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1 HGD OVERHEAD DISCUSSION
Here we discuss two overhead involved in using HGD data-structure.
(1) The decomposition process of HGD and (2) the usage overhead
of HGD’s binary tree. In particular, we explain why the computation
of the binary tree creation is overlapped with fill-reducing ordering
computation itself, and then we discussed both the size of the tree
which affect the overhead of traversing the tree for different tasks
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Fig. 1. Partial fill-reducing ordering using separator set. Here, the
computation used for finding separator set, coloured in purple, is used in
the fill-reducing process. This process involves renumbering the left sub-
mesh from {5, 6, 7} to {0, 1, 2}, the right sub-mesh from {2, 3, 8} to {3, 4, 5},
and the separator set from {1, 0, 4} to {7, 6, 8}. Consequently,𝐴𝑝 associated
with G𝑝 becomes the permuted version of 𝐴. This reordering effectively
reduces the fill-ins by separating the computations of A𝐿 and A𝑅 . As a
result, the resulting factor 𝐿𝑝 has five fewer fill-ins compared to the factor
𝐿 of the unordered Hessian 𝐻 .

in Parth and also the process of coarsening sub-graphs, where in
Parth, has no overhead.

Sub-graph Decomposition Overhead: The HGD process lever-
ages the nested-dissection approach [Khaira et al. 1992] to create the
sub-graphs. Parth reuses information related to the separator sets
and their corresponding left and right sub-graphs for computing
the ordering vector which result in lower-overhead. This approach
hides the HGD cost within the fill-reducing ordering computation.
To further illustrate how the information in B contributes to

fill-reducing ordering computation, refer to Figure 1. In this figure,
the separator set, coloured in purple, is used in reducing fill-ins.
The procedure effectively renumbers the nodes in the 𝐺 such that
the computation of the separator set occurs at the end of the factor
computation. When comparing Figures 1(a.1) and 1(b.1), it becomes
apparent that the graph𝐺 undergoes renumbering, positioning the
separator set numbers after the orange and blue coloured left and
right sub-meshes, respectively. A comparison of the matrix 𝐴 in
Figure 1(a.2) with 𝐴𝑝 in Figure 1(b.2) shows an identical count of
non-zero entries; however, their sparsity patterns differ due to the
renumbering. Factoring both 𝐴 and 𝐴𝑝 shows that the factor 𝐿𝑝
possesses fewer fill-ins than 𝐿, thus demonstrating fill-reduction
achieved by the permutation.
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a) max_level = 0 b) max_level = 1 c) max_level = 2

Fig. 2. HGD evaluation on "Dolphin" mesh for a Laplace-Beltrami
operator. Here, the graph𝐺 is identical to the mesh, as each node in the
graph corresponds to a DOF in the mesh, and each edge in the graph arises
from the connection of DOFs within an element. The figure shows the HGD
evaluation for max_level = {0, 1, 2}. Furthermore, observe how merging
fine-grained sub-meshes B[1], B[3], and B[4] in Figure 2(c) results in the
coarser sub-graph B[1] in Figure 2(b).

Binary Tree Usage Overhead: In practice, Parth achieves rea-
sonable reuse by using a small B, regardless of the mesh resolution.
This results in low overhead when traversing the binary tree. To
understand why a small B provides effective reuse, we examine the
relationship between the size of B and Parth’s reuse capability.
To elaborate, let us consider how much reuse Parth can provide

when max_level = 2. Regardless of how Parth confines the changes,
these changes occur either within fine-grain or coarse-grain sub-
graphs.Whenmax_level = 2, each leaf node ofB represents roughly
25% of the total graph (considering small separator sets). Conse-
quently, Parth can confine changes to either a fine-grain sub-graph
of size 25%, achieving 75% reuse on the unchanged sub-graph, or to
coarser sub-graphs of sizes 50% or 100%, which are the only coarse
sizes generated by B. This results in discretized reuse levels of 75%,
50%, or 0% (where changes cannot be confined locally).

Increasing ‘max_level’ to 3 produces fine-grain sub-graphs com-
prising 12.5% of the total graph, resulting in maximum reuse levels
of 87.5%, 75%, 62.5%, down to 0%. Thus, ‘max_level’ controls the
granularity of reuse that Parth can provide. Setting ‘max_level’ to 7
creates a binary tree (B) with 128 leaf nodes, approximating sub-
graphs smaller than 1% of the total graph size. This allows for reuse
granularity below 1%, enabling Parth’s reuse capability to exceed
99% regardless of mesh resolution, sufficient in practice. Addition-
ally, a full binary tree with ‘max_level = 7’ contains 255 nodes, and
traversing such a small tree incurs minimal overhead in practice.
Finally, note that coarsening sub-graphs using this binary tree

model does not involve explicitly coarsening the nodes inB. Instead,
Parth treats a sub-tree in B as a coarsened sub-graph. Specifically, a
separator and its corresponding left and right sub-graphs are treated
as a single coarse sub-graph. This can be seen in Figure 2, which
illustrates how the coarse-grain sub-graphs in Figure 2(b) (colored
yellow) are formed by viewing the fine-grain sub-graphs and their
common separators in Figure 2(c) (colored blue) as single coarse
sub-graph.

