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Fig. 1. Poke and Chew with Optimal r-Adaptive In-Timestep Remeshing: In (a) we stick a stiff jelly treat, lying on a jello mold, with a metal fork.
Optimal In-Timestep Remeshing (ITR) jointly adapts the reference mesh, (b-c), and solves the deformation, (d-e), over the simulation (top to bottom) to best
model the squashing jelly’s physical solution at each timestep. In contrast, simulation with the original, unadapted mesh in (f), is unable to capture the sharp
conforming contact of the fork tines, nor the creasing and tight stress concentrations generated by the pressing mold. In (g), masticating a rubber bar, our
optimal ITR solution, top, generates an adapted coarse physical model that closely follows (Hausdorff distance 0.05) a corresponding fine-mesh solution,
middle, while using orders of magnitude less DOF and memory (with a resultant 8.4X speedup) than the fine-mesh simulation. In contrast, bottom, Ferguson
et al.’s [2023] original ITR model (with 8.5X more DOF and 73X slower than optimal ITR) diverges significantly (Hausdorff distance 0.16) from the fine model’s
deformation behavior; see Figure 3 and our supplemental video for more details.

We propose a coupled mesh-adaptation model and physical simulation al-

gorithm to jointly generate, per timestep, optimal adaptive remeshings and

implicit solutions for the simulation of frictionally contacting elastodynam-

ics. To do so, we begin with Ferguson et al.’s [2023] recently developed

in-timestep remeshing (ITR) framework, which proposes an Incremental

Potential based objective for mesh refinement, and a corresponding, locally

greedy remeshing algorithm to minimize it. While this initial ITR frame-

work demonstrates significant improvements, its greedy remeshing does not

generate optimal meshes, and so does not converge to improving physical

solutions with increasing mesh resolution. In practice, due to lack of optimal-

ity, the original ITR framework can and will find mesh and state solutions
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with unnecessarily low-quality geometries and corresponding physical so-

lution artifacts. At the same time, we also identify additional fundamental

challenges to adaptive simulation in terms of both ITR’s original remeshing

objective and its corresponding optimization problem formulation.

In this work, in order to extend the ITR framework to high-quality, optimal

in-timestep remeshing, we first construct a new remeshing objective function

built from simple, yet critical, updates to the Incremental Potential energy,

and a corresponding constrained model problem, whose minimizers provide

locally optimal remeshings for physical problems. We then propose a new

in-timestep remeshing optimization that jointly solves, per-timestep, for a

new locally optimal remeshing and the next physical state defined upon it.

To evaluate and demonstrate our extension of the ITR framework, we

apply it to the optimal r-adaptive ITR simulation of frictionally contacting

elasto-dynamics and statics. To enable r-adaptivity we additionally propose a

new numerical method to robustly compute derivatives of the 𝐿2-projection

operator necessary for optimal mesh-to-mesh state mappings within solves,

a constraint model to enable on-boundary node adaptivity, and an efficient

Newton-type optimization method for practically solving each per-timestep

r-adaptive ITR solution. We extensively evaluate our method on challenging

large-deformation and frictionally contacting scenarios. Here we observe op-

timal r-adaptivity captures comparable and better accuracy than unadapted

meshes orders-of-magnitude larger, with corresponding significant advan-

tages in both computation speedup and decrease in memory usage.

CCS Concepts: • Computing methodologies→ Physical simulation.
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1 Introduction
We propose a new coupled mesh-adaptation model and physical

simulation algorithm to jointly evolve, per timestep, locally optimal
adaptive remeshings and implicit solutions for the high-quality

simulation of frictionally contacting elastodynamics and statics.

Large-deformation elastodynamic simulations generally require

highly dense spatial discretizations to capture the critical and of-

ten transient features, such as shockwaves, localized deformations,

contact compliances, and stress concentrations, that characterize

these systems. At the same time, meshes dense enough to capture

these behaviors are often prohibitively expensive in both runtime

and memory for practical application. While practitioners can po-

tentially hand-craft meshes suited for particular instants in time, no

single mesh can generally be optimal for all timesteps of a simula-

tion.

Instead, in order to parsimoniously capture evolving transients

in dynamic systems, we focus on simulation meshes that corre-

spondingly evolve via adaptive remeshing. Our goal is to adaptively

concentrate limited simulation degrees of freedom (DOF) resources

when and where they are most needed.

To do so, we begin with Ferguson et al.’s [2023] recently devel-

oped In-Timestep Remeshing (ITR) framework, which proposes an

Incremental Potential (IP) [Li et al. 2020] based objective for mesh re-

finement, and a corresponding, locally greedy remeshing algorithm

to minimize it within each timestep.

