkling Model. Several of our modeling decisions
in Section 3 might be revisited and extended in future work: for
instance, we assume a single predominant wrinkling frequency at
each point on the shell, and while this assumption appears to hold in
physical experiments, we do know that near boundary layers, real-
world shells often exhibit a second, finer frequency of wrinkling (see
the sheared rectangle experiment in Figure 9 for instance). One could
also explore more general expressions for the wrinkling waveform,
for instance by adding additional frequencies to 𝑓𝑡 , or changing the
normal displacement from a cosine wave to other shapes such as
sinc waves [Evgeny and Harders 2019].

Injecting Noise and Asymmetry. In some examples, such as the
sphere drape (Figure 5) and the inflated structures, the TFWwrinkles
can look “too symmetric” compared to wrinkles in real materials,
where imperfections and defects break symmetry. Real wrinkles
often also collapse under gravity and fold on themselves (noticeable
for the sphere drape, in particular), phenomena we do not attempt to

model in this paper. In future work, post-processing could be done
on the wrinkle field to emulate these effects, while maintaining the
correct wrinkle frequency and amplitude.
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ARCSim TFW StVK
With adaptivity Without adaptivity Varying mesh experiments Varying resolution experiments Irregular mesh Regular (↖) Regular (↗)

Wireframe 6k verts, 10 wrinkles 1309, 46 180, 46 6k, 10 6k, 72 6k, 12

69k, 32† 12k, 12 960(↖) , 39 344, 46 12k, 12 12k, 24 12k, 12

† : rough estimate
24k, 13 960(↗) , 40 688, 47 24k, 14 24k, 68 24k, 20

48k, 16 1080(↖) , 38 1309, 46 48k, 15 48k, 36 48k, 16

96k, 17 1080(↗) , 40 2543, 45 96k, 19 96k, 48 96k, 20

Fig. 21. Our results for the twisted cylinder experiments. Numbers below figures are (resolution, # wrinkles); for the adaptive ARCSim simulation, wrinkle
count is a rough estimate as the irregularity of the wrinkles precludes an exact count. The symbols (↖) and (↗) indicate use of a regular mesh with edges
aligned along and against the wrinkles, respectively.
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Fig. 22. Comparisons of our TFW algorithm and the baseline StVK simulations against wall clock time, on a log scale. Each rendered result is sampled at time
corresponding to the image’s left edge. Background color indicates current state of each simulation: light red indicates the simulation has not yet reached a
visually-stable state, light blue indicates the simulation has become visually-stable, and light green means the solver has terminated due to having small
stationarity residual. The boundary between colors correspond to the transitions between these three states, on the wall-clock-time axis. Note that the
transitions between red and blue are exactly the times listed in Table 1.
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A KIRCHHOFF-LOVE SHELLS

𝒔 (𝑢, 𝑣, 𝑡) = 𝒓 (𝑢, 𝑣) + 𝑡 �̂�(𝑢, 𝑣)

where �̂� =
𝒓𝑢×𝒓𝑣
∥𝒓𝑢×𝒓𝑣 ∥ is the unit normal of the midsurface. This map

induces a (volumetric) metric 𝒈 on the slab𝑈 × [−ℎ
2 ,

ℎ
2 ]:

𝒈 =

[
𝑰 − 2𝑡 𝑰𝑰 +𝑂 (𝑡2) 0

0 1

]
, (31)

where
𝑰 = d𝒓𝑇 d𝒓, 𝑰𝑰 = −d𝒓𝑇 d�̂�

are the first and second fundamental forms of the midsurface.
If the residual strains in the shell are linear in the thickness

direction, the shell’s rest state can be recorded in terms of a “rest
metric” with similar expression [Chen et al. 2018; van Rees et al.
2017]:

𝒈 =

[
𝑰𝑢 − 2𝑡 𝑰𝑰𝑢 0

0 1

]
. (32)

Notice that if we take the rest state as the parameter domain, which
is almost always the case for sewn garments, then 𝑰𝑢 = 𝒊𝒅 and
𝑰𝑰𝑢 = 0.

For a St. Venant-Kirchhoff material, and assuming in-plane strain
is 𝑂 (ℎ), the elastic energy in Equation (1) can be derived from the
above setup, by integrating through the midsurface direction, and
dropping energy terms of order higher than cubic [Weischedel 2012].
As mentioned in the main text, the matrix norm in the Koiter

energy describes the elastic constitutive law,

∥𝑀 ∥2SV =
𝛼

2
tr2 (𝑀) + 𝛽 tr(𝑀2),

where the Lamé parameters are related to the Young’s modulus 𝑌
and Poisson’s ratio 𝜈 by

𝛼 =
𝑌𝜈

1 − 𝜈2
, 𝛽 =

𝑌

2(1 + 𝜈) . (33)

We discretize the first fundamental form as piecewise constant,
derived directly from the definition 𝑰 = d𝒓𝑇 d𝒓 and the fact that 𝒓 is
linear within each triangle face f𝑖 𝑗𝑘 :