2 SYNCHRONIZER: 𝑁𝑜𝑑𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟

By removing or adding a set of nodes from a graph 𝐺 , a new graph
𝐺𝑛𝑒𝑤 is created. By adding and removing nodes, the indices of

Algorithm 1 𝑁𝑜𝑑𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟

Global: B
Input: 𝑚𝑎𝑝

1: if 𝑚𝑎𝑝 is empty then
2: return
3: end if

/* Step 1: Deleting the removed nodes from B */
4: 𝑁𝐷 = 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 (𝑚𝑎𝑝, |𝐺 |)
5: for 𝑛𝑜𝑑𝑒 in 𝑆𝐷 do
6: 𝑖 = 𝑔𝑒𝑡𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐼𝐷 (𝑛𝑜𝑑𝑒)
7: 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑛𝑜𝑑𝑒,B[𝑖] .𝑛𝑜𝑑𝑒𝑠)
8: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑛𝑜𝑑𝑒,B[𝑖] .P𝑙 )
9: end for

/* Step 2: Update the index of nodes in B */
10: 𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑒𝑥 (B[𝑖],𝑚𝑎𝑝)

/* Step 3: Assign a sub-graph to each added node */
11: 𝑁𝐴 = 𝑎𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒𝑠 (𝑚𝑎𝑝)
12: 𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 = 𝑇𝑟𝑢𝑒

13: 𝐹𝑢𝑙𝑙𝑄𝑢𝑒𝑢𝑒 = 𝑁𝐴 and 𝐸𝑚𝑝𝑡𝑦𝑄𝑢𝑒𝑢𝑒 = Empty
14: while 𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 do
15: 𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒

16: while ¬𝐹𝑢𝑙𝑙𝑄𝑢𝑒𝑢𝑒.isEmpty() do
17: 𝑛𝑜𝑑𝑒 = 𝐹𝑢𝑙𝑙𝑄𝑢𝑒𝑢𝑒.front()
18: 𝐹𝑢𝑙𝑙𝑄𝑢𝑒𝑢𝑒.pop()
19: 𝑆B = 𝑔𝑒𝑡𝐴𝑙𝑙𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠 (𝑛𝑜𝑑𝑒)
20: if 𝑆B .isEmpty() then
21: 𝐸𝑚𝑝𝑡𝑦𝑄𝑢𝑒𝑢𝑒.push(𝑛𝑜𝑑𝑒)
22: else
23: 𝑖 = 𝐿𝐶𝐴(𝑆B)
24: 𝐴𝑠𝑠𝑖𝑔𝑛𝑁𝑜𝑑𝑒𝑇𝑜𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ(𝑖, 𝑛𝑜𝑑𝑒)
25: 𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 = 𝑇𝑟𝑢𝑒

26: end if
27: end while
28: if 𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 then
29: 𝑆𝑤𝑎𝑝 (𝐹𝑢𝑙𝑙𝑄𝑢𝑒𝑢𝑒, 𝐸𝑚𝑝𝑡𝑦𝑄𝑢𝑒𝑢𝑒)
30: end if
31: end while
32: if ¬𝐸𝑚𝑝𝑡𝑦𝑄𝑢𝑒𝑢𝑒.isEmpty() then
33: 𝐴𝑠𝑠𝑖𝑔𝑛𝑁𝑜𝑑𝑒𝑇𝑜𝐸𝑚𝑝𝑡𝑦𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑂𝑅𝐿𝑎𝑠𝑡 (𝑖, 𝑛𝑜𝑑𝑒)
34: end if

the nodes in 𝐺𝑛𝑒𝑤 change. For example, Figure 3 illustrates how
removing a node and adding a new one can alter the labelling of the
node in a graph. The objective of this heuristic is to synchronize B
with the 𝐺𝑛𝑒𝑤 to represent the latest node structure. Furthermore,
it provides the necessary information for the Assembler module to
update the permutation vector accordingly.
The Synchronizer uses the map array to detect the added and

removed nodes in the graph. To formally define the map,𝑚𝑎𝑝 is
a function𝑚𝑎𝑝 : 𝑋 → 𝑌 , where 𝑋 represents all the node indices
in 𝐺𝑛𝑒𝑤 , denoted as 𝑋 ∈ 𝐺𝑛𝑒𝑤 , and similarly, 𝑌 ∈ 𝐺 ∪ {−1}. Any
node that is in𝐺 but not in the range of𝑚𝑎𝑝 (for example, node 0 is
not in the range of𝑚𝑎𝑝 in Figure 3(a)) is considered a deleted node.
Additionally, any node 𝑐 for which𝑚𝑎𝑝 [𝑐] = −1 is an added node.
It is natural to assume that if𝑚𝑎𝑝 [𝑐1] ≠ −1 ∧𝑚𝑎𝑝 [𝑐2] ≠ −1, then
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𝑚𝑎𝑝 [𝑐1] ≠𝑚𝑎𝑝 [𝑐2], which implies that no two nodes in𝐺𝑛𝑒𝑤 can
be mapped to a single node in𝐺 . Based on our experience, this map
is a common structure in remesher libraries, and we successfully
extract this information from the subroutines used in remeshers such
as those in [Bischoff et al. 2002; Botsch and Kobbelt 2004; Pfaff et al.
2014; Schmidt et al. 2023]. The loop subdivision of IGL [Jacobson
et al. 2013] also provides this information as output. Algorithm 1
describes the synchronization process, which is performed in 3 steps
as follows:
Step 1: Deleting the removed nodes from B: In the first step

of this heuristic, Parth deletes the removed nodes from B. This
process also involves updating the local P𝑙 accordingly (Lines 4-8
in Algorithm 1). For example, in Figure 3(a), the removed nodes
𝑁𝐷 = {0} are identified using the map since they are not present in
the range of the map. Then, in Figure 3(b), this node is deleted from
B[0].
Step 2: Updating the indices: By adding and deleting DOFs

from a mesh and renaming the DOFs based on that process, the
corresponding naming of the nodes in the graph also changes. As
a result, it is crucial to update the indices of the nodes to maintain
consistency. Using the𝑚𝑎𝑝 , Parth updates the indices (Line 9). For
example, in Figure 3(b), since the new name for node 8 in𝐺 is 0, the
indices of nodes in the sub-graph represented by B[6] are updated
from {8} to {0}. In practice, Steps 1 and 2 are applied simultaneously
for computational reuse.