This first-proposed ITR objective thus directly considers physical

criteria, rather than solely geometric or sizing field terms, in remesh-

ing, and so demonstrates corresponding significant improvements

in better capturing physical behaviors across a range of challenging

scenarios. However, its greedy minimization algorithm does not

generate optimal meshes, and so does not converge to improving

physical solutions with increasing mesh resolution [Ferguson et al.

2023]. In practice, due to this lack of optimality, we observe that the

original ITR framework can and will find mesh and state solutions

with unnecessarily low-quality geometries and so corresponding

physical solution artifacts (see e.g., Figure 1). At the same time,

independent of the greedy minimization algorithm applied, we iden-

tify fundamental challenges to high-quality adaptive simulation

in terms of the original ITR method’s remeshing objective and its

corresponding optimization problem formulation for modeling both

dynamic and static elastica.

In this work, in order to extend the ITR framework to high-quality,

optimal in-timestep remeshing, we revisit the construction of ITR

with a focus on (1) the remeshing objective, (2) physical and geomet-

ric admissibility constraints, and (3) the underlying optimization

problem itself.

Objective. We first construct a new remeshing objective function

built from a set of simple, yet critical, updates to the Incremental

Fig. 2. Dynamic drop through.We drop an elastic wedge under gravity
onto a tight, frictionless gap. Coarser, fixed-discretization based simulations
are unable to pass the gap, while finer-mesh fixed-discretizations progres-
sively avoid locking with more DOF. Bottom: Coarsest-resolution optimal
r-ITR closely matches the dynamics of the corresponding finest 113K vertex
fixed-mesh simulation. Please also see Figure 6 in our supplemental for
trajectory overlays.

Potential objective energy. These changes, as we demonstrate in

Section 4, avoid degenerate solutions in the original ITR objective,

and enable ITR optimization to reach high-quality meshes and cor-

respondingly accurate timestep solutions upon them.

Admissibility and Optimization. High-quality elastodynamics re-

quires accurate resolution of contact and elasticity. Applying the

recently proposed, Incremental Potential Contact (IPC) model [Li

et al. 2020] for modeling frictionally contacting solids, we follow

Ferguson et al. [2023] and ensure that invariants of non-intersection,

and non-inverting deformation are preserved. We further construct

admissibility criteria for ITR optimization (for dynamics and statics)

in terms of both mesh geometry and physical model, to formulate a

new constrained model problem for optimizing our IPC-based objec-

tive, whose admissible minimizers provide locally optimal remesh-

ings for simulating elastica. We then propose a new in-timestep

remeshing optimization that jointly solves our model problem, per-

timestep, for each new locally optimal remeshing and the next

physical state defined upon it.

Application to r-Adaptivity. While the above new ITR objective,

constraints and optimization problem are general, numerically solv-

ing ITR optimization problems to find local minima is of course
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Optimal r-ITR (#V: 0.7K)
Hausdor�: 0.05
30 m 0.6K MB

[Ferguson et al. 2023] (#V: 13K)
#V: 6K (avg), 21K (max)

Hausdor�: 0.16
2.2K m 2.6K MB

5.1K MB253 m
Fixed discretization (#V: 71K)

Fig. 3. Masticating: ITR benchmark comparison. We compare optimal
ITR and Ferguson et al.’s[2023] original ITR model, with a finer-resolution
fixed-mesh simulation baseline, evaluating timing, memory usage and Haus-
dorff distance to baseline.

challenging. In this work, to evaluate and demonstrate our exten-

sion of the ITR framework, we focus on applying Newton-type

solvers to build the necessary algorithmic contributions to enable

the numerical solution of our ITR optimization problem for the

optimal r-adaptive (optimizing mesh geometry) simulation of fric-

tionally contacting dynamic and static elastica. We leave optimal

h-adaptive (optimizing mesh connectivity) ITR simulation, via non-

smooth optimization or differentiable mesh connectivity for future

extension.

Contributions. Computing optimal r-adaptive ITR simulations

then further requires additional new numerical methods to carefully

resolve and evaluate changing state mappings and on-boundary

adaptivity, in-optimization, alongwith a carefully constructedNewton-

type minimization algorithm to solve optimal ITR mesh and de-

formation evolution across time steps. In summary, our technical

contributions include

• A new ITR objective, constraint model and optimization

model problem, that give locally optimal timestep solutions

for in-time-step remeshing simulations of frictionally con-

tacting elastodynamics and elastostatics.

• A new method to robustly compute derivatives of the 𝐿2-

projection operator necessary for optimal mesh-to-mesh state

mappings;

• A boundary maintenance constraint model to enable on-

boundary node adaptivity; and

• A new truncated Newton-type optimization method for ef-

ficiently solving accurate, per-timestep, optimal r-adaptive

ITR solutions.

Taken together this gives high-quality, r-adaptive ITR simula-

tion with user-controllable accuracy in terms of solution optimality.