𝑰 =

[
∥v𝑗 − v𝑖 ∥2 (v𝑗 − v𝑖 ) · (v𝑘 − v𝑖 )

(v𝑘 − v𝑖 ) · (v𝑗 − v𝑖 ) ∥v𝑘 − v𝑖 ∥2
]
,

Here the first fundamental form is expressed in the triangle’s own
barycentric coordinates.
For the second fundamental form, we follow the discretization

of Grinspun [2003] and others [Chen et al. 2018; Weischedel 2012]
based on jumps in the mid-edge normal:

𝑰𝑰𝑏 = 2
[
(v𝑗 − v𝑖 ) · (n̂𝑗 − n̂𝑖 ) (v𝑘 − v𝑖 ) · (n̂𝑗 − n̂𝑖 )
(v𝑘 − v𝑖 ) · (n̂𝑗 − n̂𝑖 ) (v𝑘 − v𝑖 ) · (n̂𝑘 − n̂𝑖 )

]
,

where n̂𝑖 is the mid-edge normal on the edge e𝑗𝑘 opposite to v𝑖 on
face f𝑖 𝑗𝑘 . We take this mid-edge normal to be

• the unit face normal if e𝑗𝑘 is a boundary edge;
• the average of the face normals on the two adjacent faces of
e𝑗𝑘 , otherwise.

B TENSION FIELD THEORY
Given a parameter domain 𝑈 ⊂ R2 with material metric 𝑰𝑢 as
described in Appendix A, the stretching energy density𝑊𝑠 in Equa-
tion (2) can be written as:

𝑊𝑠 (𝜆1, 𝜆2) = ∥𝑰−1𝑢 𝑰 − 𝒊𝒅∥2SV
=
𝛼

2
(𝜆1 + 𝜆2)2 + 𝛽 (𝜆21 + 𝜆

2
2)
. (34)

Here 𝜆1,2 are the eigenvalues of the Green strain 𝑰−1𝑢 𝑰 − 𝒊𝒅. Without
loss of generality, we assume 𝜆1 ≥ 𝜆2.

In tension field theory, this stretching energy density is modified
to be identical to𝑊𝑠 in regions of pure tension, but so that the
material exerts no force resisting compressive stress. In terms of the
principal strains, this behavior is captured by the formula

�̃�𝑠 (𝜆1, 𝜆2) =


0, 𝜆1 < 0, 𝜆2 < 0
𝑊𝑠

(
𝜆1, 𝜆2 (𝜆1)

)
, 𝜆1 ≥ 0, 𝜆2 < 𝜆2 (𝜆1)

𝑊𝑠 (𝜆1, 𝜆2), 𝜆1 ≥ 0, 𝜆2 ≥ 𝜆2 (𝜆1),

where
𝜆2 (𝜆1) = argmin

𝜆2

𝑊𝑠 (𝜆1, 𝜆2) .

See Montes et al. [2020] for the full derivation of these expressions.

C IN-PLANE WRINKLE CORRECTION CALCULATION
In this section, we use the notation and definitions of Section 3.4
for𝒘,𝒘⊥ and d𝜙⊥, and derive the expressions for 𝒗1 and 𝒗2 cited in
the main paper.

First, notice that we can zero out the term (15) by simply setting

𝒗2 =
𝑎2

8
𝑰−1
𝑏

d𝜙𝑇 .

The 𝒗1 term is more involved. Writing 𝑋 = −2𝑎𝑰𝑰𝑏 and 𝒚 = 𝑰𝑏𝒗1,
and using the notation [𝑀]𝑇 = 𝑀 +𝑀𝑇 , minimizing the term (14)
amounts to solving:

min
𝒗1∈R2

𝑰−1𝑢

(
𝑋 +

[
𝒚d𝜙𝑇

]
𝑇

)2
SV

(35)

One can check that, for any symmetric matrix𝑀 ,

∥𝑰−1𝑢 𝑀 ∥2SV =
𝛼

2

(
∥�̂� ∥2𝑀 +

�̂�⊥2
𝑀

)
+ 𝛽

(
∥�̂� ∥2𝑀 + 2

(
�̂�𝑇𝑀�̂�⊥

)2
+

�̂�⊥2
𝑀

) (36)

using the fact

tr(𝑰−1𝑢 𝑀) = �̂�𝑇𝑀�̂� +
(
�̂�⊥)𝑇

𝑀�̂�⊥

where �̂� and �̂�⊥ are the normalized 𝒘 and 𝒘⊥ under 𝑰𝑢 norm. By
setting (recall:𝒘 = 𝑰−1𝑢 𝑑𝜙𝑇 )

�̃� = ∥𝒘 ∥𝑰𝑢 𝒚, 𝑀 = 𝑋 + [�̃��̂�𝑇 𝑰𝑢 ]𝑇
and representing �̃� in the basis {𝑰𝑢�̂�, 𝑰𝑢�̂�⊥},