Step 3: Assign a sub-graph to each added node: After updating
the indices and deleting the nodes, the Synchronizer assigns the
added nodes to B (Lines 11-34). Parth uses a heuristic that assigns
the nodes to each sub-graph based on their neighbours. For each
added node, he first computes all the sub-graphs that are adjacent
to it. If there is only a single sub-graph, then that node is assigned
to that sub-graph. If it is adjacent to more than one sub-graph, the
lowest common ancestor in B is selected as the sub-graph to which
it will be assigned. As an example, see Figure 3(c). By doing so,
we maintain the separator relation across each sub-graph. Finally,
this process repeats in a greedy manner to assign all the nodes to
sub-graphs. If a completely separated graph is added, Parth simply
assigns that separated graph to a leaf in B.

3 SYNCHRONIZER: 𝐷𝑖𝑟𝑡𝑦𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
The objective of the algorithm 2 is to first categorize the edges
into three groups. (I) The edges that show a change in connectivity
within a sub-graph. (II) The edges that connect a separator set to
its left and right sub-graphs. (III) Finally, the edges violate a sepa-
rator condition by connecting two sub-graphs that are otherwise
completely separated from each other. Lines (3–5) detect the first
group by checking whether the two ends of the edge are within the
same sub-graph, i.e., 𝑎 = 𝑏. Line 7 distinguishes between groups (II)
and (III). If this condition is true, it means that the edge is between
a separator and its corresponding left and right sub-graphs. Other-
wise, it violates a separator. To find this separator, we simply need
to find the Lowest Common Ancestor (LCA) of the two sub-graphs,
a and b, by traversing the B (line 8).

c) Synchronizing the added node 8 by adding it to the purple sub-graph

7 1 2

6 0 3

5 4 8

b) Updating the indices and deleting removed nodes 

7 1 2

6 3

5 4 0

 map:

8

7 1 2

8

a) Computing added and removed nodes from the map 

Fig. 3. Example of the Node Synchronizer. In this example, node 0 is
deleted from 𝐺 and node 8 is added to 𝐺𝑛𝑒𝑤 . Note that since node 8 in
𝐺𝑛𝑒𝑤 is newly added,𝑚𝑎𝑝 [8] = −1. Also, note that node 8 in𝐺 and node 0
in𝐺𝑛𝑒𝑤 still represent the same node. In (b), we can see that B is oblivious
to the naming of the nodes, and the indices can simply be updated as B
is created based on the structure of the graph. Finally, in (c), we can see
that the heuristic synchronizes the added node 8 into B by computing the
lowest common ancestor between sub-graphs that it is connected to. This
maintains the separator relation between sub-graphs.

Algorithm 2 𝐷𝑖𝑟𝑡𝑦𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

Global: B
Input: 𝐸B
Output: 𝐷𝐶 , 𝐷𝐹

/*Detect dirty sub-graph in B*/
1: for < B[𝑎],B[𝑏] > in 𝐸B do

/*Within sub-graph change*/
2: if 𝑎 == 𝑏 then
3: 𝐷𝐹 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑎)
4: Continue
5: end if

/*Across sub-graph changes*/
6: 𝑠𝑚𝑖𝑛 ←𝑚𝑖𝑛(𝑎, 𝑏) and 𝑠𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑎, 𝑏)

/*Filter changes between separators and their ancestors*/
7: if !𝑠𝑚𝑎𝑥 .𝑖𝑠𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡 (𝑠𝑚𝑖𝑛) then
8: 𝐷𝐶 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝐿𝐶𝐴(𝑎, 𝑏))
9: end if
10: end for
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Algorithm 3𝑀𝑎𝑟𝑘𝐴𝑛𝑑𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠

Global: B
Input: 𝐷𝐶 , 𝐷𝐹

Output: 𝐶B
/*Mark the fine-grain sub-graphs for fill-reducing ordering*/

1: for 𝑎 in 𝐷𝐹 do
2: 𝐶B [𝑎] = 𝐹𝑎𝑙𝑠𝑒

3: end for
/*Re-decompose dirty sub-graphs in B*/

4: for 𝑎 in 𝐷𝐶 do
5: 𝑛𝑜𝑑𝑒𝑠 ← 𝑔𝑒𝑡𝐶𝑜𝑎𝑟𝑠𝑒𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑁𝑜𝑑𝑒𝑠 (B[𝑎])
6: 𝐺𝑠𝑢𝑏 ← 𝑔𝑒𝑡𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ(𝐺,𝑛𝑜𝑑𝑒𝑠)
7: 𝑙 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 (𝑎)
8: 𝐻𝐺𝐷 (𝐺𝑠𝑢𝑏 , 𝑙, 𝑖,max_level)

/*Mark new fine-grain sub-graphs for fill-reducing ordering*/
9: 𝐶B [𝑎] ← 𝐹𝑎𝑙𝑠𝑒

10: 𝑠𝑒𝑡𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑙𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑠 (B[𝑎],𝐶B)
11: end for

4 SYNCHRONIZER:𝑀𝑎𝑟𝑘𝐴𝑛𝑑𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠

Algorithm 3 uses the sets 𝐷𝐶 and 𝐷𝐹 to assign values to the cache
𝐶B . This array is then used as an indicator of sub-graphs that need
an updated local permutation vector P𝑙 (see Section 4.3). The en-
tries of 𝐶B are computed in two steps. First, fine-grain sub-graphs
indicated by 𝐷𝐹 are marked as not cached in 𝐶B . This means
that the fill-reducing ordering information for these sub-graphs
is not valid and needs to be recomputed by Assembler. To handle
changes in coarse-grain sub-graphs, the HGD algorithm is used to
re-decompose them, creating a set of valid separators. Lines 5-8
first extract the coarse-grain sub-graph, then apply the HGD algo-
rithm for re-decomposition. Note that the input to HGD is defined
so that the sub-tree in B representing the coarse-grain sub-graph
is replaced with a new sub-tree containing the same number of
sub-graphs (same sub-tree structure). After computing a valid set of
sub-graphs, each of the sub-graphs is marked as not cached in 𝐶B
(line 10) so that Assembler can recompute the fill-reducing ordering
for each of them.

