Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with

Dynamic Sparsity Patterns

BEHROOZ ZAREBAVANI, University of Toronto, Canada

DANNY M. KAUFMAN, Adobe Research, U.S.A
DAVID ILW. LEVIN, University of Toronto, Canada

MARYAM MEHRI DEHNAVI, University of Toronto, Canada

7.1x Faster Symbolic
2.2x Faster Cholesky Solve

a) Squeeze Out:
Frame 6

¢) Red region shows
Parth's localized region.

8.2x Faster Symbolic
5.5x Faster Cholesky Solve

b) Squeeze Out: d) The yellow line shows Parth's localization of the remeshing effect,
Frame 20

while the coloring represents the Laplacian solution.

Fig. 1. Parth’s adaptive reuse across changing sparsity patterns visualized for simulation and remeshing. In (a) and (b), we demonstrate Parth’s
application in two frames of the large-deformation Squeeze Out simulation benchmark from IPC [Li et al. 2020]. Applying Parth to the simulation with the
addition of three lines of code adaptively localizes these changes in the Hessian, with a resultant 7.1x speedup in symbolic analysis, leading to an overall 2.2x
speedup for Cholesky solves. In Figure (c), we visualize Parth’s localized change confinement on the simulation mesh, highlighted in red. Parth is also applied
to a remeshing benchmark (d), in which we solve the Laplace—Beltrami operator on triangle meshes while remeshing. When the remeshing patch consists of
2% of the mesh, Parth can reuse 92% of the prior ordering computation, resulting in a 5.5x speedup in the Cholesky solve.

We introduce Parth, a fill-reducing ordering method for sparse Cholesky
solvers with dynamic sparsity patterns (e.g., in physics simulations with
contact or geometry processing with local remeshing). Parth facilitates the
selective reuse of fill-reducing orderings when sparsity patterns exhibit
temporal coherence, avoiding full symbolic analysis by localizing the effect
of dynamic sparsity changes on the ordering vector. We evaluated Parth
on over 175,000 linear systems collected from both physics simulations
and geometry processing applications, and show that for some of the most
challenging physics simulations, it achieves up to 14x reordering runtime
speedup, resulting in a 2x speedup in Cholesky solve time—even on top of
well-optimized solvers such as Apple Accelerate and Intel MKL.

Authors’ addresses: Behrooz Zarebavani, University of Toronto, Toronto, Canada,
behrooz.zarebavani@gmail.com; Danny M. Kaufman, Adobe Research, Seatle, US.A,
kaufman@adobe.com; David IW. Levin, University of Toronto, Toronto, Canada,
diwlevin@cs.toronto.edu; Maryam Mehri Dehnavi, University of Toronto, Toronto,
Canada, mmehride@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2025/8-ART $15.00

https://doi.org/10.1145/3731179

CCS Concepts: « Dynamic sparse computation; « Inspector-Executor
Framework; « Symbolic Analysis and Numerical Computation; «
Sparse Cholesky Solver; « Matrix Re-ordering; - Physics-Based Simu-
lation; - Sparse Matrix Computation;

ACM Reference Format:

Behrooz Zarebavani, Danny M. Kaufman, David LW. Levin, and Maryam
Mehri Dehnavi. 2025. Adaptive Algebraic Reuse of Reordering in Cholesky
Factorizations with Dynamic Sparsity Patterns. ACM Trans. Graph. 44, 4
(August 2025), 17 pages. https://doi.org/10.1145/3731179

1 INTRODUCTION

Linear solvers lie at the heart of many applications in graphics and
scientific computing. Due to the structure induced by mesh-based
computations, many common operations such as solving partial
differential equations or minimizing a variational energy give rise
to sparse systems of linear equations — for the solution of which, it
is either necessary or convenient to rely on Cholesky solvers. As a
result, their accelerations are well-studied. However, the runtime
of graphic applications often remains dominated by the cost of
Cholesky solves, necessitating their further acceleration.

Efficient sparse Cholesky solvers are typically designed with static
sparsity patterns in mind. The solution procedure itself is divided

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3731179
https://doi.org/10.1145/3731179

2 « Behrooz Zarebavani

into two steps: "symbolic analysis," where the sparsity pattern of
the matrix representing the system of linear equations is analyzed,
and "numerical computation,” which uses the symbolic analysis
information to efficiently compute the solution. Often, a single sym-
bolic analysis requires more computational resources than a single
numerical computation (see Section 5). In cases of fixed sparsity, re-
peated solves can be accelerated by caching and reusing the results
of a single symbolic computation. However, in applications with
changing sparsity patterns, this optimization is unavailable.

In this work, we focus on optimizing the performance of Cholesky
solvers in applications with temporally coherent, local changes in
sparsity pattern, such as those observed in contact simulation with
elasticity [Li et al. 2020] and geometric operations which involve
local remeshing [Schmidt et al. 2023; Sellan et al. 2020] in their
computational pipeline. In such applications, the overhead of re-
peated symbolic analyses becomes the bottleneck of linear solve
costs. For example, in our evaluation of Incremental Potential Con-
tact (IPC) [Li et al. 2020], we see that symbolic analysis accounts
for up to 78% of the total runtime of the Cholesky solver. Also, in
our evaluation of the patch remeshing pipeline (see Section 16), we
observe that 82% of the total runtime of the Cholesky solver is spent
on symbolic analysis. By leveraging temporal coherence in sparsity
patterns, common in graphics workflows, we adaptively reuse prior
symbolic analysis to accelerate sparse Cholesky solves.

Our main contribution, Parth, is an adaptive and general method
that reuses symbolic analysis across repeated Cholesky solves when
sparsity changes are localized and temporally coherent. Parth has
two key objectives: (I) to enable adaptive reuse of symbolic analysis,
and (II) to allow general-purpose integration with high-performance
Cholesky solver libraries. These objectives ensure ease of use and
portability while enabling speed-ups with state-of-the-art, reliable
and performant Cholesky solvers.

Specifically, Parth accelerates the fill-reducing ordering step of
symbolic analysis by reusing computation across calls to the sym-
bolic analysis. Our evaluation of 175,000 linear systems from chal-
lenging physics simulations and geometric processing problems
reveals that fill-reducing ordering is the primary bottleneck in sym-
bolic analysis. This step computes a permutation to minimize fill-ins
during the Cholesky solve, crucial for a fast solve [Davis et al. 2016].
Focusing on the adaptive reuse of fill-reducing ordering allows us
to integrate Parth into well-known performant Cholesky solvers as,
while they differ in their underlying symbolic steps, they all employ
fill-reducing ordering in their computational pipeline.

For example, by integrating Parth into Apple Accelerate [Inc.
2023], and evaluating it on one of the challenging simulations in
IPC (“Dolphin funnel”), we observe a 14x ordering runtime speedup
without side effect on numerical performance. This speedup trans-
lates to an average of 2.2x speedup per solve, which also ends up
accelerating the total solve time by 2x. Additionally, we demonstrate
that by adding the three lines of code required to integrate Parth
into the Cholesky solve computational pipeline of our IPC bench-
mark (see Section 5.2), our most challenging simulation (“Arma
Roller”) achieves seven hours less computational time with only a
1.5x speedup in the total Cholesky solve runtime, without any side
effects on numerical performance.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Parth achieves this speedup through a novel three-step process.
First, it decomposes the graph dual of the input matrix using its
hierarchical graph decomposition algorithm, which is suitable for
decomposing fill-reducing orders. Next, it computes the fill-reducing
order in each of the decomposed sub-graphs. Finally, when changes
occur in the matrix representing a linear system—whether a change
in the number of rows or columns or a change in the non-zero
entries—Parth detects these changes and, using several novel algo-
rithms, updates the decomposition to confine these changes and
locally update the fill-reducing ordering vector. This process main-
tains an adaptive decomposition without the need for user tuning
and allows for the reuse of computation in unchanged domains.

In summary, we present Parth, a method that reuses symbolic
information in the presence of dynamic sparsity patterns with
temporal coherence across calls to the Cholesky solver. To show
its effectiveness, we evaluate Parth’s performance across a wide
range of linear systems with different behaviour in a change in
the sparsity structure of the systems. We focus on three highest-
performing Cholesky solvers—CHOLMOD [Chen et al. 2008], the
recently developed. Apple Accelerate sparse kernels [Inc. 2023], and
Intel MKL [Schenk et al. 2001]. ! We are open-sourcing the Parth
codebase at https://github.com/BehroozZare/Parth to enable the
community to readily integrate and benefit from our approach. Our
extensive analysis, combined with public access to Parth, provides in-
sights into how Parth improves performance across different solver
frameworks and reveals specific performance characteristics of each
state-of-the-art Cholesky solver. This transparency and accessibility
will help practitioners make informed, application-specific decisions
when selecting and tuning their preferred solver frameworks based
on our comprehensive quantitative comparison.

2 RELATED WORK

Enhancing the performance of Cholesky factorizations and Sparse
Triangular Solves (SpTRSV), remain a significant focus on computa-
tional mathematics and computer graphics due to their critical roles
in simulation and optimization problems.

2.1 Exploiting Dense Computation

Early optimizations center on exploiting dense computations within
sparse factorizations. Liu [1990] utilize the elimination tree to cre-
ate supernode—groups of consecutive rows/columns sharing the
same sparsity pattern. These supernodes are then factorized using
dense BLAS[Dongarra et al. 1990] kernels, enhancing computational
efficiency by leveraging optimized dense linear algebra routines.
Subsequent methods, such as CHOLMOD [Chen et al. 2008], relax
strict supernode constraints, allowing for better trade-offs by utiliz-
ing dense computation more effectively. These come at the expense
of more redundant computation by increasing the size of the su-
pernodes even when some rows/columns do not have a matching
pattern.

'We choose these by also comparing them with alternate available solvers,
Sympiler [Cheshmi et al. 2017], Parsy [Cheshmi et al. 2018a], and Eigen. Please refer to
Supplemental.

https://github.com/BehroozZare/Parth

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 3

2.2 Parallelism and Scheduling Algorithms

While the initial focus was primarily on finding dense computa-
tions within the chaos of sparse computations, later work focuses
on further enabling parallelism across the computation of these
dense blocks. This led to the introduction of advanced scheduling
algorithms that balance load across parallel units, optimize memory
usage through data reuse, and reduce synchronization overhead.
MKL PARDISO [Schenk et al. 2001] improves parallelism by effi-
ciently distributing tasks across multiple cores and handling thread-
level parallelism. Load-Balancing Coarsening (LBC)[Cheshmi et al.
2018b] enhances memory usage by improving data locality and
minimizing cache misses during computation on CPUs, as the par-
allelism of Cholesky factorization is limited by the sparsity pattern,
and memory reuse can provide some compensation for the lack of
parallelism. HDagg [Zarebavani et al. 2022] provides a scheduler
that balances the trade-off between memory reuse, parallelism and
synchronization given hardware parallel capability. Additionally,
the CHOLMOD GPU scheduler[Rennich et al. 2016] targets GPU
hardware to achieve significant speedups in numerical computation,
achieving up to a 2x speedup compared to CPU implementations.