�̃� = 𝑥1𝑰𝑢�̂� + 𝑥2𝑰𝑢�̂�⊥,

Equation (35) can be converted into a quadratic problem

min
�̃�1,�̃�2

𝛼

2
(𝑐1 + 2𝑥1 + 𝑐2)2 + 𝛽

(
(𝑐1 + 2𝑥1)2 + 𝑐22 + 2(𝑐3 + 𝑥2)2

)
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where 𝑐1 = �̂�𝑇𝑋�̂� , 𝑐2 =
(
�̂�⊥)𝑇

𝑋�̂�⊥ and 𝑐3 = �̂�𝑇𝑋�̂�⊥. The optimal
solution is given by

𝑥∗1 = −1
2

(
𝑐1 +

𝛼

𝛼 + 2𝛽
𝑐2

)
= −1

2
𝒘𝑇𝑋𝒘

𝒘𝑇 𝑰𝑢𝒘
− 𝛼

2𝛼 + 4𝛽

(
𝒘⊥)𝑇

𝑋𝒘⊥

(𝒘⊥)𝑇 𝑰𝑢𝒘⊥

𝑥∗2 = −𝑐3 = − 𝒘𝑇𝑋𝒘⊥

∥𝒘 ∥𝑰𝑢 ∥𝒘⊥∥𝑰𝑢

𝒚∗ = −
(

𝛼

2𝛼 + 4𝛽
tr(𝑰−1𝑢 𝑋 )
∥𝒘 ∥2𝑰𝑢

+ 𝛽

𝛼 + 2𝛽
𝒘𝑇𝑋𝒘

∥𝒘 ∥4𝑰𝑢

)
d𝜙𝑇

− 𝒘𝑇𝑋𝒘⊥

∥𝒘 ∥2𝑰𝑢 ∥𝒘⊥∥2𝑰𝑢

(
d𝜙⊥

)𝑇
and the optimal value attained is

𝛽 (𝛼 + 𝛽)
(𝛼/2 + 𝛽) 𝑐

2
2 =

𝛽 (𝛼 + 𝛽)
(𝛼/2 + 𝛽)

[ (
𝒘⊥)𝑇

𝑋𝒘⊥
]2

∥𝒘⊥∥𝑰 4𝑢
.

Unwinding the changes of variables leads to the formula for 𝒗1 in
Section 3.4.

D DERIVATION OF STRETCHING TERM IN TFW MODEL
In Equation (19), we have

𝒓 ≈ 𝒓𝑏 + d𝒓𝒃 𝑰−1𝑏

(
𝑎 sin𝜙 𝒗 + 𝑎

2

8
sin 2𝜙 d𝜙𝑇

)
+ 𝑎 cos𝜙 �̂�𝑏 .

Applying the assumptions about fast and slow variables stated in
Section 3.3, we can compute d𝒓 in the following way:

d𝒓 =d𝒓𝒃

(
𝒊𝒅 − 𝑎 cos𝜙 𝑰−1

𝑏
𝑰𝑰𝑏 + sin𝜙

(
𝑰−1
𝑏

𝒗
)
d𝑎 + 𝑎 cos𝜙

(
𝑰−1
𝑏

𝒗
)
d𝜙

+ 𝑎
4
sin 2𝜙

(
𝑰−1
𝑏

d𝜙𝑇
)
d𝑎 + 𝑎

2

4
cos 2𝜙

(
𝑰−1
𝑏

d𝜙𝑇
)
d𝜙

)
+ �̂�𝑏

(
cos𝜙d𝑎 − 𝑎 sin𝜙d𝜙 + 𝑎 sin𝜙

(
𝑰−1
𝑏

𝒗
)𝑇

𝑰𝑰𝑏

+ 𝑎
2

8
sin 2𝜙

(
d𝜙 𝑰−1

𝑏

)
𝑰𝑰𝑏

)
=d𝒓𝒃 ( 𝒊𝒅 +𝐴) + �̂�𝑏𝐵,

where the matrix 𝐴 and vector 𝐵 collect the various terms in the
above expression. We then compute

( 𝒊𝒅 +𝐴)𝑇 𝑰𝑏 ( 𝒊𝒅 +𝐴) =𝑰𝑏 + [𝑰𝑏𝐴]𝑇 + 𝑜 (𝐴)
≈ 𝑰𝑏 − 2𝑎 cos𝜙 𝑰𝑰𝑏 + sin𝜙 [𝒗d𝑎] + 𝑎 cos𝜙 [𝒗d𝜙]𝑇

+ 𝑎
4
sin 2𝜙 [d𝜙𝑇 d𝑎]𝑇 + 𝑎

2

2
cos 2𝜙d𝜙𝑇 d𝜙

= 𝑰𝑏 + 𝑎
4
sin 2𝜙 [d𝜙𝑇 d𝑎]𝑇 + 𝑎

2

2
cos 2𝜙d𝜙𝑇 d𝜙

− 2𝑎 cos𝜙 𝑰𝑰𝑏 + 𝑎 cos𝜙 [𝒗d𝜙]𝑇 + 𝑜 (∥d𝑎∥)

and

𝐵𝑇𝐵 = cos2 𝜙d𝑎𝑇 d𝑎 + 𝑎2 sin2 𝜙d𝜙𝑇 d𝜙 − 𝑎 sin𝜙 cos𝜙 [d𝜙𝑇 d𝑎]

+ 𝑜
(
𝑎2∥d𝜙 ∥2

)
+ 𝑜 (𝑎∥𝒗∥) + 𝑜

(
𝑎∥d𝜙𝑇 d𝑎∥

)
≈ cos2 𝜙d𝑎𝑇 d𝑎 + 𝑎2 sin2 𝜙d𝜙𝑇 d𝜙 − 𝑎 sin𝜙 cos𝜙 [d𝜙𝑇 d𝑎] .