5 SYNCHRONIZER: AGGRESSIVE REUSE
One of the problems with the Parth pipeline is the strict requirement
that even for a single violation between two sub-graphs, with the
root of B as their lowest common ancestor, the reuse is zero. Al-
though this effect sometimes occurs in our IPC benchmark, it does
not result in significant performance loss. However, since we pro-
vide whisker plots of speedups to show the wide range of possible
outcomes with various meshes and configurations of local changes,
we also need to address this problem.

Based on the IPC benchmark, we observe that zero reuse can
happen when two objects collide. In these scenarios, the root in
B is an empty set when the objects are not colliding (see Frame
0 in Figure 4). At the moment of collision, reuse is zero because
the empty root is no longer a separator. The point of contact then
becomes the separator (Frame 7). If the contact area includes a small
number of DOFs, fluctuations in the contact area result in zero

Algorithm 4 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑢𝑠𝑒

Global: B
Input: 𝐸𝐺 , 𝑙𝐿𝐶𝐴 , |𝐺 |
Output: 𝐷𝐹

/*Step 1: Count the node occurrence*/
1: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑉𝑒𝑐𝑡𝑜𝑟 ( |𝐺 |, 0)
2: for <a,b> in 𝐸𝐺 do
3: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑎] + +
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑏] + +
5: end for

/*Step 2: Relocate*/
6: for <a,b> in 𝐸𝐺 do
7: if 𝑎! = 𝑏 and 𝑙𝑒𝑣𝑒𝑙 (𝐿𝐶𝐴(𝑎, 𝑏)) < 𝑙𝐿𝐶𝐴 then
8: 𝐷𝐹 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐿𝐶𝐴(𝑎, 𝑏)
9: if counter[a] > counter[b] then
10: 𝑀𝑜𝑣𝑒 (𝑎, 𝐿𝐶𝐴(𝑎, 𝑏))
11: else
12: 𝑀𝑜𝑣𝑒 (𝑏, 𝐿𝐶𝐴(𝑎, 𝑏))
13: end if
14: end if
15: end for

Frame 0 Frame 10 Frame 79 Frame 89

Fig. 4. 4 samples from the "Mat on Board" simulation in the IPC [Li
et al. 2020] benchmark. The top row shows the simulation scene, while
the bottom row displays the first system of linear equations required to be
solved for these frames. As observed, between frames 0 and 10, when contact
occurs, the graph can still be divided into two separate pieces with a small
separator, making the contact points a potential separator. Additionally,
note that the extent of changes across frames varies depending on the
simulation scene. For instance, the difference between frames 0 and 10 is
much smaller than the difference between frames 79 and 89.

reuse. However, when the contact area increases, this problem is
no longer significant, as the separator is no longer solely the point
of contact. This can also occur in the remeshing benchmark, for
example, when a DOF corresponding to a separator node in the
graph collapses into its left or right sub-meshes. This results in
all the edges connected to that separator violating the separator
sub-graph condition (see Figure 5 for an example). To alleviate this
problem, Parth uses Algorithm 4 to provide reuse even in these
scenarios.
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a) Original graph and its decomposition

1 2 3

7 9 8

4 5 6

1 3

7 2 8
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b) Collapse Operation

Fig. 5. Collapse Example. Remeshers used in SurfaceMap [Schmidt et al.
2023], IGL decimate function [Jacobson et al. 2013] and Botsch and Kobbelt
[2004] use operations such as flip, split and collapse. Here, an example
of collapse is shown where node 2 from the left sub-graph is collapsed
into node 9 which is a separator, resulting in a violation of separator set
properties as now there is a connection between B[1] and B[2]. Without
an aggressive reuse heuristic, Parth needs to re-decompose the whole graph
which results in zero reuse.

Algorithm 4 performs the reallocation in two steps. First, it counts
the number of occurrences of each node in 𝐸𝐺 , which are the prob-
lematic edges (Step 1, Lines 1-5). In Step 2, similar to how the Syn-
chronizer module detects and resolves changes in the graph, it finds
the edges that have an LCA less than a user-defined level (𝑙𝐿𝐶𝐴).
In other words, the user can define when not to re-decompose a
coarse-grained sub-graph using this variable. By detecting the sepa-
rator set that has a problem with a specific edge <a,b>using the LCA
function, the node with higher occurrence is moved to that specific
separator sub-graph. Note that this heuristic is a greedy approach to
reduce the number of nodes reallocated to the separator sub-graph,
as we do not want to significantly increase the separator sizes. Also,
note that we omit implementation details here. For example, Parth
checks whether a node has already been reallocated or not. However,
these details can be found in the open-source code.

6 PARSY AND EIGEN EVALUATION
Figure 6 shows that the numerical performance of MKL is now faster
than Parsy and Eigen for three simulations from the IPC benchmark
and for applying the Laplace-Beltrami operator on our triangle-mesh
dataset. Note that Parsy is the combination of Sympiler [Cheshmi
et al. 2017] and Parsy [Cheshmi et al. 2018], and Eigen is the default
simplicial LLT. Additionally, for supernodal computation, Eigen
acts as a wrapper around the Cholesky solvers—CHOLMOD, Apple
Accelerate, and MKL—and its performance is consistent across them.

Based on this analysis, we can see that Parsy is generally slower
than MKL, and Eigen is much slower than MKL for tetrahedral
meshes. For triangle meshes, which are sparser, simplicial LLT can
be performant, especially for small meshes. However, since our
focus is on high-resolution meshes, including Eigen does not make
sense. Note that if one wants to use Parsy with Eigen, one must
permute the input matrix and use the natural ordering, as Eigen
does not accept user-defined ordering.