2.3 Code Generation

Recent approaches focus on providing optimized code by inspect-
ing the sparsity pattern during symbolic analysis to improve nu-
merical computation efficiency. Sympiler [Cheshmi et al. 2017] an-
alyzes sparsity patterns to generate specialized, pattern-specific
code that optimizes memory access and computational efficiency.
Similarly, Cheshmi et al. [2023] automates the generation of high-
performance code for sparse applications by fusing kernels used in
linear solvers. However, this analysis comes with a high overhead
of inspection, which further increases symbolic analysis overhead
and must be redone if the sparsity pattern changes.

2.4 Reuse of Numerical Factorization

Efforts to reuse numerical factorization in linear solve computations
focus on reducing the cost of recomputing factors for systems that
exhibit numerical temporal coherence. In Davis and Hager [2005],
a method is introduced to reuse factors through low-rank updates.
Li et al. [2021] extend this work to support low-rank updates when
facing dynamic sparsity patterns. However, as they note, this ap-
proach does not perform well when multiple local changes occur in
the sparsity pattern, since symbolic analysis cannot be reused under
those circumstances. Furthermore, the method is not practical when
the changes cannot be represented by low-rank vectors.

Another body of work on reusing factorization computation is
proposed in [Herholz and Alexa 2018; Herholz and Sorkine-Hornung
2020], where a prior factor is reused across calls to the linear solver
by only recomputing the affected supernodes. However, these meth-
ods often introduce approximation errors, limiting their applicability
in contexts where the precision of Cholesky solvers is essential. Fur-
thermore, they can not be applied to applications with dynamic
sparsity patterns, as the elimination tree structure changes when
the sparsity pattern changes across calls to Cholesky solvers, lead-
ing to the reconstruction of supernodes. NASOQ [Cheshmi et al.
2020] provides a constraint-based QP solver that reuses factorization

Second Call

First Call

*
*
IS

*
* o %

(D=
P
(= ()

©
@)
G

v

Fill-reducing

Fill-reducing Fill-reducing

(756 3 8 2 1 40)"\(27 180546 30I\(75¢62383 140

Pfl Pf2 . 71,4/2
Symbolic Symbolic . Symbolic
Analysis . Analysis Analysis

A

Factorization Factorization Factorization

0 0 0
1 1 1
* % 2 * ok 2 * k2
3 . 3 3
4 - 4 - 4
* x5 " * * x5 - * x5
o * 6 s £ x x 6 P
* * * % ox T * x % 7 : - x x % T
* x % % 8 * x x x 8) . x x % x 8
L . L
LI xz=—g LI xz=—g LI xz=—g

(@) : (b) : ©

Fig. 2. Cholesky Solver Pipeline Across Two Calls. A; and A; are two
consecutive linear systems with differing sparsity patterns, along with their
corresponding graph duals G; and Gy—a reinterpretation of the system
matrices as adjacency matrices. For example, removing the nonzero en-
tries (2,8) and (8,2) from A; eliminates an edge in G;. State-of-the-art
fill-reducing ordering algorithms operate on such graphs. In the second
call, applying fill-reducing ordering to G can yield multiple high-quality
permutations. Here, two possible orderings for Az, £ 4, and PA;, are shown.
Notably, PA; shares many similarities (highlighted in green) with the pre-
vious ordering P4, illustrating the potential for reusing computations
between calls while maintaining high-quality results.

computation across calls to a constraint-based QP solver, as adding
and removing these constraints requires a factorization. To handle
changes in the sparsity pattern due to changes in constraints, it
performs a full symbolic analysis with all possible constraints added
and uses a subset of the symbolic analysis when the constraints are
added or removed from the KKT matrix. However, this approach

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 « Behrooz Zarebavani

assumes prior knowledge of all potential constraints and can not
handle new sparsity patterns not known in advance.

In contrast to existing methods, our work focuses on reusing
symbolic analysis instead of numerical factorization to address the
overhead caused by dynamic sparsity patterns in Cholesky solves.
Specifically, we assume no prior knowledge of where changes may
occur or how many changes can happen across each call to the
Cholesky solver. By developing algorithms that identify and reuse
unchanged portions of the symbolic analysis across iterations, we
reduce the overhead associated with the symbolic phase. Our ap-
proach effectively handles multiple local changes while providing

high-quality fill-reducing ordering.

3 BACKGROUND

As solving the fill-reducing ordering problem is NP-hard [Yan-
nakakis 1981], practical Cholesky solvers use heuristic methods
such as METIS [Karypis and Kumar 1997], AMD [Amestoy et al.
2004], and Scotch [Pellegrini 2009] to generate high-quality order-
ings. These heuristics incorporate randomness, often producing
multiple valid orderings for a single input. As an example, Figure 2
shows two systems of linear equations solved sequentially by a
Cholesky solver with a gradual change between calls. For the sec-
ond call, two high-quality ordering vectors are possible—one with
high similarity to the previous call’s order, indicating a solution that
can be created by updating the prior ordering vector locally. This
observation motivates Parth’s approach.

Parth reuses computations from previous ordering module calls,
narrowing the search space for high-quality orderings by leveraging
the previously computed order. As a result, it generates a permu-
tation vector with higher similarity to the prior vector than other
approaches.

Parth operates on the graph dual G of the system of linear equa-
tions A for a linear solve in the form of Ax = b, where G is just a
re-interpretation of A as an adjacency matrix. This approach is iden-
tical to well-known ordering algorithms such as METIS and AMD
which are graph-based. In this re-interpretation, each row/column
corresponds to a node in graph G, and nonzero entries define the
edges between nodes. This approach makes Parth general, as A
could represent, for example, a Laplace-Beltrami operator or the
Hessian of an energy function constructed for a Newton iteration
solve. An example of graph duals G; and G for matrices A; and A
is shown in Figure 2. As this work focuses on mesh-based computa-
tions where the relationship between the graph and the underlying
application, as described, is key.

4 PARTH FRAMEWORK

Parth replaces the fill-reducing module of a sparse Cholesky solver
and many implementations (Accelerate, MKL and CHOLMOD) pro-
vide such an interface. Parth consists of three underlying modules
(Figure 3): The Hierarchical Graph Decomposition (HGD) algo-
rithm decomposes the dual graph G of the system of linear equations
A into multiple smaller sub-graphs (fine-grain) that can be coarsened
to form larger sub-graphs (coarse-grain). Furthermore, the decom-
position enables the creation and combination of local permutation

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

First Call Second Call
* * % * * X% *
1 % * 1 % *
* 2 % * * 2 *
* * 3 * 3 *
* 4 * * * * 4 % *
* 5 ok * 5 *
* 6 % * * 6 x
* * T * * 7
* * 8 * ok 8
A1 A2
Parth \/
[HGD] [Synchronizer] Assembler

(756382140 (756283140
Pa, Pa,

l l

Direct Linear Solver Direct Linear Solver

Fig. 3. Parth’s integration into high-performance Cholesky solvers
for two calls with dynamic sparsity patterns. The sparsity pattern shown
here is the same as in Figure 2. In the second call, Parth provides fill-reducing
vectors with small changes by reusing computations from the first call and
feeding them to the Cholesky linear solvers through their provided APL.
Note that current Cholesky linear solvers have no mechanism for reusing
computations unless the sparsity pattern remains constant across calls. A
detailed explanation of the HGD, Synchronizer, and Assembler modules,
and how they interact, is provided in the rest of this section.

vectors per sub-graph. A Synchronizer module detects and inte-
grates sparsity pattern changes into the created sub-graphs, thereby
localizing the effects of these changes by confining them to specific
coarse- or fine-grain sub-graphs. The Assembler unit then reuses
the local permutation vectors in unchanged sub-graphs and updates
those that are changed, finally assembling all this information into
a single permutation vector, P4.

4.1 Parth: Hierarchical Graph Decomposition

The Hierarchical Graph Decomposition (HGD) algorithm is designed
to enable the localization of changes within specific sub-graphs. The
HGD module provides a decomposition that allows these changes
to be confined to a single sub-graph or, if necessary, expands the
decomposition to encapsulate broader changes. To ensure compati-
bility with fill-reducing ordering, HGD is constructed based on the
nested dissection approach, as shown in Algorithm 1.

HGD (Algorithm 1) iteratively constructs a binary tree data struc-
ture, B, stored as an array. The total number of nodes in the binary
tree is computed using the maximum level parameter. A level is de-
fined as the distance between the node and the root. Thus, HGD uses
the max_level variable as the termination condition (line 1) for the
recursion. Each call to the HGD algorithm results in a new binary
tree node, represented as B[i]. Each binary tree node corresponds

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 5

Algorithm 1 Hierarchical Graph Decomposition (HGD)

Global: 8
Input: G, 1, i, max_level
1: if [# max_level then
2 g1, 9r.gs < computeMinSeparator(Ggyp)
3. Bli].nodes « gs.nodes
/*The left sub-graph in HGD procedure®/
4 HGD(gp, 1+ 1,2 X i+ 1,max_level)
*The right sub-graph in HGD procedure®/
5 HGD(gr, 1+ 1,2 X i+ 2, max_level)
6 else
7. Bli].nodes «— Ggp.nodes
8: end if

to a sub-graph within the graph-dual of A. These subsets are deter-
mined by the recursive use of the function computeMinSeparator
(line 2). Note that this function divides the graph into three distinct
sub-graph: a separator set, g5, and two other sub-graphs, g; and g,.
The separator set acts as a minimal sub-graph that, when removed,
dissects the remaining graph into two nearly equal parts, ensuring
a balance in size between g; and g,.

Figure 4 shows the HGD evaluation on Gy in Figure 3:“First Call”
Figures 4(a-c) present the HGD process at three levels. Initially,
the root node of the binary tree is created, shown as 8[0]. The
decomposition then recursively advances to levels 1 and 2, resulting
in the creation of 2 and 4 additional nodes within 8. Each node in 8
represents the smallest sub-graph in our decomposition. The final
full binary tree is described in Figure 4(d). Note that each leaf of this
binary tree represents a separate, approximately equal-sized sub-
graph. The intermediate nodes in the binary tree are the separators,
which also form part of the sub-graphs. This methodology effectively
allows for coarsening sub-graphs by merging each sibling with its
corresponding separator. Note that the coarsening can continue
until all the sub-graphs are merged into the root, forming the whole
G. This demonstrates the hierarchical nature of the decomposition.

For a detailed explanation of why HGD is scalable and its compu-
tation is reusable, see the supplemental.