To avoid (even more) clutter, implicit in the above expressions is the
use of one-form and vector norms 𝑰−1𝑢 and 𝑰𝑢 , respectively, and the
matrix norm ∥ · ∥SV.

Then, after dropping the high order terms, we get

𝑊𝑠 =𝑰
−1
𝑢 (d𝒓d𝒓 − 𝑰𝑢 )

=𝑰−1𝑢 (𝑰𝑏 − 𝑰𝑢 + 1
2
d𝑎𝑇 d𝑎 + 1

2
𝑎2d𝜙𝑇 d𝜙)

+ cos𝜙
(
𝑰−1𝑢 (−2𝑎𝑰𝑰𝑏 + 𝑎[𝒗d𝜙]𝑇 )

)
+ sin 2𝜙

(
𝑰−1𝑢 (−𝑎

4
[d𝜙𝑇 d𝑎]𝑇 )

)
+ cos 2𝜙

(
1
2
𝑰−1𝑢 d𝑎𝑇 d𝑎

)
.

From here we recover the expression for the wrinkle field stretch-
ing energy in Section 3.5 by plugging in the definition of 𝒗, and
applying the coarse-graining operator.

E ADDITIONAL IMPLEMENTATION DETAILS
In this appendix, we flesh out some of the steps described at a high
level in Section 5 of the main paper.

E.1 Triangulation
We Delaunay-triangulate the parameter domain𝑈 to create a sim-
ulation mesh. In many of our examples, the parameter domain is
given as a set of disconnected patches, which are to be sewn to-
gether into a garment or balloon along shared boundaries; we do so
to generate a single connected simulation mesh 𝐾 .
In Section 6.3, we analyze the effect of meshing on the TFW

results.We observe that although ourmethod is fairly robust tomesh
resolution and tessellation, using a highly symmetric mesh, or one
whose edge directions have consistent bias, can result in artifacts,
both during simulation of TFT and during Loop subdivision. We
therefore recommend always using an irregular but coarse Delaunay
mesh.

E.2 Initialization
In this step, we choose initial guesses for 𝑎 and 𝜔 , based on the
strain of the base mesh embedding 𝑉𝑏 . We assume each triangle
f in 𝐹 has constant strain (see Appendix A for details on how we
discretize strain and related quantities), and compute the direction
𝒘 and magnitude 𝜖𝒘 of the most negative principal strain. We ini-
tialize amplitude to 𝑘

√
2𝜖𝒘 , where 𝑘 is an arbitrary constant (in

our experiments, this constant is set to min [0.01, 0.1 · bbox(𝑉𝑏 )],
where bbox(𝑉𝑏 ) is the diameter of the bounding box around the
base mesh), and compute a target frequency 𝜔e for each edge e of f
using Equation (8). (If the triangle has no negative principal strain,
we use 𝑎 = 0 and 𝜔e = 0 instead.)

Note that this procedure does not generally yield an integrable
one-form 𝜔 (in fact, the two triangles neighboring e usually will
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not even agree on 𝜔e). We project to the closest curl-free one-form
𝜔 in the least-squares sense using the Helmholtz decomposition.

E.3 Amplitude and Phase Optimization Details
Recall from Section 5 that we discretize the parameter domain𝑈 by
a coarse mesh 𝐾 = (𝑉𝑢 , 𝐹 , 𝐸), and discretize 𝑎 as a piecewise-linear
function on𝐾 and𝜙 as a one-form on the edges 𝐸. We can then write
the objective function in Equation (30) as a sum of contributions
from triangles not in𝑊 :

𝐸wf =
1
2

∑
f ∈𝐹,f∉𝑊

∫
f

(
ℎ

4
𝑊wf

𝑠 + ℎ
3

12
𝑊wf
𝑏

) √
det 𝑰𝑢 𝑑𝐴, (37)

where𝑊wf
𝑠 and𝑊wf

𝑏
collect the terms in Equations (20) and (26). d𝑎

is constant over each triangle, as are the fundamental forms 𝑰𝑢 , 𝑰𝑰𝑢 .
The other terms we need in order to implement Equation (37) are
𝜅⊥ and 𝑑𝜙 .