This complements prior work in h-adaptive ITR and significantly

improves the ITR model formulation. We extensively evaluate our

method on challenging large-deformation and frictionally contact-

ing scenarios. Here we observe optimal ITR r-adaptivity captures

comparable and better accuracy than both the original ITR formula-

tion, and unadapted meshes orders-of-magnitude larger, with the

corresponding significant advantages in both computation speedup

and decrease in memory usage.

2 Related Work
We focus on the high-quality simulation of frictionally contacting

elastodynamics, modeled by finite elements and solved by implicit

numerical time integration. Improving simulation accuracy, and

hence quality, requires increasing mesh resolution. However, in-

creasing mesh resolution of course entails significant computational

cost. This natural tension, between simulation quality and mesh

resolution cost, has motivated extensive exploration of adaptive

remeshing methods that seek to allocate mesh degree-of-freedom

(DOF) resources where they are most needed [Manteaux et al. 2017].

2.1 Adaptivity Objectives
A wide range of remeshing and basis update operations have been

applied and considered for adaptivity. We review these below. How-

ever, irrespective of which mesh-adapting operations are considered,

a fundamental question remains on how to decide when and where

to apply these operations. For modeling both statics and dynamics,

no single mesh is generally a priori best-suited, without already

having taken on the expense of computing the solution. In turn,

when it comes to elastodynamics, with rapidly evolving transients,

many different meshes may be needed across different phases of

a modeled trajectory. Motivated by these challenges, a wide range

of objectives, criteria and heuristics have been developed to guide

adaptive remeshing.

Geometry derived information is a common guidepost for con-

structing adaptivity objectives. Constructed from either base ref-

erence meshing [Bargteil et al. 2007], or additionally deformed

mesh state [Dunyach et al. 2013], evaluations of strains and stresses

from mesh geometry can be applied to determine remeshing criteria

[Bargteil et al. 2007; Debunne et al. 2001; Spillmann and Teschner

2008; Wicke et al. 2010]. For thin shells, additional in-plane stretch

and out-of-plane bending measures are similarly processed [Li and

Volkov 2005; Narain et al. 2013, 2012; Simnett et al. 2009; Villard and

Borouchaki 2005].

Optimal Delaunay Triangulations and related methods [Alliez

et al. 2005; Chen and Xu 2004; Du and Wang 2003] find optimal

remeshings that minimize geometric objectives. While meshes gen-

erated by these geometric objectives can provide optimally well-

shaped elements, they are oblivious to any physical quantities de-

fined upon the meshes, that may be solved for during simulation.

Thus, they do not account for the spatially varying and possibly

anisotropic [Shewchuk 2002] accuracy needs (e.g., in capturing

shockwaves, stress concentrations, and impacts) that solving static

and dynamic physical problems impose. In particular, in order to

parsimoniously capture evolving transients in dynamic systems,

meshes should correspondingly evolve their adaptation. Generally,

no single mesh can be optimal for all time steps of a simulation, and

correspondingly no single geometric objective can define optimal

meshing criteria for the solution of a physical problem.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



4 • Jiahao Wen, Jernej Barbič, and Danny M. Kaufman

Fig. 4. Masticating: fixed-discretization comparison.We compare optimal ITR with corresponding fixed-discretizations at two coarse resolutions. As
we coarsen optimal ITR’s available resolution, its ability to capture curvature and details reduces, while overall simulation behavior remains close to the
finer-resolution optimal ITR model. In contrast, corresponding fixed-resolution mesh discretizations (please see our supplemental videos for animations) each
exhibit different simulation artifacts, and so likewise different overall deformation behaviors.

Along with the above measures, surface-to-surface evaluations

have been considered and applied to drive mesh adaptation in con-

tact processing. For contact-based forces, collision-detected dis-

tances [Bender and Deul 2013; Erhart et al. 2006; Simnett et al. 2009],

enriched by continuity criteria [Spillmann and Teschner 2008], and

curvature measures [Li et al. 2018; Narain et al. 2013, 2012; Pfaff

et al. 2014] are applied to determine whether mesh boundaries

close-together are likely to require refinement for detailed contact

resolution. As carefully analyzed by Ferguson et al. [2023], while

such measures can be necessary criteria for adaptation, they over-

look physical properties, e.g. whether a material is soft enough

to conform to a contact, and so aggressively over-adapt in many

scenarios, while missing opportunities for adaptation in others.

In concert with the above geometric and physical quantities, Euler-

ian on Lagrangian (EoL) methods [Sánchez-Banderas et al. 2020;

Sueda et al. 2011; Weidner et al. 2018], insert and drive “Eulerian”

reference coordinate locations to capture sharp contact transitions.