4.2 Parth: Synchronizer

The Synchronizer module, in Algorithm 2, synchronizes the infor-
mation between G and 8 across calls to the Cholesky solver by
identifying changes in G and encapsulating them within the set
of sub-graphs in 8. If necessary, it re-decomposes the sub-graphs
affected by these changes, as their nodes’ connectivity may now dif-
fer. This allows Parth to preserve fill-reducing ordering information
in sub-graphs that remain unchanged, enabling the reuse of this
information. The Synchronizer achieves this through the five-step
procedure.

4.2.1 Step 1: Synchronizing the Added or Removed nodes. The Syn-
chronizer algorithm begins by analyzing whether the nodes in G
change, whether they are added or removed or their indices have
changes (line 2). All this information can be computed from map
input. The map array simply maps the index of nodes in the current
call to the index of the same nodes in the previous call. For a detailed

A (;) 2

B - B[] (b B[2]

© g (6) {6} {2}
(4)-(3) o (3)

a) Level 0: Building B/0/ * b) Level 1: Building B/1] and B/2/

B3] B[4] B[5] Bl6]
7) [{7} 5) {5} 3) {3} 8) | {8}
c) Level 2: Building B/$/, B[4/, B/ 5], and B[6]
B[0]
{1,0,4} DaOat
B[1] B[2) | |
© (@ » O-¢
B3, 8 B s 5)—(4)—(3

{7} {5} 31 {8}

d) Complete full binary tree and fine-grain sub-meshes

B0
{17014} 7 o 2
B1] B[2] | |
© (@ 3 Oa€
B3, 184 Bl 5 SRONC

{73 {5} {3} {8}

f) Coarse-grain sub-meshes formed by coarsening fine-grain sub-meshes

Fig. 4. Example of HGD evaluation on Figure 3:“First Call." In this
figure, the HGD algorithm operates across three levels as depicted in Fig-
ures 4(a-c). In Figure 4(a), the root node of the binary tree, B[0], is created,
forming level 0 of the binary tree. The algorithm assigns the set {0, 1,4}
to gs, the set {5,6,7} to g;, and the set {2,3,8} to g,. Figures 4(b) and (c)
illustrate the recursive expansion of the binary tree, generating all nodes
at levels 1 and 2. Figure 4(d) displays the resulting fine-grain sub-graphs.
Ultimately, Figure 4(f) reveals the coarse-grain sub-graph, which is derived
from merging the separator 8[2] with its ancestor nodes B[5] and B[6].

Bl B2 \

B3 Bj4 Bls| B[]

B[B2

a) max_level = 0 b) max_level = 1 c) max_level =2

Fig. 5. HGD evaluation on "Dolphin" mesh for a Laplace-Beltrami
operator. Here, the graph G is identical to the mesh, as each node in
the graph corresponds to a DOF in the mesh, and each edge in the graph
arises from the connection of DOFs within an element. The figure shows
the HGD evaluation for max_level = {0, 1,2}. Note that in Figure 5(b), the
separator set is a small set of nodes compared to its left and right sub-graphs.
Furthermore, observe how merging fine-grained sub-meshes B[1], 8[3],
and B[4] in Figure 5(c) results in the coarser sub-graph B[1] in Figure 5(b).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 « Behrooz Zarebavani

Algorithm 2 Synchronizer

Global: 8
Input: G, Gpew, map max_level, Aggressive
Output: Cg
: setTrue(Cg)
: B « NodeChangeSynchronizer(map)
: Eg « ComputeEdgeChanges(G, Gpew, map)
: Eg « MapToB(Eg)
* Fine- and coarse-grain dirty sub-graph*®
5: Dp < {}, Dc < {}
/"Detect dirty sub-graphs in 8*
6: D, Dc «— DirtySubGraphDetection(Eg)
/*Filtering redundant work*/
7: FilterRedundantSubGraphs(Dr, Ds)
*Mark the fine-grain sub-graphs for fill-reducing ordering™
8: Cg «— MarkAndDecomposeSubGraphs(Dc, DF)

T

explanation of how NodeChangeSynchronizer works, see supple-
mental. This function is used in our “Remeshing” benchmark. Based
on our experience remeshers either create the map array explicitly
in their underlying process or straightforwardly allow for its cre-
ation, as it is required for generating the faces and vertices metadata
for (re)defining a mesh. Therefore, we hope this requirement is not
too restrictive for other applications that could benefit from Parth.

4.2.2 Step 2: Detecting Added or Removed Edges. The Synchronizer
now identifies added or removed edges from the graph by com-
paring the current graph (Gpe,) with the previous one (G) (line
3). Note that for an added DOF, all the edges are considered new,
and a removed DOF’s edges are not considered for computing the
changed edges set Eg. After this step, edges in Eg are mapped to
changes in B, indicated by Eg. Figure 6(a) illustrates the detection of
changes between the graph duals shown in Figure 3. The difference
between the two sub-graphs includes the addition of edges <0,6>and
<3,8>and the deletion of edge <2,8>. Additionally, these modifica-
tions are mapped to the connectivity changes between fine-grain
sub-graphs (line 4) represented by <8B[0], B[1]>, <B[2], B[6]>,
and <8B/[5], B[6]>, as visualized in Figure 6(b).

4.2.3 Step 3: Detecting Dirty Sub-graphs. The Synchronizer module
utilizes Eg to identify sub-graphs affected by these edge changes.
These affected sub-graphs, called "dirty sub-graphs,’ no longer pos-
sess valid information. There are two categories of dirty sub-graphs:
Dr, which are fine-grain dirty sub-graphs, and D¢, which are coarse-
grain dirty sub-graphs (line 5). The distinction is made because
fine-grain sub-graphs do not require re-decomposition; only their
fill-reducing ordering information needs to be updated. In contrast,
coarse-grain sub-graphs may experience a violation of the separa-
tor’s characteristics due to connectivity changes. That is, two sub-
graphs that were supposed to be completely separated by a separator
set are now connected via some nodes in the graph. Consequently,
the Synchronizer must apply the HGD algorithm to re-decompose
the coarse-grain regions and update the B information as needed.
For a detailed explanation of DirtySubGraphDetection algorithm
(line 6), see supplemental.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

N

: Eyp Ep
NERCSO v

2 --(8) — B[2]- -Bl6]

G — O\ —
o =
G— N —

o —®) BB

b)Eg = MapToB(E)r)

o

b

Gp— O —

¢) Filtering added and removed edges and detecting dirty sub-graphs
B[0]
{17 07 4}
B[1] B[2]
{6} {3}

B s B 9

{7} {5} {2} ({8}
d) B for Second Call and fine-grain sub-graphs

(T T FT T F F)
e) Cache flags Cp

p— O —
O p— W— N

Fig. 6. Example of the Synchronizer procedure. In Figure 6(a,b), edge
changes are detected and converted into edge changes across their cor-
responding fine-grain sub-graphs. In Figure 6(c), the change that violates
the separator condition (between B[5] and B[6]) is considered, and other
edge changes are disregarded. The lowest common descendant of 8[5] and
B[6] is B[2], where node 2 in Gpeqy no longer acts as a separator. The
coarse-grain sub-graph encompassing the change is constructed by merging
the sub-graphs in B8[2], B[5], and B[6]. In Figure 6(d), the coarse-grain
sub-graph represented by 8[2] and its ancestors are re-decomposed. As
a result, a new separator is chosen (node 3 in Geq). Figure 6(e) displays
the Cg array where 'T’ (True) and ’F’ (False) indicate which sub-graphs are
intact and which have changed, respectively.

Figure 6(c) demonstrates the process of computing D and D¢ us-
ing Eg. The two changed edges <8B[0], B[1]>and <B[2], B[6]>are
disregarded because they do not disrupt the connection between the
sub-graphs within the binary tree 8. For example, the change involv-
ing <B[0], B[1]>is dismissed as the link between a separator and its
adjacent left sub-graph does not violate the validity of the separator,
given that B[0] separates 8[1] from sub-graphs B[2], 8[5], and
B[6]. Conversely, the change involving <8B[5], B8[6]>violates the
separator’s role of B[2], since the sub-graph B[5] now connects
to sub-graph B[6], resulting from the new connections between
node 3 and node 8 in the graph. Consequently, the coarse sub-graph,
annotated as B[2], comprising graph nodes {2, 3, 8}, is added to D¢
as it encapsulates the change <3,8>.

4.2.4 Step 4: Filtering Sub-graphs. During the formation of Df and
D¢, each change is assessed independently from the others. As a
result, some coarse-grained sub-graphs can encompass other fine-

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 7

b)Frame 87

Fig. 7. Synchronizer confinement of contacts in the “Rods Twist”
simulation. In this figure, multiple frames are skipped, and Parth is applied
to the dual graph of the Hessian for the first Newton-solve iteration of the
66th and 87th frames. With four twisting rods, multiple contacts occur on
each rod. To map sub-graphs to sub-graphs, every three consecutive nodes
(3i, 3i+1, 3i+2) are mapped to a single DOF i. Using max_level=7, black
lines represent separators, and white regions correspond to the leaves of
B. The Synchronizer effectively coarsens small sub-graphes (in red) and
confines 1612 changes, even with a step size of 21 frames.

and coarse-grained sub-graphs. These smaller sub-graphs can subse-
quently be removed from D and D¢, as they will be re-decomposed
when the larger, encompassing sub-graph is re-decomposed. After
this stage, the coarse sub-graphs requiring re-decomposition are
fully identified. For a real-world example, refer to Figure 7, where the
contacts are restricted to a set of coarse sub-graphs (subsequently
sub-graphs in the simulation mesh of IPC), colored in red, at the
end of Step 4 (line 6 of Algorithm 2).

4.2.5 Step 5: Re-decomposing Sub-graphs. Finally, after the creation
and filtering of D and D¢, the decomposition information in 8
must be updated accordingly. For fine-grain sub-graphs in Df, we
only need to mark them in the Cg array so that the Assembler
module (Section 4.3) updates the fill-reducing ordering information
of these sub-graphs, as only the connectivity between the nodes
has changed. For coarse-grain sub-graphs in D¢, the Synchronizer
first re-decomposes the sub-graphs using the HGD algorithm (Sec-
tion 4.1). The newly formed fine-grain sub-graphs are then marked
in Cg for computation of fill-reducing ordering. For a detailed expla-
nation of the MarkAndDecomposeSubGraphs, see supplemental.
As an illustration, on the right side of Figure 6(c), the Synchro-
nizer initially extracts the coarse sub-graph, colored in red (nodes
2,3, 8). Given that the size of B is constant, the Synchronizer is only
required to substitute the invalid sub-graphs with valid ones. To
achieve this, the process first identifies the sub-tree within 8 that
contains all the invalid sub-graphs (illustrated in red on the left side
of Figure 6(c)). Next, it invokes the HGD algorithm on the sub-graph
colored in red (Figure 6(c)-right) to produce a valid decomposition,
which is then visualized as a new sub-tree. This new sub-tree is used
to replace the invalidated one, resulting in a completely valid binary
tree B, as depicted in Figure 6(d). It is important to note that the

sub-graph B[2] has been updated from the set 2 to 3, which now
effectively isolates sub-graph 8[5] = 2 from sub-graph B[6] = 8.
After updating the hierarchical graph decomposition, the new
sub-graphs need the recomputation of fill-reducing ordering as the
node structures they are representing have now changed. These
dirty fine-grain sub-graphs are flagged within the Cg array. For
instance, Figure 6(e) indicates that the sub-graphs B(2], 8[5], and
B[6] are new and thus require updated fill-reducing information.
As aresult, both the Cg array and the binary tree 8 will be fed to
the Assembler module for new fill-reducing ordering information.
One issue is that a single edge connecting two sub-graphs with
a common separator 8[0] will result in the reuse of zero, as the
coarse-grain sub-graph will encompass the whole graph. To alleviate
this, we created a heuristic, named “Aggressive Reuse”, explained
in the supplemental. The heuristic moves one of the nodes that
form the problematic edge to the corresponding separator. That is,
the sub-graph forming that separator will expand if this happens,
allowing Parth to achieve high reuse even in these scenarios.