To estimate curvature of the wrinkle crests, we first compute
a vector 𝒘 per triangle, as described in Section 4.2, based on that
triangle’s (constant) base mesh strain tensor. We then robustly es-
timate principal curvatures and curvature directions via quadratic
fitting [Panozzo et al. 2010], which allows us to compute 𝜅⊥. Note
that 𝜅⊥ is a constant: it does not vary over the course of optimizing
𝐸wf.
Integrability induces one linear equality constraint for each tri-

angle not in𝑊 , enforcing that the circulation d𝜔 of 𝜔 around the
face is zero:

𝜔𝑖 𝑗 + 𝜔 𝑗𝑘 + 𝜔𝑘𝑖 = 0 (38)
for each face f𝑖 𝑗𝑘 ∉𝑊 with edges {e𝑖 𝑗 , e𝑗𝑘 , e𝑘𝑖 }.
On faces not in𝑊 , integrability allows us to recover a constant

d𝜙 on that face from the values of 𝜔 on the face’s edges, from the
defining equations

d𝜙
(
𝒗 𝑗 − 𝒗𝑖

)
= 𝜔𝑖 𝑗 , d𝜙

(
𝒗𝑘 − 𝒗 𝑗

)
= 𝜔 𝑗𝑘 , d𝜙 (𝒗𝑖 − 𝒗𝑘 ) = 𝜔𝑘𝑖 .

The integrability constraint on 𝜔 is exactly the condition that en-
forces that this overconstrained system of equations has a solution
(in practice we compute d𝜙 using only the first two equations, and
discarding the third as redundant).
Forming a global vector 𝒙 ∈ R |𝑉𝑏 |+ |𝐸 | by concatenating the un-

knowns 𝑎 and 𝜔 , applying the above discretization and three-point
quadrature [Zhang et al. 2009] to compute the integrals in Equa-
tion (37) yields a degree-eight polynomial function 𝐸 (𝒙) discretiz-
ing 𝐸wf. We minimize this polynomial subject to the simple non-
negativity constraints on amplitudes and the curl constraint, 𝐶𝒙 = 0,
on non-𝑊 faces,

min
𝒙
𝐸 (𝒙) s.t. 𝑆𝒙 ≥ 0, 𝐶𝒙 = 0 (39)

where 𝑆 is the selector matrix extracting amplitudes from 𝑥 . We
solve this system via sequential quadratic programming. At each
iteration, we use the NASOQ QP solver [Cheshmi et al. 2020] to
compute a descent directions 𝛿𝒙 , by solving the sparse, linearly
constrained quadratic minimization problem

min
𝛿𝒙

1
2
𝛿𝒙𝑇𝐻𝛿𝒙 s.t. 𝑆 [𝒙𝑘 + 𝛿𝒙] ≥ 0, 𝐶𝛿𝒙 = 0

where 𝒙𝑘 is the current iterate of 𝒙 and 𝐻 is a convexification of the
energy Hessian𝐻𝐸 (𝑥𝑘 ) (see below). We perform a line search [Moré

and Thuente 1994] in the 𝛿𝒙 direction to ensure each SQP iteration
decreases the energy and does not violate the inequality constraints.
We terminate this optimization process when one of following ter-
mination criteria are satisfied: (1) change in energy is smaller than
10−10, (2) the stationarity residual of (39) is smaller than 10−6, (3) the
update to 𝒙 is smaller than 10−10, (4) reach the maximum iteration
steps (1000 by default). We observe that, as expected, maximum
(unit-length) step sizes are accepted near optimality and so always
generate a feasible solution satisfying the constraints.

Hessian Projection. The quadratic form𝐻 must be positive-definite
in order for the above SQP scheme to succeed, since otherwise the
search direction 𝛿𝒙 cannot be guaranteed to be a descent direction.
We therefore select 𝐻 using one of two methods that ensure it is
positive-definite:

• computing the Hessian of each triangle’s contribution to the
sum in Equation (37), projecting that local Hessian to the clos-
est positive-definite matrix (using SVD), and then summing
those projected local Hessians to yield 𝐻 ;

• setting 𝐻 = 𝐻𝐸 (𝑥𝑘 ) + 𝜖 𝒊𝒅, where 𝜖 is a constant larger than
the most-negative eigenvalue in 𝐻𝐸 (𝑥𝑘 ), found via binary
search.

We leave further research into methods for projecting the energy
Hessian, or for combining the existing approaches into a high-
performance metastrategy, to future work; for the results shown in
this paper we use the first method at the beginning of the optimiza-
tion, and switch to the second once the energy decrease per step
becomes smaller than 10−8. See Section F.3 for convergence plots of
the SQP and additional discussion.

E.4 Phase Field Extraction
To visualize the wrinkled surface, we need to convert 𝜔 back into a
phase field 𝜙 . Although the curl constraints ensure that 𝜔 is locally
integrable, there is no guarantee that a𝜙 globally exists with d𝜙 = 𝜔 .
In the sphere drape example, for instance, it is possible that the
optimal 𝜔 encodes a fractional number of wrinkles around the cloth
circumference.
We borrow from the parameterization literature [Bommes et al.