7 IPC: NUMERICAL PERFORMANCE ANALYSIS
In Section 5.5 we demonstrate that across our benchmark, Parth
generates state-of-the-art quality fill-reduction for its factors with
significant runtime speedups. A final, and critical, measure of qual-
ity for all fill-reduction methods is to sanity check the resulting
numerical quality of the symbolic analyses which, for each method,
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Fig. 6. MKL Vs. Parsy and Eigen Evaluation: This whisker plot shows the
distribution of MKL numerical speedup over Parsy and Eigen. As it is shown,
due to MKL’s constant development on Intel, MKL numerical performance
is now significantly faster than Parsy which is the combination of the
LBC algorithm in [Cheshmi et al. 2018] and code generation in [Cheshmi
et al. 2017]. Furthermore, MKL is much faster than simplical LLT for high-
resolution meshes.

Table 1. Effect of Parth on the numerical stability of Cholesky solvers.
The table displays the total number of iterations required for the combined
Newton-based solver called in end-to-end simulations. It compares results
from the high-performance solver alone with those obtained when Parth
is integrated. For instance, in the "MKL, Parth" column, the first number
represents the total iterations using only MKL, while the second number
reflects iterations when Parth is integrated with MKL. Note that MKL does
not converge for "Arma Roller" without Parth. Additionally, due to a com-
patibility issue with IPC, Accelerate is not integrated into the "Simulator"
approach.

Example MKL
Default, Parth

CHOLMOD
Default, Parth

(1) Dolphin Funnel 36154, 35748 34625, 35406
(2) Ball mesh roller 58438, 58212 61224, 57925
(3) Mat On Board 2797, 2788 2811, 2817
(4) Rods Twist 8287, 8210 8345, 8267
(5) Squeeze out 12157,12216 12305, 12322
(6) Arma Roller -, 25950 24199, 24655

is determined primarily from rounding errors accrued by varying
approaches to permutation and parallelization [Anand 1980]. In turn,
as discussed above in Section 5.2, these variations lead to changes in
the descent directions computed per Newton iteration and so, down-
stream, the total number of linear solves necessary to complete a
simulation. In Table 1, we confirm that Parth-integration preserves

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



6 • Behrooz Zarebavani

the high-quality accuracy, per solve, required for efficient and effec-
tive Newton solves. Here, utilizing the saved initial conditions per
time-step in our benchmark (see Section 5.2).

We (re-)solve each Newton time-step problem, across each simula-
tion sequence, via the IPC code’s Newton solver, using both default
MKL and CHOLMOD solves and our new, Parth-integrated versions.
Here we see that Parth-integrated and comparable default solvers
converge to the same tolerances, with comparable numbers of itera-
tions for both, demonstrating only minor variations of both slightly
larger and smaller iteration counts (With a maximum difference
of 5.34% in favour of Parth and 0.14% against Parth). Here, in one
notable exception, we observe that MKL is unable to solve a number
of iterations in the “Arma Roller” sequence to sufficient accuracy,
in turn resulting in non-converging Newton solves and so an in-
complete simulation sequence for this portion of the benchmark.
This rare but significant failure is not entirely surprising as prior
IPC implementations [Li et al. 2023] have avoided MKL Pardiso for
this reason. Interestingly, in contrast, we note that Parth-integrated
MKL is able to complete more Newton time-step solves for the
“Arma Roller” sequence. However, at this time we do not know if
this change is due to differences in the quality between a few permu-
tation vectors generated by Parth vs MKL’s custom METIS routines
or other code variations in the MKL settings that occur when we
pass it custom fill-reducing orderings.
Figure 7 demonstrates the runtime change of numerical phase.

The analysis suggests that Parth-integrated Cholesky solvers should
provide symbolic speedup while leaving the already significantly
optimized performance of numerical computation steps (including
the Cholesky factorization and sparse triangular forward/backward
solves) unharmed. We see this confirmed for all three solvers, where
we confirm integration of Parth brings the speedup without ad-
ditional overhead elsewhere in the already optimized numerical
computations of the Cholesky solver packages.
Finally, note that the MKL documentation states that using a

user-provided permutation vector disables forward/backward solve
parallelism in the MKL numeric phase. However, in practice, we did
not find this to be a significant limitation for two reasons. First, it
is well known that the runtime of sparse Cholesky factorization is
the primary bottleneck in the numeric phase. Second, our analysis
shows almost no difference in solve runtime when Parth is used for
our IPC benchmark. Figure 8 illustrates the performance difference
between MKL using its own permutation vector and MKL using the
permutation vector provided by Parth.

8 REMESHING: NUMERICAL PERFORMANCE ANALYSIS
Figure 9 shows Parth’s initialization performance is on par with
state-of-the-art fill-reducing ordering algorithms. For 1% changes,
Parth outperforms Accelerate and MKL in median speedup. As
expected, performance decreases with larger patches due to the
global nature of fill-reducing ordering, but even at 20% changes,
the median speedup remains around 0.95x. Given the significant
symbolic-stage gains, this minor trade-off is acceptable, as shown
in Section 5.9.
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Fig. 7. IPC: Parth preserves the well-optimized performance of the
numerical phases in each base solver across the benchmark. The three
whisker plots indicate the performance impact of Parth on the numeric step
of MKL, Accelerate and CHOLMOD with a maximum of 21% performance
improvement and 18% performance decrease due to using Parth. Notice
that the median of the changes is well within 5% difference showing that
the numerical step of these tools delivers comparable performance when
using Parth. Note that the slowdown of MKL in ”Arma Roller" is due to the
numerical instability of MKL in that simulation.