4.3 Parth: Assembler

The Assembler module generates the permutation vector 4 by
reusing computation across calls to Parth. Initially, the Assembler
computes the required permutation vectors for each sub-graph rep-
resented by B. It then assembles these local permutation vectors
to form #4 which applies to the whole matrix A. Due to changes
in sparsity pattern, if Synchronizer module marks some of the sub-
graph "dirty" (refer to Section 4.2), the Assembler computes a new
local permutation vector for these "dirty" sub-graphs. The values
linked to these modified sub-graphs are then updated in 4, while
the rest remain unchanged. This approach results in the computa-
tional reuse for all unchanged sub-graphs.

The Assembler procedure has three steps, as outlined in Algo-
rithm 3. In Step 1, Assembler determines the placement of the local
permutation vectors $; within $4. Step 2 involves the calculation
of the necessary #; vectors which, using the previously computed
positions from Step 1, are inserted into the $g. Finally, in Step 3,
the graph permutation vector g is converted into £4 based on
DIM value. All three steps are capable of reusing pre-computed data
based on the array Cg, which indicates the affected sub-graphes.
Details of these three steps are further explained as follows:

4.3.1 Step 1: Placement Computation. To use separators and their
corresponding left and right sub-graphs as fill-reducing ordering
information, we follow the nested-dissection approach. In this ap-
proach, the permutation vector is arranged in the computation so
that the separator computation is placed after the left and right sub-
graph computations (see the “HGD Computation Reused” section
in supplemental for an example). Applying this order recursively is
equal to placing each local permutation vector #; related to each 8
node based on the post-order traversal of the tree. Consequently, the
Assembler module creates the entire graph permutation vector Pg.
The Assembler executes this procedure in Lines 1-11 of Algorithm 3.

Looking at Figure 8, the post-order is computed once in Figure 8(a),
as the binary tree remains unchanged throughout the simulation.
Subsequently, starting with $[3], the position of each P; vector
is identified, as illustrated in Figure 8(b.3), based on the “offset”

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 « Behrooz Zarebavani

Algorithm 3 Parth: Assembler

Global: B, Order
Input: Cg, DIM
Output: Py

1: /*Initialization of Cg*

2. if Cg.empty() then

3 setFalse(Cg)

4 Order < PostOrdering(B)
5: end if
6
7
8
9

: /*Computing offset of Cg*
: Of fset <0
: for i in Order do
. Bli].Of fset < Of fset
10 Of fset « Of fset + |B[i].nodes|
11: end for
12: /*Assembling fill-reducing ordering™/
13: for i in Order do
4. if ICg|i] then
15: G; « getSubGraph(G, Bli].nodes)
16: B[i].P; « FillReducingOrdering(G;j)

17: start « Bli].of fset

18: end « start + |B][i].nodes|
19: Pclstart : end] «— B[i].P;
20. endif

21: end for

/*Convert mesh permutation into Hessian permutation®/
22: for (j =0; j < |M.nodes|; j=j+1) do
232 for(d=0;d <DIM; d=d+1)do
24: Palj*DIM+d] =Pglj] * DIM+d
25: end for
26: end for

variable. For example, since sub-graphs $(3] and 8[4] contain only
a single node each, the aggregated node count resulting from visiting
these sub-graph positions the $; associated with sub-graph 8[1]
at the starting position of fset = 2 in Pg. This procedure recurs in
“Second Call” when the graph decomposition of three sub-graphs
changes, leading to Figure 8(c.3). Since computing the offset is not
computationally intensive, we omit the reuse procedure of this step
to simplify the explanation of offset computation.

4.3.2 Step 2: P; Computation and Mapping to Pg. Once the place-
ment of each #; in P is determined, the Assembler uses the ar-
ray Cg to compute and update $;s for each sub-graph specified
in B (lines 13-21). For instance, in Figure 8 (b.2 and c.2), the lo-
cal permutation vectors $; are shown for each sub-graph. In Fig-
ure 8(c.2),Second Call”, only three sub-graphs require new #;s,
which allows Parth to reuse the #; for the other four sub-graphs
(coloured blue). By utilizing the “offset” variable calculated in Step
1, the Assembler constructs Pg by inserting the ;s into Pg (lines
13-21). Note that any ordering algorithm such as AMD [Amestoy
et al. 2004], Metis [Pellegrini 2009], and Morton Code can be used
in FillReducingOrdering (line 16), for ; computation. Currently,
Parth supports METIS and AMD for computing %, but inserting
new ones is straightforward.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

a) Order: (B[3] B[4] B[1] B[5] B[6] B[2] B[0])

B[0] B[o]

(1 4 0
B[1] B[2] B[1] B[2]

2 5 (6) (2)
g3 s sl Ss6 B B4 85 8
0 1 3 4 (1) | 1 (5) (3)] (8

b.1) Offset compution b.2) P; Computation

b.3)Pg: (7 5 3 8 1 40

b) Assembler process in "First Call"

B[0] B[o]

B[1] B[2]

2 5
B, i) B B0
0 1 3 4

c.1) Offset Computation

c.2) P; Computation

c3)Pg: (7 5 6 2 8 1 4 0)

c) Assembler process in"Second Call"

Pe:(7 5 6

8 31 40

Pa:(14 15 10 11 12 13 6 6 7 2 3 8 9 0)
d) Mapping from graph permutation to matrix permutation

Fig. 8. Example of the Assembler procedure. Considering two calls in
Figure 2, blue nodes in the B indicates computations that are skipped
in “Second Call” due to reuse from “First Call”. Figure 8(a) displays the
post-order traversal of B, used in computing the position of each local
permutation vector #;. During “First Call”, the offsets, #ys, and the graph-
based permutation vector P are computed. This initialization is presented
in Figure 8(b.1), (b.2), and (b.3). As detailed in Figure 6, due to alterations in
sub-graphs B[2], B[5], and B[6], the Assembler proceeds to update the
offsets and #; for these specific sub-graphs as shown in Figure 8(c.1) and
(c.2), and subsequently updates a portion of P depicted in Figure 8(c.3).
Finally, Figure 8(d) illustrates the mapping of P to the P4 for a 2D simu-
lation.

4.3.3 Step 3: Mapping Pg into P4. For 1D simulation (DIM =
1), P is equal to P4. However, for different DIM, since Parth
can compress the input G, or obtain the compressed form of G by
merging DIM consecutive rows and columns in the form of {i *
DIM+1,...,i*DIM+DIM—1}, the output Pg is DIM times smaller
than P,4. Parth employs a straightforward mapping, as illustrated
in lines 22-26, which results in forming $ 4. Note that this does not
reduce quality, as these DIM consecutive rows form a clique in G.
Figure 8(d) displays an example of mapping the graph simulation
into P4 when DIM = 2. Note that this mapping also utilizes reuse
capability. However, to simplify the explanation, we’ve excluded
the details of that implementation as these computations are fast
compared to the $; computation.

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 9

5 EVALUATION

We focus on benchmarking Parth across a range of sparsity pattern
variations, and we evaluate Parth on both triangle and tetrahe-
dral mesh geometries. To examine Parth’s reuse performance when
only non-zero entries change, we use Incremental Potential Contact
(IPC) [Li et al. 2020] simulations, referred to as the "IPC benchmark
To assess Parth in scenarios where the matrix dimensions change,
we created a “Remeshing benchmark”

For each benchmark, we first analyze the runtime bottleneck by
determining how much time is spent on the numerical and symbolic
phases of solves to illustrate the potential benefits of accelerating
each part based on Amdahl’s Law [Amdahl 1967]. Furthermore, we
demonstrate Parth’s performance benefits when integrated into the
solvers and how it reduces the symbolic analysis runtime. Finally, we
demonstrate how Parth’s performance impacts downstream numer-
ical performance, highlighting the quality of Parth’s fill-reducing
ordering. In the following section, we summarize the hardware and
software setup for our evaluations.

5.1 Evaluation Setup

Parth is implemented with C++. The separator computation uses
METIS. For the local permutation vector, we allow the use of both
AMD [Amestoy et al. 2004] and METIS. However, all of these li-
braries can be easily replaced as Parth’s implementation does not
rely on the underlying implementation of these ordering algorithms.
For evaluation, we integrate Parth with, to our knowledge, the three
most popular, highest-performing, robust Sparse Cholesky solver
libraries: Intel MKL (MKL Pardiso LLT) [Schenk et al. 2001], SuiteS-
parse (CHOLMOD) [Chen et al. 2008], and Apple Accelerate (Accel-
erate LLT) [Inc. 2023]. We do not include Eigen and Parsy [Cheshmi
et al. 2018a] Cholesky solvers, as they do not perform as well as the
three high-performance libraries. See the “Parsy and Eigen Evalua-
tion” section in the supplemental for more detail. We evaluate and
compare the timing and accuracy between the Parth-augmented ver-
sions and the original versions of each of these linear solvers on Intel
(20-core Xeon(R) Gold, 6248 CPU 2.5GHz, 28MB LLC cache, 202GB
RAM) and Apple (12-core M2 Pro chip, 16GB RAM) platforms. For
the Intel platform, we use MKL version 2023.4-912 and CHOLMOD
version 7.6.0 with Ubuntu 22.04. For the Apple platform, we use the
latest shipping Accelerate framework compiled with Xcode. We will
release our evaluation code with this paper.