2009] the idea of rounding 𝜔 to the nearest 𝜙 : we take 𝐾 , remove
the wrinkle-free faces 𝐹 , and cut the result into a topological disk.
We use Gurobi [2020] to solve

min
𝜙

∥d𝜙 − 𝜔 ∥2

subject to the constraint that the jump at each cut edge is an integer
multiple of 2𝜋 .
The resulting 𝜙 is defined on a triangle soup made from 𝐹 ; i.e.

two neighboring faces on 𝐾 that were cut along their common edge
might disagree on the value of 𝜙 at their shared vertices. But since
this disagreement is always a multiple of 2𝜋 , the cuts are invisible
during visualization.

E.5 Upsampling and Visualization
The output of the above TFW pipeline is the very coarse base mesh,
and the wrinkle field (𝑎, 𝜙) defined on its vertices. To visualize the
final wrinkled shell, the mesh and wrinkle fields must be upsampled
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(note that directly displacing the vertices of 𝐾 according to the
wrinkle field is not useful, as a single triangle often hosts multiple
wavelengths of wrinkles). We explicitly materialize an upsampled
mesh by applying Loop subdivision on 𝐾 (although, in principle, the
visualization could alternately be done on the fly with a tessellation
shader) and also applying the subdivision stencil to 𝑎 and 𝜙 . Some
care is needed when subdividing 𝜙 to correctly account for: (1)
the integer period jumps that can occur in 𝜙 across neighboring
triangles, and (2) triangles𝑊 where 𝜙 is missing.

We then displace the vertices of the upsampled base mesh using
Equation (19). Whereas the 𝒗1 term in this equation is crucial to the
correct physical modeling of the elastic energy landscape, we find
that this term has only a very slight effect on the visual appearance
of the wrinkled surface during the upsampling. We thus drop the
the 𝒗1 term from just this final visualization (but not from prior
computation of the TFWmodel) when upsampling and visualizing all
examples shown in this paper. The 𝒗1 term is nontrivial to estimate
on the upsampled base mesh, and subject to noise in regions where
d𝜙 is small. By contrast, the 𝒗2 term is included in this visualization
step as it is critical throughout. If we were to omit the 𝒗2 in-plane
term we would obtain unnatural-looking undulations (see Figure 5,
right, for an example) rather than the natural-looking, "bulging"
wrinkles with clear overhangs between wrinkles seen in Figure 5,
left.

F ADDITIONAL PERFORMANCE EXPERIMENTS AND
DATA

In this Appendix, we provide more detailed data and discussion
related to the performance experiments reported in Section 6.5.

F.1 Per-Iteration Timing Breakdown
We instrumented the wall-clock time required by each component
of one optimization step of StVK and TFW, and report these timings
(averaged over experiments and iterations) in Figure 23. For both
methods, the base solver (QP for TFW and linear for StVK) takes the
majority of time (≈ 70% for StVK and ≈ 55% for TFW). We made a
best effort to optimize both the StVK and TFW code, and that the QP
solver time dominates in both methods in Figure 23 confirms that
there are no gross inefficiencies remaining in either implementation.

For StVK, we used parallel supernodal sparse Cholesky decompo-
sition, provided by SuiteSparse [Chen et al. 2008], as the solver, and
the computational expense of the solve is due to the large size of
the hessian matrix. For TFW, we use NASOQ [Cheshmi et al. 2020]
as our QP solver, and the bulk of the expense is due to the presence
of the integrability equality constraints on 𝜔 and the inequality
constraints on 𝑎. NASOQ is not optimized for our (very simple) box
inequality constraints; in Table 2, we list the average time per itera-
tion spend by NASOQ, and compare to a baseline where we drop
the constraints and use CHOLMOD to solve the TFW QP instead.
The latter numbers are substantially faster than the former and
give a sense of the performance ceiling for TFW, should NASOQ be
replaced by a more performant QP solver.

Source code for our implementations of both TFW and StVK are
available in the supplementary material.

gradient calc.: 0.5%
hessian calc.: 25.7%
CHOLMOD solver: 70.8%
line search: 2.2%
miscellaneous: 0.8%

gradient calc.: 3.9%
hessian calc.: 20.4%
NASOQ solver: 54.8%
line search: 11.9%
miscellaneous: 9.1%

(a) StVK (b) TFW

Fig. 23. Breakdown of average time required by each component of TFW
and StVK during one optimization iteration (averaged over all iterations of
all collision-free examples in the paper). See Tables 2 and 4 for additional
timing breakdowns for TFW and StVK, respectively. “Miscellaneous" includes
bookkeeping such as updating the state variables, printing information
about the solver state to the console, checking for termination, etc.

F.2 Residual Plots for Each Example
For each of our examples, we provide plots in Figure 24 of the
gradient residual (for StVK) and of the stationarity residual, i.e
gradient projected onto the constraint manifold using the current
values of the Lagrange multipliers, for TFW. Both are plotted against
wall clock time. We also show stills of each simulation at the chosen
visually-stable time, as well as many iterations later, to illustrate
that there is indeed no significant visual difference between the
results at these two times.
For TFW, we see that the point at which a simulation becomes

visually stable (chosen by inspection of the simulation output) ap-
proximately matches the onset of a plateau in the residual plot. The
situation for StVK is less clear. In future work, it would be prac-
tically useful to formalize these observations into a quantitative
termination condition corresponding to being “visually stable.”