9 LAGGING ANALYSIS
Lagging reuses fill-reducing order vectors by assuming that the
current ordering remains sufficiently good. Because, to the best
of our knowledge, no lagging approach exists for matrices with
changing dimensions, we focus on cases where only non-zero entries
change in the input system of linear equations.
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Fig. 8. IPC: Parth-integrated MKL forward/backward solve speedup.
Here we can see that while MKL disables parallelism for forward/backward
solve, the performance change is minimal. This shows that the parallelism
effect for these sparsity patterns is not significant. Note that the slowdown
of MKL in ”Arma Roller" is due to the numerical instability of MKL in that
simulation.

We analyze two lagging approaches: (I) lagging every𝑦 number of
frames, and (II) lagging when an 𝑥% of non-zeros in matrix change.
Determining both 𝑥 and 𝑦 requires heuristics based on domain-
specific knowledge. Next, we analyze these approaches and explain
why they limit general applicability.

Analysis of Lagging by Frames: Figure 10 shows Cholesky per-
formance in our IPC benchmark when lagging the permutation
computation over different frame intervals for two simulations:
“Squeeze Out” and “Roller Ball.” The baseline (no lag) uses Parth’s
permutation. For “Squeeze Out,” performance falls short of baseline
when lagging every {5, 10, 100} frames which means that the search
space should be expanded for smaller lagging. For “Roller Ball,” lag-
ging 5 or 10 frames can yield good performance, especially as motion
stabilizes toward the ends. However, optimal intervals change over
time and depend on the simulation scene, which requires domain-
specific knowledge known in advance. This adaptive requirement is
a major challenge for frame-based lagging. Furthermore, note that
lagging cannot eliminate the need for symbolic analysis—only the
ordering step may be skipped.
Limitations of Percentage-Based Lagging: Lagging based on

a percentage of changes faces two problems. First, the range of
changes differs between simulations (e.g., 0.4% for “Squeeze Out”
vs. 0.08% for “Roller Ball”), creating scaling issues. Second, the rela-
tion between change percentage and performance is not straight-
forward, making it difficult to set a universal threshold.
To examine how non-zero entries in 𝐴 affect fill-ins in factor

𝐿, we applied the Laplace-Beltrami operator to the “bunny” mesh
from [Stein 2024] as part of our Remeshing benchmark. We solved
a Laplacian problem with CHOLMOD using a Parth-generated fill-
reducing order for max_level = 3. Then, we added 1% extra non-zeros
(set to zero) to 𝐴, altering its sparsity without affecting numerical
stability. By reapplying the solver with the same permutation, we
measured non-zeros in 𝐿 to show that both the amount and location
of changes matter. We consider three scenarios for these 1% changes:
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Fig. 9. Remeshing: Numerical performance of using Parth. The figure
shows the numerical performance of Parth-integrated solvers under remesh-
ing for various patch sizes. Parth demonstrates comparable initialization
performance, with median speedups close to 1 for MKL, Accelerate, and
CHOLMOD. Notably, for numerical computation, performance at 1% and
5% patch sizes exceeds that of the initialization step for Accelerate and
MKL. As expected, performance decreases at 20% patch sizes, but even in
this case, the median speedup remains close to 1 for MKL, Accelerate, and
CHOLMOD.

in the first scenario, all changes occur within a single leaf node of
Parth; in the second, they span two leaf nodes that share a common
parent; and in the third, the changes affect two leaf nodes whose
least common ancestor is the root of the HGD tree.
Figure 11 shows the ratio of non-zeros in 𝐿—the sum of fill-ins

and non-zeros in 𝐴—relative to Parth base case scenarios where we
used METIS as the inner ordering algorithm. The results demon-
strate that where changes occur drastically affects factor size and
performance. We use Parth here to highlight where non-zero entries
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Fig. 10. Lagging effect on Cholesky numerical performance. Top: two
plots show the numerical speedup, compared to no lagging approach, as
well as the percentage of changes for the Squeeze Out simulation. Bottom:
the two plots show the numerical speedup and percentage of changes for
the Roller Ball simulation. We can see that lagging each 𝑥 number of frames
for Squeeze Out does not perform well, while for Roller Ball it can provide
decent results. However, even for Roller Ball, to maximize performance
the lagging should be dynamic and change as the simulation progresses.
Furthermore, the magnitude of changes is significantly different between
Squeeze Out and Roller Ball, showing that domain-specific knowledge is
necessary even for different simulations within the same IPC framework.

S1
S2 S3Base S1 S2 S3

0.0
0.5
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Fill-ins Ratio

Fig. 11. Effect of non-zero entries on factor fill-ins. Left: Bar plot show-
ing the number of non-zero entries in the factor, scaled based on the “Base”
case. S1 to S3 represent scenarios 1 to 3, respectively. The number of non-
zero entries in the factor for the “Base” case and scenarios S1–S3 are 108,156;
184,986; 236,128; and 290,486, respectively. The red lines on B on the right
show the connections created between sub-graphs. For example, in scenario
1 (S1), all the changes are applied within the B[3] subclass. Note that a
fixed number of changes, when applied in different places, can result in
significant changes (2.68x in this experiment) in the factor size, even for a
1% change in the sparsity pattern.

can cause excessive fill-ins if not properly considered. In general,
this is related to the elimination tree theory and how Parth relates
to the elimination tree. Since it is out of the scope of this paper,
please see [Davis et al. 2016; Khaira et al. 1992] for more detail.
As a final observation from this experiment, we want to focus

on Parth runtime for fixing these different scenarios. Based on Sec-
tion 4’s description, we can see that for fixing Scenario 1, Parth
only focuses on fine-grain sub-graph B[3], which is a small part of
the whole graph. For fixing Scenarios 2 and 3, it needs to consider
coarser regions, which also require more computation for providing
high-quality fill-ins. Essentially, Parth’s runtime is proportional to
the importance of the changes, which shows its adaptability. Also,
Parth supports a lagging approach where it can ignore changes if
they happen above specific levels. We did not evaluate this, as it
requires the user to define where they want the effects to be ignored.
However, the Parth code base has this capability for practitioners.
Finally, let us consider how much computation is required by

Parth for these scenarios. For Scenario 1, Parth targets only a small
fine-grain sub-graph B[3]; for Scenarios 2 and 3, it must process
larger, coarser regions, increasing computation. Thus, Parth’s run-
time scales with the importance of changes, demonstrating adapt-
ability. Note that Parth has the capability to ignore changes (lag
the update) when the common ancestor is above a certain level.
However, we did not analyze this capability in the paper as Parth
already produce satisfactory results.