Each of the solver libraries mentioned above offers a range of op-
tions and default settings for fill-reducing ordering, significantly im-
pacting solution quality and overall solve speeds. CHOLMOD’s de-
fault configuration first applies AMD [Amestoy et al. 2004]. If a low-
quality AMD ordering (based on measures of non-zeros and opera-
tion count) is generated, METIS [Karypis and Kumar 1997] is then ap-
plied, and the better ordering of the two is adopted [Chen et al. 2008].
Across our benchmarks (see below), we observe that CHOLMOD
almost always invokes METIS in 95.02% of cases, with METIS being
accepted as the final ordering. To improve CHOLMOD’s overall per-
formance, we configure it to directly apply METIS ordering in all sub-
sequent experiments, eliminating this overhead from CHOLMOD’s
speeds. However, we emphasize that Parth also offers the option
to use AMD when it is preferred for specific applications. MKL’s

Table 1. Summary of benchmark problem statistics. We build a linear
solve benchmark by precomputing and storing, in consecutive order, the
sequential linear systems and geometries generated by the iterations of
Newton solves for time-stepping six of the most challenging deformable-
body benchmark problems from Li et al. [Li et al. 2020]. Here we summarize
statistics for each simulation sequence with ID numbers for each (used
throughout) on the left, Hy 4,k giving system dimension, and Hpp,, and
Lpn, respectively giving the average number of non-zeros per Hessian
H and corresponding L-factors (via METIS’s symbolic analysis). The #F
represents a number of frames in each simulation while Changes gives the
percent of iterations per sequence where sparsity patterns change from a
prior iteration.

Example Hyonk Hnnz, Lunz #F Changes
(1) Dolphin Funnel 24K 500K, 11M 800 99.9%
(2) Ball Mesh Roller 23K 464K, 11M 1000 96%
(3) Mat On Board 120K 2.2M, 60M 200 98.9%
(4) Rods Twist 160K 3M, 54M 1600 98.73%
(5) Squeeze out 135K 2.8M,72M 1500 96%
(6) Arma Roller 201K 4.8M, 344M 400 99.9%

LLT, by default, uses its own custom-optimized implementation of
METIS, which we retain throughout our evaluation. Finally, Accel-
erate provides both AMD and METIS reordering options, with AMD
as the default. As with CHOLMOD and as documented by Acceler-
ate [Inc. 2023], we observe a degradation in numerical performance
speed when using AMD orderings on large-scale meshes compared
to METIS in Accelerate’s LLT. Thus, we likewise apply its METIS
reordering for all benchmarks.

To ensure a fair comparison, we enhance all three libraries’ solvers
with additional logic to reuse symbolic analysis instead of recom-
puting it when the sparsity pattern remains unchanged across suc-
cessive Cholesky solves in our benchmark. This eliminates runtime
measurements for straightforward cases, ensuring that reported
speedups reflect only when the sparsity patterns change.

5.2 IPC: Benchmark

To analyze timings, bottlenecks and relative performance of these
high-performance linear solvers in a consistent and fair side-by-side
setting for IPC, we build a benchmark by precomputing and storing
in consecutive order 143.5K sequential linear systems (Hessians,
A, and gradients, g) which are generated by 5.5K Newton solves
of challenging IPC volumetric FEM time-step problems [Li et al.
2020]. We compute these systems by time-stepping six of the most
challenging (over 96% of all iterations in these simulations have
changing sparsity due to contacts) deformable-body benchmark
problems from Li et al. [2020]. Hessians in these systems range from
500K to 4.8M non-zero entries (with well over an order of magnitude
increase in non-zeros for L-factors using state-of-the-art reordering
with METIS [Karypis and Kumar 1997]) depending on number of
active contact stencils, model resolution and geometry; see Table 1,
and Li et al. [2020] for simulation model statistics. We additionally
store the initial conditions of each time step so that each Newton
problem can also be analyzed consistently and independently across
varying linear solvers. We use the IPC library [IPC 2020] to both

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 « Behrooz Zarebavani

Table 2. Breakdown of all Cholseky solves costs per library across all linear solves in our benchmark. Here we summarize the timing (wall-clock
seconds) and percent end-to-end Cholesky solver runtime per simulation breakdown per simulation sequence in our benchmark for all three state-of-the-art

Cholesky solvers.

Tool Step Dolphin Funnel Ball Mesh Roller Mat On Board Rods Twist ~ Squeeze out ~ Arma Roller
MKL Symbolic time(s) 3261 (77.8%) 2623 (70.7%) 1551 (76.1%) 8635 (75.5%) 9098 (78.1%) 35357 (53.5%)
Numeric time(s) 932 (22.2%) 1085 (29.3%) 485 (23.9%) 2800 (24.5%) 2543 (21.9%) 30703 (46.5%)
Accelorate | Symbolic time(s) 1773 (71527) 1465 (62.97%) 985 (70.50%) 5363 (67.54%) 5540 (71.28%) 25331 (32.81%)
Numeric time(s) 706 (28.47%) 861 (37.03%) 412 (29.49%) 2578 (32.46%) 2231 (28.71%) 51871 (67.19%)
Symbolic time(s) 2857 (40.5%) 2353 (34.3%) 1600 (49.03%) 8552 (48.4%) 9012 (48.7%) 35021 (37.5%)
CHOLMOD .
Numeric time(s) 4200 (59.5%) 4511 (65.7%) 1663 (50.97%) 9098 (51.6%) 9483 (51.3%) 58282 (62.5%)

generate this benchmark and to perform Newton solves for some of
the analyses in the following sections.

Specifically, here we focus on providing insight into Parth’s per-
formance on volumetric, and triangular mesh (Mat On Board) simu-
lation. Furthermore, this consecutive linear problem benchmark is
critical for our analysis across high-accuracy linear solvers (within
nonlinear-solve inner-loops) as convergence behaviour in Newton-
type methods for stiff problems, as in the time-stepped elastodynam-
ics simulations we consider here, are sensitive to minor changes
in computed descent directions. These variations are generated by
solvers due to rounding and parallelization and, in turn, produce
differences in the numbers of linear system iterations per New-
ton solve (and so the entire simulation runs) when using different
solvers. Note that, as we demonstrate in Supplemental (IPC: Numeri-
cal Performance Analysis), these variations do not generate iteration
counts in favour of any of the Cholesky solvers. This benchmark
then enables fair side-by-side evaluation of linear-solver methods
within nonlinear solvers.

5.3 IPC: Bottleneck Analysis

Table 2 summarizes the breakdown of total runtime costs per Cholesky
solver library for the linear solves of each simulation sequence in
the benchmark. Here, we see that for the two significantly faster
solvers, MKL and Accelerate, symbolic analysis is clearly the pri-
mary bottleneck. For CHOLMOD, the story is a bit more nuanced.
While CHOLMOD’s symbolic computation runtimes are closely in
line with MKL’s, its significant slowdown compared to MKL is in its
numeric computation phase, which ranges from two to four times
slower than MKL. Here, symbolic analysis remains a significant cost
(generally the same magnitude as numerical costs), and future opti-
mizations of its numerical phase should bring its numerical costs
down similarly to MKL’s.

This bottleneck, along with significant prior research and en-
gineering focus in recent years on heavily optimizing numerical
computation (see Section 2), reiterates our research focus on im-
proving symbolic analyses. Concretely, consider that MKL spends,
on average, 71.8% of its solve time on symbolic analysis. Best (an
impossible zero-cost computation) improvements in numerical com-
putation, e.g., the "Dolphin Funnel" sequence, would then be limited
to a 1.28x speedup of linear solve costs.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

== MKL Ordering == CH Ordering== AC Ordering

E’ggce”tage(%) == MKL Other =CH Other _==AC Other

Jrmmmmmnm
J W M mmm
JE mommmnm
JEm o mmnmnm

Simulation IDs

Fig. 9. Fill-reducing ordering is the bottleneck for all symbolic analy-
ses. Here we summarize a bottleneck analysis for the symbolic steps of all
three Cholesky solvers across all six simulation sequences in our benchmark.
For each simulation and corresponding tool, both the fill-reducing ordering
time and all additional symbolic analysis time are recorded. Here, "CH", and
"AC" respectively denote CHOLMOD and Accelerate LLT runtimes. "Other"
categories summarize all other symbolic analysis costs per Cholesky solver
with tasks that vary depending on the Cholesky solver method.

If we then begin to look at the symbolic phase with finer granu-
larity, we see that symbolic computation consists of multiple steps
that vary with Cholesky solver implementation. However, all sparse
Cholesky solvers require and employ high-quality fill-reducing or-
dering methods in their symbolic phase. In turn, as we summarize in
Figure 9, across all three Cholesky solvers, the fill-reducing ordering
is by far the largest bottleneck in each solver’s symbolic analysis
steps. Here we see that across benchmark problems, fill-reducing
ordering takes an average of 62.32%, 81.05%, and 86.06% of the total
symbolic analysis time for MKL, Accelerate, and CHOLMOD re-
spectively. At the same time, we observe that even the most opaque
Cholesky solver libraries, which do not provide access to their sym-
bolic analysis otherwise, offer APIs that can be used to replace
default fill-reducing ordering implementations with customized
methods. Thus, if we can show a significant boost in symbolic fill-
reducing ordering, this offers the combined advantages of address-
ing the symbolic analysis bottleneck while staying modular to take

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 11

=MKL Ordering ==CH Ordering ==AC Ordering ==PARTH Ordering

Normalized Runtime
1.0 1.0 1.0 1.0

M @ (©)

Simulation IDs

Fig. 10. Parth Speedup. the normalized runtime of Parth fill-reducing
ordering compared to high-performance Cholesky solvers, namely, MKL,
CHOLMOD (CH) and Accelerate (AC). Note that lower is better. The figure is
normalized based on the slowest ordering algorithm. Across all 6 simulations,
Parth fill-reducing ordering is faster than the fastest tool by 8.04x, 11.66x,
2.29x, 2.75x, 3.70x, and 9.79x speedup from simulation (1) to (6) respectively.

advantage of the current, highly optimized, machine-specific nu-
merical phases in existing high-performance solvers.

5.4 IPC: Parth Speedup

We first consider Parth’s speedup compared to the fill-reduction
timings of all three Cholesky solver libraries across our full bench-
mark, as Parth only accelerates this part of the linear solver pipeline.
In Figure 10, we summarize ordering runtimes normalized against
the slowest solver. Here, we see that Parth outperforms all three
Cholesky solvers across all problem sequences in the benchmark,
with speedups ranging from 2.8X to well over an order of magnitude.

We next push this further and consider an “optimal” competing
symbolic analysis which is enabled, without overhead, to pick the
fastest ordering among MKL, CHOLMOD and Accelerate (which
can otherwise vary per solve for best speeds), for each Newton
solve sequence in the benchmark. In Figure 11, we compare Parth’s
speedup against this hypothetical best-speed analysis per Newton
solve sequence. We find that even at the granularity of individual
solves, Parth consistently remains significantly faster than the next
best tool, with speedups per solve ranging from 1.5x to 255x across
a wide range of solve sequences with both large and small sparsity
changes. This is partly due to Parth’s compression of the graph dual
G, which can be coarsened when DIM = 3. To be comprehensive,
in supplemental, we provide a detailed analysis of Parth speedup
on fill-reducing ordering when Parth does not employ compression.
Finally, note that these speedups are reported only when the sparsity
pattern changes, excluding the straightforward case of a constant
sparsity pattern.