F.3 Convergence Discussion
In Tables 2 and 3, we provide additional timing data about termina-
tion of the simulations shown in Figure 22: recall that termination
occurs on each timeline where the background color changes from
blue to green, and that we terminate when either the residual in-
finity norm is smaller than 10−6 or the optimization exceeds 1000
iterations. Note that the gradient of energy with respect to position
has different units than the gradient with respect to amplitude 𝑎 or
to frequency 𝜔 ; it is thus only meaningful to compare TFW results
to each other and StVK results to each other, since each method is
essentially using a different termination condition.
In Figure 24, we observe that the gradient norm eventually con-

verges quadratically to zero, as expected. On the other hand, for
some examples the TFW stationarity residual appears to converge
only linearly. We believe the reason for this behavior is the non-
negativity constraint on𝑎: near optimality, the optimization problem
in Equation (39) becomes convex, but only in the feasible cone delin-
eated by the equality constraints and active inequality constraints.
In particular, near optimality the unconstrained Hessian can be in-
definite, even though the second-order change in energy is positive
in every feasible direction. Unfortunately, standard QP solvers, in-
cluding the ones we currently use (NASOQ) generally only accepts

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:30 • Zhen Chen, Hsiao-yu Chen, Danny M. Kaufman, Mélina Skouras, and Etienne Vouga

positive quadratic forms, requiring us to project any indefinite Hes-
sian to a nearby positive-definite matrix (see Appendix E for details).
The use of this modified Hessian during SQP prevents quadratic
convergence; in future work, NASOQ could potentially be replaced
by a QP solver that does not require modifying the Hessian in cases
where it is indefinite despite the constrained problem being locally
convex.

F.4 Initialization of StVK
Like in all statics problems, our StVK optimization requires, and
has performance sensitive to, an initial guess. In the main text, we
propose using the TFT base mesh as the initial guess for StVK, both
to maximize StVK ’s performance, and for maintaining consistency
of the experimental setup with TFW. We performed experiments to
justify this choice, with results listed in Table 4. Instead of the TFT
base mesh, in these experiments we used a problem-specific “flat”
state as the initial guess: for the stretched sheet, sheared rectangle,
torus, and balloon problems, we simply take the 2D rest mesh as the
flat state. For the teabag we export an unwrinkled, pre-optimization
initial guess from Marvelous Designer, and for the teddy, we start
from the unwrinkled geometry provided by Skouras et al. [2014].
For the twisted cylinder problem, we use an untwisted cylinder as
the flat state. Unsurprisingly, the TFT solution is universally a better
initial guess than these alternate flat states, since the TFT solution is
expected to match the StVK optimum, up to missing fine wrinkles.

G VIDEO COMPARISONS
In the supplementary materials, we provide videos of the equal-
effort comparison experiments illustrated in Figure 22. We play
back the optimization iterates for both TFW and StVK, where play-
back time is a multiple of wall clock time, chosen so that each clip

plays at reasonable speed. For TFW, we visualize amplitude 𝑎 as a
scalar color field on the base mesh (white is zero amplitude), and
likewise draw 𝑰−1𝑢 𝜔𝑇 as a vector field on 𝒓𝑏 (left animation). We
show the wrinkled surface 𝒓𝑤 as well (middle animation; note that
since we only recover phase 𝜙 up to an unknown global phase shift,
which is not necessarily temporally coherent between solver itera-
tions, the wrinkles on the surface can “drift” incoherently between
iterations; see Section 7 for more discussion of the phase ambiguity).
For StVK, we show the predicted vertex positions at each iteration
(right animation).

We use the same background color as in Figure 22 to indicate
the status of TFW and StVK at the each frame of the animations.
We also show, at the bottom of the video, a wall-clock time axis
for each animation, on which we mark the transition times where
each simulation becomes visually stable or terminates. In most cases,
termination of the TFW algorithm occurs well after TFW has reached
a visually stable state, and well before StVK does so. We speed up
the second portion of the animation (where TFW has terminated and
StVK is still running) to keep the movie length reasonable—precise
playback speed information is provided above the time axis. Each
clip ends when the StVK simulation terminates, and we pause each
animation for five seconds at the end.