10 PARTH COMPRESSION ANALYSIS
In this section, we first demonstrate the performance benefits of
Parth’s compression and compare them with those of METIS to
highlight their differences. We then provide a runtime analysis of
Parth’s speedup—with compression enabled—relative toMETIS with
compression, illustrating the practical performance implications of
using Parth over METIS. Note that the scenario in which neither
Parth nor METIS uses compression is presented in our “Remesh-
ing benchmark” (Sections 5.7, 5.8, and 5.9). This analysis show the
contributions of Parth’s compression in isolation as well as Parth’s
reuse capability for our IPC benchmark where this compression op-
portunity exists for both Parth andMETIS (though, to the best of our
knowledge, Accelerate and CHOLMOD do not allow for enabling
this compression in their built-in METIS).
Figure 12 shows the performance gain achieved solely by using

Parth’s compression. To generate this plot, we first measure the
runtime ofMETIS after compressing the graph using Parth’s method,
feeding the compressed graph into METIS, and then expanding the
permutation vector afterward (see Section 4.2 for more details). We
then measure the runtime of METIS without any compression. As
expected, the variation in speedups is small, since this is a pure
computation without reuse. All average speedups exceed 4.6x, with
a maximum of 5.27x and a minimum of 4.5x. We exclude outlier
speedups in this plot for consistency with the main paper. These
outliers—computed based on 1.5x the interquartile range above the
third quartile or below the first quartile—occur infrequently.
Next, to show the difference between Parth’s compression and

METIS’s compression, we measure the runtime of METIS using
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Fig. 12. IPC: Effect of Parth Compression. Here we show the speedup
that METIS can gain by integrating Parth compression into its pipeline. The
average speedup for 6 simulations are 4.96x, 4.92x, 5.24x, 4.85x, 4.75x, 4.65x.
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Fig. 13. IPC: Parth compression vs METIS compression. Here we show
the speedup that METIS can gain by integrating Parth compression into
its pipeline versus when METIS is used with its built-in compression. The
average speedup for 6 simulations are 1.59x, 1.60x, 1.74x, 1.77x, 1.74x, 1.78x.

Parth’s compression integrated into it and compare it to the run-
time of METIS using its own built-in compression by setting the
METIS_OPTION_COMPRESS flag. Figure 13 shows that Parth’s
compression outperforms METIS’s built-in compression. This is
because METIS relies on heuristics such as heavy-edge matching for
compression, while Parth uses a straightforward and lightweight
approach. Although both methods produce the same compressed
graph, the simplicity of Parth’s compression leads to a lower overall
runtime when integrated into METIS. As in the previous analysis,
the variation in speedups is small, with a maximum of 1.85x and a
minimum of 1.50x.

To show the reuse benefits of Parth, we compare Parth andMETIS
when both use their own compression methods. In this case, the
additional speedup observed—compared to Figure 13—is attributed
to Parth’s reuse capability. Figure 14 presents the performance of
Parth in these scenarios. Looking at the raw numbers, Parth can
achieve speedups as high as 500x. However, for consistency with
the main paper text, we exclude outliers; the maximum speedup in
this test is 242x, which aligns closely with our previous results, as
expected. Based on the reported average and median speedups in
Figure 14, we observe significant performance improvements due
to reuse in simulations (1), (2), (5), and (6), where the runtime is an
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Fig. 14. IPC: Parth vs METIS with both compression activated. Here
we show the speedup of Parth with its own compression and METIS with
its own compression. The average speedup is: 58x, 59x, 11x, 3.67x, 16x, and
47x. The median speedup is: 43x, 27x, 2.7x, 2.8x, 7.77x, 28.32x. Note that the
median is lower as it is not going to consider the outlier values.

order of magnitude faster. For example, “Dolphin funnel” shows a
43x median speedup; even assuming a 2x contribution from Parth’s
faster compression compared to METIS, the remaining 20x speedup
can be attributed to reuse.
We next compare this figure with Figure 11 in the main paper.

Figure 13 reports Parth’s speedup when both Parth and METIS have
compression activated, using the open-source METIS on Intel archi-
tecture. In contrast, Figure 11 shows Parth’s speedup compared to
METIS without compression, using the built-in METIS of Cholesky
solvers across a mix of Apple M2 Pro and Intel architectures. It
also compares against the best METIS runtime across three solvers.
Despite METIS having compression enabled in Figure 13, we ob-
serve higher speedups than those reported in Figure 11. Due to the
many differences in the setup of these two analyses, it is difficult
to pinpoint the exact cause of this discrepancy. However, we share
our thoughts on this observation below, as we do not have access
to the internal implementations of the built-in ordering algorithms
in MKL and Apple’s Cholesky solvers.
Runtime Measurement. The way we measure the runtime of

the built-in ordering algorithms in these solvers is as follows. First,
we measure the total runtime of the symbolic analysis phase of the
Cholesky solvers. Then, we provide our own permutation vector and
measure the symbolic analysis time again. The difference between
the symbolic analysis runtime with the built-in ordering and the
one without it gives us an approximation of the built-in ordering’s
runtime. This measurement can result in different scales of speedups;
however, the trend of speedups across the six simulations remains
consistent between the two figures.
Comparison with Best Performance. Figure 11 compares