5.5 IPC: Parth Ordering Quality

In the above analysis, we demonstrate that Parth efficiently com-
putes permutation vectors with significant speedups in comparison
to state-of-the-art symbolic methods across diverse sparsity pat-
terns, Hessian sizes, and changing regions of sparsity updates. This

Speedup = (1) = (2) = (3) = (4) = (5) = (6)
Max: 38
Max: 19 Min: 2.1
20 Max: 255 Min: 16
200 Min: 1.7 :
150 Max: 51
100 Min: 4.2 :
) Max: 5.7 Max: 6.5 i .
50 % Min: 1.5 Min: 1.5 i
0 N I L =

Fig. 11. Parth speedup compared with best-available timing per solve.
The speedup achieved by Parth’s fill-reducing ordering is compared to that
of the best competitor among the three tools: Apple Accelerate, MKL, and
CHOLMOD. Across all simulations, Parth’s fill-reducing ordering consis-
tently outperforms the state-of-the-art tool, resulting in speedups ranging
from 1.5X to 255X (with outlying samples demonstrating further speedup in
all sequences).

Difference () = (1= (2) = (3) = (4) = (5) = (6)
1

Max: 2.6% s Max: 4.6%
Min: -4.7% § Min: -2.4% Max: 3.6%
10 H Max: 3.3% Min: -2.4%
Min: -4% . Max: 3.2%
5 i H Min: -1.5%
0 []
-5 ! : * Max: 4.1% '
. Min: -2.4%

Fig. 12. Fill-in reduction comparison across benchmark. Here we we
first identify the “optimal” fill-reducing ordering per solve, by choosing
the sparsest factor generated across MKL, Accelerate, and CHOLMOD,
for each. We then denote this smallest non-zero count among these three
tools per linear system as tpes; and Parth’s comparable non-zero count
for its factor of the system as t,,. We then plot here and in Figure 13 the
difference (tp — tpest)/tress quantifying the percent deviation between the
non-zeros generated by the best high-performance Cholesky solvers and
those by Parth per iteration. Here the distribution of this measure across
all simulation sequences shows that the median remains near zero, with
minimum and maximum values generally (excluding outliers) falling well
within £5% of the best otherwise obtained solution.

demonstrates Parth’s efficient reuse of computation across itera-
tions within Newton solves, per time-step, and across sequential
Newton solves, in time-stepped simulation sequences. With timing
settled we next analyze here the fill-reduction quality of the order-
ings computed by Parth, and see that Parth delivers high-quality
fill-reduction, comparable to the best sparsity generated among all
three compared Cholesky solvers.

In Figure 12 we compare Parth fill-reduction, with (as in the
last section) an imagined, “optimal” competing symbolic analysis
method across our benchmark. Specifically, we compare, per lin-
ear solve in the benchmark, against the best fill-reducing ordering

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12« Behrooz Zarebavani

Difference (%)
6

0 10000 20000 30000 40000
Stacked Iterations

Fig. 13. Detailed fill-in reduction analysis per solve. The difference in
the number of non-zeros (NNZ) in the factor generated by Parth is compared
with that of the best results from MKL, Accelerate, and CHOLMOD. This
comparison spans 40,000 stacked iterations from the Newton solves of
time steps, with highly varying contact configurations and so large and
rapid changes in sparsity patterns. The range of the difference is in 6%,
demonstrating Parth’s generated sparse factors are comparable to the best
available fill-reducing ordering while delivering large speedups in timings.

among MKL, CHOLMOD and Accelerate that generates the sparsest
factor. Across all simulation sequences in the benchmark Parth’s
permutation quality remains consistent with the best sparse factors
computed by the Cholesky solvers’ fill-reduction—largely remaining
well within a £5% range, with medians close to zero.

Looking even closer at individual iterations, in Figure 13 we plot
the relative sparsity difference in non-zeros between the best-of
solution and Parth across the first 40K successive linear solves in
the high-contact and compression “Ball Mesh Roller” simulation
sequence. Here we see that the total relative sparsity difference
comparably remains in a range of +6%.

In summary, we find that across our benchmark, permutation vec-
tors generated by Parth sometimes decrease, and sometimes slightly
increase, sparsity (albeit both marginally) over the best provided
by top competitor libraries. Recalling that heuristics applied in fill-
reducing ordering, e.g. as in METIS [Karypis and Kumar 1997], lead
to similar-scale minor variations in output when executed multiple
times on the same problem, we see that Parth then provides compa-
rable quality fill reduction at significant speedup. Finally, we also
provide a comprehensive runtime analysis of numerical phase in
supplemental which emphasizes the results shown in here.

5.6 IPC: Per Sparse Linear Solve Performance

Finally, we consider the performance of our three Parth-integrated
Cholesky solvers on the symbolic and total costs of solves. Following
the breakdown in Table 2, we focus on the symbolic analysis phase
per solver. In Figure 14, across the benchmark, we see maximum
speedups of 8.05x%, 5.69x, and 3.14x for CHOLMOD, Accelerate, and
MKL respectively, with corresponding median speedups of 4.9x,
3.5x, and 2.2x, and minimum speedups of 1.9x, 1.4x, and 1.2x.

In Figure 15, we see that by just directly integrating the Parth
module into Cholesky solver packages, we obtain speedups on full
Cholesky solve costs of up to 2.95X, 2.28X, and 1.97X (1.5X, 1.54X,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

= ()= (2)=(3) = (4) = (5)= (6)
Symbolic Speedup: MKL + Parth

. Max: 2.47 I
3.0 Max: 2.53 Min, 138 Max: 2.61
Mln 2.1 Min: 1.86
25 . !
2.0
15 : : .
10 Max: 281 Max: 2.4 Max: 3.14
"1 Min: 222 Min: 1.33 Min: 1.25
0.5
Symbolic Speedup: Accelerate + Parth
12
10
8
Max: 4.76 Max: 5.69
. Max: 5.03
6 Min:3.78 Max:4.56 . 191 Max: 3.76 Min: 1.45 M?: 295
: Min: 3.3 \pin: 1.37 Min: 1.35 =
| %
|
2 i i
Symbolic Speedup: CHOLMOD + Parth Max: 8.05
Min: 2.13 Max: 7.61
8 Max: 6.85 Min: 3.43
7 Min:5.23 Max: 6.18
Min: 4.1 Max: 4.82
6 Max: 5.0 pgin: 1.98
Mm 191
5 i
!
4 i
?
3
2 :
1 *

Fig. 14. IPC: Parth symbolic performance impact across benchmark.
The three whisker plots indicate the performance impact of Parth on the
symbolic step of MKL, Accelerate and CHOLMOD. In all cases, except
one iteration in "Ball Mesh Roller", Parth improved the symbolic analysis
performance by up to 8.05x speedup.

and 1.43X median) for Accelerate, MKL, and CHOLMOD respec-
tively. In line with our earlier analysis, we also confirm that Parth
consistently extracts the greatest performance speedups as it is inte-
grated with successively more optimized and performant Cholesky
solvers leveraging hardware—here in Accelerate and then with MKL.
In Table 3, we report the total Cholesky-solver runtime costs across
all linear solves for each simulation sequence in the benchmark, and
again observe consistent breakdowns.

The key takeaway is the runtime savings achieved by integrat-
ing Parth. For example, using CHOLMOD for the "Arma Roller"
simulation on an Intel processor offers numerical stability. With

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 13

Table 3. IPC: Breakdown of Cholesky solve costs per library across all Parth-integrated Cholesky solves in our benchmark. Here we summarize the
timing (wall-clock seconds) and present total linear solve runtime for default and Path-integrated versions per simulation sequence in our IPC benchmark for
all three state-of-the-art Cholesky solvers corresponding to original costs in Table 2. In here, the solve speedup from left (Dolphin Funnel) to right (Arma Roller)
for 3 Cholesky solvers are as follow: MKL speedup={1.79, 1.68, 1.49, 1.56,.1.71,1.37} and Accelerate speedup={2.07, 1.89, 1.56,1.78, 1.33} and CHOLMOD
speedup={1.5,1.41,1.43, 1.45,1.55, 1.45}. Note that here, 45% performance benefits for CHOLMOD in “Arma Roller” is equal to saving 7.86 hours which is

achieved by simple integration of Parth without numerical side effect.

Parth + Tool Step Dolphin Funnel Ball Mesh Roller Mat On Board Rods Twist Squeeze out Arma Roller
MKL Symbolic time(s) 3261 —1424 2623 —1134 1551 —914 8635 —3896 9098 —4425 35357 —15714
Numeric time(s) 932 —923 1085 —1075 485 —457 2800 —2751 2543 —2397 30703 —32335

Accelerate Symbolic time(s) 1773 —490 1465 —369 985 —483 5363 —2481 5540 —2119 25331 —6913
Numeric time(s) 706 —709 861 —861 412 —412 2578 —2602 2231 —2251 51871 —51098

CHOLMOD Symbolic time(s) 2857 —597 2353 —453 1600 —558 8552 —2764 9012 —2422 35021 —6696
Numeric time(s) 4200 —4106 4511 —4432 1663 —1727 9098 —9385 9483 —9499 58282 —57492

a solve speedup of 1.45x, the 45% reduction in runtime results in
a savings of 7.86 hours. Given the minimal overhead required to
integrate Parth (three lines of code) and its consistent numerical
stability, many practitioners can easily gain these performance ben-
efits without needing to refactor an entire computational pipeline,
which is often not straightforward. This reiterates Parth’s objective
to provide high-performance Cholesky solvers for a large group of
practitioners instead of offering highly optimized, domain-specific
solvers for specific applications.

Finally, we want to emphasize that, as computational pipelines—such

as the one shown in IPC—are complex, accelerating the entire
pipeline requires a deep understanding of its components and sig-
nificant engineering effort. For example, in IPC simulations, it is
well known that the CCD component is also a major bottleneck,
and there have been substantial efforts to accelerate this compo-
nent, such as the one presented in [Huang et al. 2024]. However, as
future work continues to improve the performance of these compo-
nents, enhancements in the linear solver will become increasingly
impactful.

5.7 Remeshing: Benchmark

In this section we next evaluate how Parth performs in remeshing
applications where sparsity patterns change due to localized up-
dates in mesh geometry and topology which result in both adding
and deleting of the nodes in G and added and removed edges. Here
we test with a remeshing pipeline in which we select remeshing
patch regions on triangle meshes, remesh with Botsch and Kobbelt
[2004] to alter patch structure, and then apply global discrete Lapla-
cian operator [Jacobson et al. 2024]. For a comprehensive analysis,
remeshing operations are chosen to cover patches with a range of
sizes comprising 1%, 5%, 10%, 20% of the faces. Each patch is created
around a randomly selected face ID. Here, per each mesh, the same
face ID is used for comparison between different linear solvers. As
a result, comparisons across linear solvers for a specific mesh and
patch are consistent with identical computation. For each patch size,
fifty such samples are chosen, covering different areas of a surface
mesh, forming 200 sparse linear solves per mesh. After applying
each patch remeshing, we reset the mesh and select another patch

to measure Parth’s reuse capability for each patch size. This testing
is applied across all the meshes in the Stein [2024] repository with
the exclusion of the overly simple Cube mesh.