Some notable behavior that we observe in the videos: for the TFW
stretched sheet experiment, amplitude first vanishes globally over
the sheet, and then wrinkles emerge at the center of the sheet, as
predicted by theory. Notice also that in some examples (such as the
Mylar balloon and torus), the vector field 𝑰−1𝑢 𝜔𝑇 has largemagnitude
near singularities. This behavior is expected (and corresponds to
high-frequency, low amplitude wrinkling at points where wrinkles
converge to a singular points).
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Models #vertices TFT TFW Average time per iteration (s)
#iterations total time (s) #iterations total time (s) total in NASOQ CHOLMOD

sphere drape 1.6k — — 46 15.06 0.33 0.18 0.013
symmetric dress 1.4k — — 72 29.74 0.41 0.28 0.011
asymmetric dress 3.4k — — 50 38.47 0.77 0.56 0.030
pants 4k — — 74 141.74 1.92 1.52 0.029
stretched sheet 522 10 0.45 23 3.93 0.17 0.10 0.0039
sheared rectangle 1𝑘 21 2.27 147 27.52 0.19 0.073 0.0082
torus 2𝑘 11 2.27 125 74.82 0.60 0.44 0.017
balloon 5𝑘 33 16.04 91 125.33 1.38 1.08 0.039
teabag 936 8 0.78 46 7.32 0.16 0.057 0.0034
teddy∗ 2𝑘 3 0.93 1001 322.25 0.32 0.19 0.0063
twisted cylinder 688 12 0.69 813 104.92 0.13 0.048 0.0056

Table 2. Additional timing information for the TFW solver. The TFT columns list the number of iterations and wall clock time spent computing the base
mesh (Section 4.1), and the TFW columns give the same information, for the solve for the wrinkle field variables (Sections 4.2 and 5.2). Note that the TFW
times are for when we terminate the TFW simulation due to small stationarity residual, or maximum iterations, and do not correspond to termination at the
visually-stable time (see Section F.3 for more discussion). Note that the time needed to compute the base mesh is negligible compared to the SQP solve for
amplitude and frequency. The last three columns, from left to right, list: the average wall clock time required by one TFW iteration, the amount of that time
spent specifically inside NASOQ (see also Figure 23), and the amount of time CHOLMOD would require for the same solve if the constraints were ignored.
This latter number serves as a ceiling for how efficient TFW might be, if the NASOQ solver were replaced by another, more efficient code.

Models #vertices TFT StVK Average time per iteration (s)
#iterations total time (s) #iterations total time (s) total in CHOLMOD

stretched sheet 260𝑘 17 640.39 22 1178.55 53.57 42.63
sheared rectangle 20𝑘 49 101.77 307 936.55 3.05 2.16
torus 40𝑘 13 84.47 46 337.91 3.25 2.02
balloon 40𝑘 291 1907.74 67 547.68 8.00 5.63
teabag 30𝑘 11 34.11 98 521.08 5.32 3.59
teddy 98𝑘 10 214.48 59 1188.25 20.14 14.44
twisted cylinder 960𝑘 33 308.03 424 6071.73 14.32 9.80

Table 3. Additional timing information for the StVK solver. The TFT columns list the number of iterations and wall clock time spent computing the base mesh
(Section 4.1), and the StVK columns give the same information, for the solve for the static shape using TFT as the initial guess. Note that the StVK times are
for when we terminate the StVK simulation due to small gradient residual, or maximum iterations, and do not correspond to termination at the visually-stable
time (see Section F.3 for more discussion). The last two columns list the average wall clock time required by one StVK iteration, and the amount of that time
spent specifically inside CHOLMOD (see also Figure 23).

Models #vertices StVK Average time per iteration (s)
#iterations total time (s) total in CHOLMOD

stretched sheet 260𝑘 105 6564.25 62.52 47.47
sheared rectangle 20𝑘 – – – –
torus 40𝑘 66 448.68 6.80 4.42
balloon 40𝑘 204 1651.71 8.10 5.40
teabag 30𝑘 229 1347.81 5.89 4.21
teddy 98𝑘 140 2259.93 16.14 10.30
twisted cylinder 960𝑘 596 10183.8 17.09 12.86

Table 4. Timing for an alternative StVK setup where a problem-specific “flat” state is used as the initial guess rather than the TFT base mesh (see Section F.4).
As in Table 3, the StVK columns give the number of iterations, and wall clock time, when we terminate the simulation due to small gradient residual or
maximum iterations. The last two columns list the average wall clock time required by one StVK iteration, and the amount of that time spent specifically
inside CHOLMOD. The shared rectangle experiment failed completely (the simulation exploded after a few iterations, due to the excessive strain in the initial
guess). Notice that the TFT initial guess leads to faster static solvers in all cases.
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TFW StVK

(a) Stationarity residual (b) Visually stable shape (c) Final shape (a) Gradient norm (b) Visually stable shape (c) Final shape

Fig. 24. Residual vs. wall clock time, plotted for each of our examples. For StVK, the residual is simply the gradient norm; for TFW, the residual includes
projection onto the constraints in Equation 39, i.e. ∥∇𝐿 ∥ =

∇𝐸wf + 𝑆𝑇 𝑦 +𝐶𝑇 𝑧
, where 𝑦, 𝑧 are Lagrange multipliers. The dashed lines indicate the time

where each simulation becomes visually stable, based on manual inspection. All norms are the infinity norm. In the second and third column, we show
stills of the wrinkled surface at the visually stable time (middle column) and at the end of the experiment (right column), after we let the simulation run
significantly past the visually stable time (we halt each simulation after 1000 iterations, or when the residual norm reaches 10−6, whichever comes first). For
more information about each experiment, please refer to Table 1 in the main text.
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