Parth’s performance against the best performance of the built-in
METIS implementations in commercial Cholesky solvers. That is, the
baseline in this case is more efficient than the open-source METIS.
For example, we observed that the built-in METIS algorithms in
Cholesky solvers, such as those in MKL, perform faster than the
open-source METIS used for the comparison in Figure 13. Specif-
ically, MKL’s METIS achieves up to 30% better performance than
the open-source version.
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Frame 20 Frame 80 Frame 500

Frame 875Frame 750 Frame 950

Fig. 15. 4 samples from the "Mat Twist" simulation in the IPC [Li et al.
2020] benchmark. This simulation involves many self-collision due to its
nature, allowing for measuring Parth limits on reuse. Note that each time
that a knot created (3 knots for frame 750 and 5 knot for frame 950) there is
a fast movement in the middle.

Different Architectures. Note that there is also a significant dif-
ference between Apple M2 Pro hardware and Intel Xeon hardware.
Since we are not using parallelism in this analysis, the single-core
performance of each architecture can lead to differences in run-
time for both Parth and METIS. This is another important factor
contributing to the observed discrepancies.

METIS Randomness. As mentioned in the Background section,
heuristics used by METIS introduce randomness. As a result, apply-
ing the same ordering algorithm twice can yield different orderings.
Specifically, this may produce different separator sets, which in
turn affect the reuse patterns in Parth and lead to variations in the
observed speedups.
As a final note, note that throughout the paper, we emphasize

on reporting median speedups instead of average as based on our
experiment, this value is more expected in practice compare to
average. As can be seen due to large outliers with high-speedup
(500x), the average runtime can be significantly more than median
speedup, even though such speedups are rarely seen. For instance,
in Simulation (2), the median speedup is 27x, while the average is
59x. However, this average speedup does not totally reflect practical
speedups that a practitioner may due to outliers with high speedup,
showing that median report is more reasonable.

11 PARTH ON MAT TWIST SIMULATION
To push the limits of Parth’s reuse in IPC simulations, we present
a detailed analysis of Parth’s reuse across 1,000 frames of the "Mat
Twist" simulation in the IPC codebase, where numerous self-collisions
occur throughout the simulation. Figure 15 shows 6 sample frames
from the 1,000 used in this analysis. As seen in the figure, contacts
occur across the entire mat, making it challenging for Parth to lo-
calize changes. In the following, we provide a detailed analysis of
Parth’s ordering quality, reuse, speedup, and edge changes in the
dual graph of the Hessian generated during Newton solves in the
IPC simulation. We also discuss the limitations and benefits of using
Parth for this challenging simulation.

0 5000 10000 15000 20000 25000
0.0

0.5

1.0

1.5

2.0

2.5
1e8

METIS Factor NNZ

PARTH Factor NNZ

Hessian NNZ

Fig. 16. Hessian and factor size for “Mat Twist” simulation. Across all
solves performed over 1000 frames of the “Mat Twist” simulation, we plot
the factor size (in terms of non-zero entries) for both Parth and METIS. To
highlight the difference between the factor and the original matrix, we also
show the number of non-zero entries in the Hessian. For example, in the
first solve, the Hessian contains approximately 2.2 million non-zero entries,
while the factor size is 43 million. By the final solve, the Hessian grows to 4
million non-zeros, and the factor reaches 241 million.

Same as in our Evaluation section, we begin with ordering quality.
Figure 16 shows the factor fill-ins resulting from both Parth and
METIS permutation vectors, with compression activated in both
cases. As expected, Parth provides comparable fill-ins. To offer more
insight into the sparsity pattern behavior of this simulation, we
also report the number of non-zeros in the Hessian to illustrate the
scale of difference between the Hessian and its factor, as well as
the additional non-zeros introduced due to the activation of the
barrier function in IPC. We observe that the factor size increases
by 5x—a significant change, considering the smallest factor has 43
million non-zeros. Furthermore, the Hessian size itself increases
from 2.2 million to 4 million non-zeros, which is also substantial and
highlights the importance of high-quality fill-reducing ordering.
We now turn to the reuse capability of Parth. The first plot in

Figure 17 shows the number of edge changes in the Hessian graph
between consecutive solves. To improve clarity, we also average the
number of changes across all solves within a single frame.

At the beginning of the simulation, there are no contacts, leading
to the full reuse of the permutation vector. However, starting around
Frame 80, extensive contacts across the mat introduce over 20,000
changes in the Hessian’s non-zero structure. Similar spikes in edge
changes are observed around Frames 760, 875, and 950. These frames
correspond to moments when the mat twists significantly at its
center (see Figure 15). Since these changes are widespread, they
reduce Parth’s ability to effectively reuse prior orderings.

This change in reuse is directly reflected in the speedup of Parth.
Across the 1000 frames, Parth achieves up to a 3.5x speedup per
frame for fill-reducing ordering. When reuse drops to near zero,
the speedup similarly approaches one. Notably, thanks to Parth’s
effective compression and minimal overhead in handling changes,
the speedup never falls below one—demonstrating consistent per-
formance even in the presence of substantial structural updates.
In summary, this detailed analysis shows that Parth offers reli-

able performance with minimal overhead, even under demanding
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Fig. 17. Parth performance based on reuse and number of edge
changes in the graph dual of the Hessian.. For the speedup plots, the
total ordering computation time per frame is measured for both Parth and
METIS, with compression activated in both cases. For the reuse plot, the
average reuse across all solves within each frame is reported. The same
procedure is followed for the third plot. Note that the number of changed
edges is measured relative to the previous solve.

simulation scenarios. Its ability to adaptively reuse ordering infor-
mation enables efficient, high-performance Cholesky solvers when
integrated with commercial direct solvers.
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