In addition to testing an application with changing matrix size,
this benchmark additionally allows evaluation of Parth’s perfor-
mance on triangular meshes, and on linear solves with a problem
dimension of DIM = 1 (recalling for IPC, it is 3). As a result, in this
evaluation, Parth directly employs the graph dual of the input matrix
instead of the coarsened version where the graph nodes associated
with a single DOF are combined. As a result, this benchmark does
not require the application of Parth’s compression.

5.8 Remeshing: Bottleneck Analysis

Figure 16 provides an analysis of the bottleneck of the symbolic
stage. Here, we divide the meshes into separate groups based on
their number of DOFs to show the effect of mesh sizes on the sym-
bolic analysis stage. As we increase mesh size, and consequently
increase the size of the graph dual of the Laplacian operator, the fill-
reducing ordering performance overhead becomes more prominent.
For example, for small meshes, fill-reducing ordering is 57% of the
symbolic analyzing, and for Large meshes, this overhead increases
to 82% for the MKL solver. As a result, for large-scale problems, opti-
mizing symbolic analysis is clearly important for the Cholesky solve
pipeline. Note that these results are consistent with our analysis of
the IPC benchmark.

5.9 Remeshing: Total Linear Solve Performance

Here we discuss only the symbolic analysis and total per-solve
linear solve performance of the remeshing benchmark. However,
consistent with our IPC benchmark analysis, we also provide our
numerical performance analysis of the remeshing benchmark in
supplemental. For this set of analyses, we divide the performance
data into five categories. The first category is the initialization step,
while the next four categories reflect performance with respect to
patch size. This categorization allows us to offer further insight into
Parth’s initialization cost without the compression phase, making
the overhead of building the HGD data structure more visible. Fur-
thermore, as shown in the teaser, a 2% selection of the surface mesh

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14« Behrooz Zarebavani

=)= (2)=(3) = (4) = (5 = (6)

Per-Solve Speedup: MKL + Parth Max: 1.87
2.25 Min: 1.19
Max: 1.87
200 Min: 0.53 i Max: 1.61
1.75 Min: 1.22
1.50
1.25
)
1.00 I : i !
Max: 2.1 Max: 1.9 i
075 M 107 Min: 126 Max: 228 1
o o Min:0.87 !
0.50
Per-Solve Speedup: Accelerate + Parth
3> Max: 2.95
30 MirEE).SS Max: 2.07 Max: 2.62
Max: 2.43 Min: 0.97 Min: 091
25 Min: 0.9 Man 2.08 E
Min: 1.18 i
20 1 : Max: 1.33
Min: 1.04
1.5
1.0 1 s .
Per-Solve Speedup: CHOLMOD + Parth Mf"x: 1.99
2.0 o Max: 1.72 Min: 0.85
18 Max: 1.66 Min: 124 Max: 1.67
’ Min: 0.77 Min: 1.25 Max: 1.55
16 Min:a'l.36
-
12 i)
0 | . '
Max: 1.97 ’ I
0.8/ Min: 0.95

Fig. 15. IPC: Parth’s Per-Solve (Symbolic + Numeric) Performance
Impact Across Benchmark. As previously stated, MKL encountered nu-
merical problems in the "Arma Roller"(6) simulation. Moreover, our analysis
reveals that the minimum of 0.53x speedup recorded in "Roller Ball" (2) with
MKL is due to a high number of repetitive iterations where the sparsity
pattern remained unchanged. This implies a repeated use of a single per-
mutation vector with slightly lower quality due to the absence of contact.
Excluding these iterations, Parth achieves a 1.53 end-to-end speedup for
this simulation.

is not considered small. By increasing these patch sizes to 20%, we
aim to provide insight into more challenging situations where the
changes are more drastic, demonstrating Parth’s performance in
terms of both reuse capability and fill-reducing quality.

Figure 17 shows Parth’s effect on the symbolic analysis. As ex-
pected, since DIM = 1 for this computational pipeline, Parth reduces
performance in the initialization step. However, since the HGD com-
putation is also reused in the fill-reducing ordering computation,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

== MKL Ordering == CH Ordering== AC Ordering
=MKL Other ==CH Other ==AC Other

N < 1000

1000 < N < 10000 10000 < N < 100000 10000 < N
Fig. 16. Remeshing: Fill-reducing ordering is the bottleneck for all
symbolic analyses. Here we summarize a bottleneck analysis for the sym-
bolic steps of all three Cholesky solvers across all 20 Meshes ranging from
642 DOFs to approximately 1.6m DOFs in our benchmark. For each simu-
lation and corresponding tool, both the fill-reducing ordering time and all
additional symbolic analysis time are recorded. Here, "CH", and "AC" respec-
tively denote CHOLMOD and Accelerate LLT runtimes. "Other" categories
summarize all other symbolic analysis costs per Cholesky solver with tasks
that vary depending on the Cholesky solver method.

the average performance speed is 70% of the baseline fill-reducing
routine. After the initialization step, Parth consistently provides
speedup. For example, in CHOLMOD with patch sizes of 1%, Parth
achieves an order-of-magnitude speedup. It is important to note that
as the size of the patches on the mesh increases, Parth’s performance
decreases due to less temporal coherence and fewer opportunities
for reuse, i.e., the changes become less gradual. In patch sizes of 20%,
for instance, we observe up to a 3.36x speedup, which is smaller
than the order-of-magnitude speedup achieved with patch sizes of
1% of the surface faces in symbolic analysis.

The performance benefits in symbolic analysis lead to an overall
improvement in total Cholesky solve time, as shown in Figure 18.
As expected, this performance boost mirrors the trends seen in
symbolic analysis, resulting in up to a 5.89x, 3.55x, and 2.82x speedup
compared to Accelerate, CHOLMOD, and MKL, respectively.

6 LIMITATIONS AND FUTURE WORK

Here, we discuss the key limitations of Parth that guide future
research directions. Specifically, we discuss Parth’s domain of ap-
plicability, its ability to maintain high-quality reuses under mesh
deformation, and the challenges of alternative lagging approaches.

6.1 Domain of Applicability

Currently, Parth is designed to provide performance benefits by
reusing symbolic analysis computations; however, its advantages
are limited to scenarios where symbolic analysis—specifically fill-
reducing ordering—is the primary bottleneck. When the compu-
tational bottleneck lies elsewhere, Parth’s improvements are not
applicable. We plan to address this limitation in future work by
adding adaptive numerical acceleration techniques to Cholesky
solves.

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 15

== |nite== 1% == 5% == 10%== 20%
Symbolic Speedup: MKL + Parth
4.5

Max: 3.79
4.0 Min: 1.9
3.5
3.0
Max: 2.22
25 Min: 1.36

2.0 Max: 4.62
Min: 2.16 "
150 Mo 082 Max: 3.01

1.0 Min: 059 Min: 1.64
05 =
Symbolic Speedup: Accelerate + Parth
8
7
6 Max: 5.29
Min: 3.16
5 Max: 4.12
Min: 2.38 Max: 3.29
4 : 3.
Max: 8.23 Min: 1.95
3 Min: 4.12
21 Max:0.75
1 Min: 0.58
——
Symbolic Speedup: CHOLMOD + Parth
10
3 Max: 7.07
Min: 3.28
6 Max: 5.14
Min: 267 \tax: 3.64
4 Min: 2.2
Max: 10.7
Max: 1.24 Min: 3.79
21 Min: 0.08
0

Fig. 17. Remeshing: Symbolic performance impact across Patch
benchmark. Here the performance impact of Parth on symbolic analy-
sis of the Patch pipeline is shown. As it is shown, the initialization step
is slowed down to 0.7x performance on average, due to Parth overhead.
However, after that, due to the reuse a significant boost in performance is
observed. Note that as expected, the reuse performance benefits are reduced
due to the more aggressive changes in the mesh structure resulting from
using the remesher.

6.2 Widespread changes throughout the domain

Parth’s core idea is to confine changes locally and enable reuse.
Thus, if locality is not present, Parth fails to provide performance
benefits. In the supplemental material, we provide a detailed anal-
ysis of Parth’s reuse on the “Mat Twist” simulation from the IPC
benchmark, where numerous self-collisions, spread throughout the
domain, cause Parth to fail to provide reuse in some of the frames.

= |nite= 1% == 5% == 10%== 20%
Per-Solve Speedup: MKL + Parth

—_ Max: 2.5
25 Min: 127 Max: 222
Min: 1.15
20 Max: 1.73
Min: 1.02
1.5
10 Max: 0.79 M?X: 2.82
g Min: 0.62 Min: 1.31
==
Per-Solve Speedup: Accelerate + Parth
6
5 Max: 4.24
Min: 2.58
4 Max: 3.42
Min: 2.11 Max: 2.79
3 Min: 1.76
Max: 5.89
2 Min: 2.79
Max: 0.74
11 Min:0.59
—_—
Per-Solve Speedup: CHOLMOD + Parth
35 Max: 2.98
3.0 Min: 1.72 Max: 2.58
Min: 1.71
2.5 Max: 2.14
Min: 1.55
2.0
Max: 3.53
15 in: 1.
Max: 0.04 Min: 185
1.0 Min: 0.53
0.5

Fig. 18. Remeshing: Per linear solve speedup when using remesher.
Here, after each re-meshing, the per-solve speedup is shown. As we expected,
when the numerical time comprises the smaller ratio of a solve runtime,
Parth speedup is more significant. For example, since the Accelerate frame-
work has a very fast numerical performance due to its fast processor, Parth
shows up to 5.89x speedup with a median of 4.6x for a Patch size of 1% of
the total faces.

6.3 Preservation of High-Quality Reuse

Another key limitation worth investigating is how long Parth can
preserve high-quality fill-reducing ordering performance, given that
computing such orderings typically requires global information. To
assess this, we apply remeshing to 1,000 patches (each comprising 1%
of mesh faces) on the triangular meshes evaluated in our Remeshing
benchmark. Each patch is selected around face IDs not chosen in
the previous patch using a uniform distribution, allowing us to
sample different parts of the meshes uniformly. We then evaluate

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

16 « Behrooz Zarebavani

#Reuse

350 °

300 .
250
200 .

150 .

100 - . e .

50 . o0 ° ®e e *

0 o

Fig. 19. Performance Degradation over Sequential Remeshings. We
evaluate how long Parth maintains high-quality fill-reducing ordering under
continuous mesh modifications. For each mesh from [Stein 2024], we per-
form a sequence of 1,000 remesh operations, each affecting 1% of the mesh
faces, followed by a discrete Laplacian smoothing. After each remeshing,
we measure the numerical runtime of CHOLMOD factorization integrated
with Parth (t,) and compare it to the baseline runtime without Parth (¢)
by computing the relative difference (¢, — ¢)/t. The figure plots, for each
mesh, the number of remeshings that can be applied before this relative
difference exceeds 15%, indicating that Parth’s performance falls below 85%
of the baseline due to degraded ordering quality. The results reveal that,
on average, performance drops after 94 remesh operations, with a median
threshold reached after approximately 64% of the mesh has been modified.

how many such 1% patch remeshings can be applied before the
numerical performance drops below 85% of the baseline—indicating
how often Parth can reuse high-quality ordering without a full
recomputation. Our choice of a 15% threshold is based on per-solve
numerical speedup results (see supplemental), which show that a
15% difference in numerical performance is typical for different
high-quality orderings. For this test, the aggressive reuse algorithm
(see supplemental) is activated to prevent full recomputation when a
patch on the root separator changes. The results of this experiment
provide insight into how much deformation from the original mesh
Parth can tolerate before quality degrades.

As illustrated in Figure 19, the x-axis shows mesh IDs from [Stein
2024] (sorted by degrees of freedom), and the y-axis indicates the
number of reuses. For some meshes, Parth maintains high-quality
ordering even after 350 patches. On average, performance drops
below 85% after 94 distinct patch remeshings—corresponding to 94%
of the mesh being modified. However, results vary depending on
mesh shape and deformation extent. The median result indicates
that after 64.42% of the mesh has changed, Parth needs to be reset
to obtain new fill-reducing ordering information, as the underlying
geometry has shifted significantly.

6.4 Lagging Approaches as Alternatives

Finally, we consider lagging approaches as an alternative to Parth. To
the best of our knowledge, no lagging approach supports reusing the
fill-reducing ordering when the number of matrix rows or columns
changes. For cases where only the non-zero entries of the linear sys-
tem change, one can reuse the full permutation vector via a heuristic
that delays the order computation. In practice, these approaches
are difficult to use because they require domain-specific knowledge
and lack generality as the performance can degrade significantly if
lagging approach is not appropriate. We provide a comprehensive

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

analysis of two such lagging approaches in the supplemental, illus-
trating the challenges in designing them and offering insight into
scenarios where they might replace Parth.

7 CONCLUSION

Our evaluation reveals that Cholesky solves face significant bottle-
necks when the sparsity pattern is dynamic due to symbolic analysis
overhead—a factor often ignored in the recent development of high-
performance Cholesky solvers. Our study further pinpoints the
fill-reducing ordering algorithm as a key contributor. This insight
offers a clear path to mitigate the bottleneck while continuing to use
state-of-the-art Cholesky solvers. Our extensive evaluation confirms
that the Parth module enables successful, simple, and direct integra-
tion into all three state-of-the-art Cholesky solver libraries—without
the need for any tuning and using only the input matrix (and a map-
ping when the matrix rows/columns change). The generality and
ease of use of Parth align with practitioners’ objectives on using
Cholesky solves, whether they prioritize accuracy and stability or
face constraints on developing high-performance specialized iter-
ative linear solvers. Building on this foundational capability, we
next conclude how Parth improves performance by reducing the
bottleneck in terms of both runtime and quality"

Our evaluation shows that integrating Parth into high-performance
Cholesky solvers yields significant speedups and reliability improve-
ments across various challenging linear benchmarks. By reusing
computations across calls, Parth achieves up to a 255x speedup
in fill-reducing ordering computation while preserving numerical
stability and performance in the downstream Cholesky factoriza-
tion and subsequent solve processes for all three high-performance
direct solvers—namely, Intel MKL Pardiso [Schenk et al. 2001],
CHOLMOD [Chen et al. 2008], and the newly introduced Apple
Accelerate sparse solver [Inc. 2023]. This integration leads to up to
a 5.89x speedup in overall Cholesky solve time, outperforming the
best speedups obtained by recent architecture-customized Cholesky
solver updates [Inc. 2023]. As Cholesky solvers remain one of the
core time-intensive computational routines in applications with
dynamically changing sparsity, these performance gains represent a
significant improvement enabled by a simple three-line module ad-
dition at the solver’s API level. These achievements not only address
current challenges but also allow for many future enhancements
that will further extend Parth’s capabilities.

Finally, to further extend Parth’s advantages, we plan to reuse ad-
ditional parts of the symbolic analysis and develop faster numerical
computation for Cholesky solves, leveraging the low-overhead sym-
bolic analysis already achieved by Parth. Alongside these technical
advances, our open-sourced Parth codebase invites community col-
laboration, enabling researchers and practitioners to build upon and
refine our methods. We believe that Parth will play a significant role
in the future advancement of high-performance Cholesky solvers
for handling dynamically changing sparse linear systems efficiently,
setting the stage for continued innovation, broader adoption, and
collaborative development.

Adaptive Algebraic Reuse of Reordering in Cholesky Factorizations with Dynamic Sparsity Patterns « 17

ACKNOWLEDGMENTS

Frangois Pellegrini. 2009. Distillating knowledge about Scotch. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

This work was Supported by NSERC Discovery Grants (RGPIN_2019_06516 Steven C Rennich, Darko Stosic, and Timothy A Davis. 2016. Accelerating sparse

and RGPIN-2023-05120), the Canada Research Chairs Program, the
Ontario Early Researcher Award, and the Digital Research Alliance
of Canada (www.alliancecan.ca).

REFERENCES

2020. IPC. https://github.com/ipc/ipc-sim GitHub repository.

Gene M Amdahl. 1967. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference. 483-485.

Patrick R Amestoy, Timothy A Davis, and Iain S Duff. 2004. Algorithm 837: AMD, an ap-
proximate minimum degree ordering algorithm. ACM Transactions on Mathematical
Software (TOMS) 30, 3 (2004), 381-388.

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach to multiresolution modeling.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. 185-192.

Yanging Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008),
1-14.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2017. Sympiler: transforming sparse matrix codes by decoupling symbolic analysis.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-13.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2018a. ParSy: inspection and transformation of sparse matrix computations for
parallelism. In SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE, 779-793.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2018b. ParSy: Inspection and transformation of sparse matrix computations for
parallelism. In SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE, 779-793.

Kazem Cheshmi, Danny M Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. 2020.
NASOQ: numerically accurate sparsity-oriented QP solver. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 96-1.

Kazem Cheshmi, Michelle Strout, and Maryam Mehri Dehnavi. 2023. Runtime compo-
sition of iterations for fusing loop-carried sparse dependence. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis. 1-15.

Timothy A Davis and William W Hager. 2005. Row modifications of a sparse Cholesky
factorization. SIAM J. Matrix Anal. Appl. 26, 3 (2005), 621-639.

Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-Lakhdar. 2016.
A survey of direct methods for sparse linear systems. Acta Numerica 25 (2016),
383-566.

Jack] Dongarra, Jeremy Du Croz, Sven Hammarling, and Tain S Duff. 1990. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software
(TOMS) 16, 1 (1990), 1-17.

Philipp Herholz and Marc Alexa. 2018. Factor once: reusing cholesky factorizations on
sub-meshes. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1-9.

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse cholesky updates for inter-
active mesh parameterization. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1-14.

Kemeng Huang, Floyd M Chitalu, Huancheng Lin, and Taku Komura. 2024. GIPC: Fast
and stable Gauss-Newton optimization of IPC barrier energy. ACM Transactions on
Graphics 43, 2 (2024), 1-18.

Apple Inc. 2023. Accelerate Framework. Available at https://developer.apple.com/
documentation/accelerate.

Alec Jacobson, Daniele Panozzo, et al. 2024. Libigl Tutorial - Laplace Equation. https:
//libigl.github.io/tutorial/#laplace-equation. Accessed: 2024-10-18.

George Karypis and Vipin Kumar. 1997. METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. (1997).

Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen. 2021. Interactive cutting and
tearing in projective dynamics with progressive cholesky updates. ACM Transactions
on Graphics (TOG) 40, 6 (2021), 1-12.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental po-
tential contact: intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (2020), 49.

Joseph WH Liu. 1990. The role of elimination trees in sparse factorization. SIAM journal
on matrix analysis and applications 11, 1 (1990), 134-172.

Cholesky factorization on GPUs. Parallel Comput. 59 (2016), 140-150.

Olaf Schenk, Klaus Gértner, Wolfgang Fichtner, and Andreas Stricker. 2001. PARDISO:
a high-performance serial and parallel sparse linear solver in semiconductor device
simulation. Future Generation Computer Systems 18, 1 (2001), 69-78.

Patrick Schmidt, Dérte Pieper, and Leif Kobbelt. 2023. Surface maps via adaptive
triangulations. In Computer Graphics Forum, Vol. 42. Wiley Online Library, 103-117.

Silvia Sellan, Jacob Kesten, Ang Yan Sheng, and Alec Jacobson. 2020. Opening and
closing surfaces. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1-13.

Oded Stein. 2024. odedstein-meshes: A Computer Graphics Example Mesh Repository.
(2024).

Mihalis Yannakakis. 1981. Computing the minimum fill-in is NP-complete. SIAM
Journal on Algebraic Discrete Methods 2, 1 (1981), 77-79.

Behrooz Zarebavani, Kazem Cheshmi, Bangtian Liu, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2022. HDagg: hybrid aggregation of loop-carried depen-
dence iterations in sparse matrix computations. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 1217-1227.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

www.alliancecan.ca
https://github.com/ipc/ipc-sim
https://developer.apple.com/documentation/accelerate
https://developer.apple.com/documentation/accelerate
https://libigl.github.io/tutorial/#laplace-equation
https://libigl.github.io/tutorial/#laplace-equation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Exploiting Dense Computation
	2.2 Parallelism and Scheduling Algorithms
	2.3 Code Generation
	2.4 Reuse of Numerical Factorization

	3 Background
	4 Parth Framework
	4.1 Parth: Hierarchical Graph Decomposition
	4.2 Parth: Synchronizer
	4.3 Parth: Assembler

	5 Evaluation
	5.1 Evaluation Setup
	5.2 IPC: Benchmark
	5.3 IPC: Bottleneck Analysis
	5.4 IPC: Parth Speedup
	5.5 IPC: Parth Ordering Quality
	5.6 IPC: Per Sparse Linear Solve Performance
	5.7 Remeshing: Benchmark
	5.8 Remeshing: Bottleneck Analysis
	5.9 Remeshing: Total Linear Solve Performance

	6 Limitations and Future Work
	6.1 Domain of Applicability
	6.2 Widespread changes throughout the domain
	6.3 Preservation of High-Quality Reuse
	6.4 Lagging Approaches as Alternatives

	7 Conclusion
	Acknowledgments
	References