With adaptivity driven by referential coordinate dynamics, EoL

methods can be challenged by instabilities [Wen et al. 2020] inher-

ent in the formulation. Closely related to EoLmethods is Zielonika et

al.’s [2008] variational r-adaptive method, which likewise formulates

dynamic equations of motion for both deformation and referential

coordinates (via Eshelbian-type balance equations [Braun 1997]).

Adaptivity is then driven by simulation of reference coordinate

dynamics with similar stability challenges to EoL.

Most closely related to our approach are methods that consider

physical energy measures, including elasticity [Demkowicz 2006;

Mitchell and McClain 2014], as remeshing objectives. Mosler and

Ortiz introduce the optimization of the Incremental Potential energy

to drive mesh-adaptivity for contact-free elastostatics and plasticity

with r-adaptive [2006] and h-adaptive [2007] remeshing (see the

next section for descriptions of h- and r-adaptivity). Ferguson et

al. [2023] extend this strategy to contacting elastodynamics via in-

timestep remeshing (ITR). ITR proposes using the timestep-based

Incremental Potential [Li et al. 2020] as a remeshing objective, with

a greedy descent-based optimization for combined h-adaptivity and

mesh-relaxation.

Both Mosler and Ortiz [2006; 2007] and Ferguson et al. [2023] pro-

pose unconstrained minimizations of the Incremental Potential. As

we cover in Section 4.4 and in our supplemental, this unconstrained

minimization can and will lead to solutions with nonphysical arti-

facts and degenerate meshes (see e.g., Figure 8). Interestingly, we

note that Mosler and Ortiz [2006] report convergence failures in

their remeshing solves (presumably due to the degeneracies inherent

in the underlying optimization problems). They propose address-

ing these failures by applying an iteratively reweighted damped

Newton solver. As this does not change the underlying optimization

problem, this damping only decreases the solver’s progress towards,

but does not prevent, simulation artifacts; see e.g., Figure 1 in the

supplemental.

In this work, we extend the ITR framework to high-quality, opti-

mal in-timestep remeshing, by constructing a new remeshing objec-

tive function built from critical updates to Ferguson et al.’s energy,

a constrained optimization model problem whose minimizers pro-

vide locally optimal remeshings for simulating elastica, and a corre-

sponding optimization method that jointly solves for the optimal

remeshing and the physical state defined upon it.

2.2 Mesh-Adaptive Operations
With the above objectives in mind, a wide range of meshing oper-

ations can be applied. In this work we focus on the application of

r-adaptive or "moving-mesh" operations [Budd et al. 2009; Huang

and Russell 2010], which adapt mesh geometry, leaving mesh con-

nectivity and resolution unchanged. When carefully treated, see

Sections 4 and 5 below, r-adaptive operations generally offer smooth

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Deformed mesh

Reference mesh

Time
Fig. 5. Gingerbread Squish. We stress out an elastic “gingerbread” by
tightly squishing it between compressing sharp teeth. Here we visualize
both the deformation and the reference domain meshing and strain (ranging
from red, high strain, to blue, low strain). Adaptivity initially focuses DOF to
localized contacts. As compression increases, adaptivity further concentrates
DOF along internal stress bands. As the teeth release, adapted meshing
regions relax, aside from persistent contact regions.

problem updates and so enable us to construct Newton-type opti-

mization methods to solve our ITR timesteps. In contrast, h-adaptive
operations adapt mesh resolution and topology by insertion, dele-

tion, and topology updates [Hu et al. 2018]. Across codimensions,

ranging from the simulation of rods [Spillmann and Teschner 2008],

shells [Li et al. 2018; Narain et al. 2013, 2012], and surfaces [Brochu

and Bridson 2009], to volumetric deformables [Ferguson et al. 2023;

Wicke et al. 2010], h-adaptivity has been applied to reduce remesh-

ing objectives, better capture local contacts, preserve mesh quality,

and decrease numerical error. These operations can be applied both

locally [Ferguson et al. 2023; Wicke et al. 2010] or with a full recon-

struction [Jiang et al. 2017; Klingner et al. 2006; Skouras et al. 2014;

Stein et al. 2004].

Irrespective of how or what operations are applied, fundamental

challenges remain for all remeshing operations in terms of both

preserving invariants, and so admissibility [Brochu and Bridson

2009; Jiang et al. 2022], and mapping state between mesh updates

with low error [Wicke et al. 2010]. In this work we observe the

critical importance of including both mapping, and admissibility en-

forcement within remeshing optimization. We use this to construct

optimal ITR’s constrained model problem and r-adaptive timestep

solver.

For mapping, while many local and efficient approaches are pos-

sible, including closest-point [Molinari and Ortiz 2002] and barycen-

tric interpolation [Spillmann and Teschner 2008; Wicke et al. 2010],

we follow Ferguson et al. [2023] and use the 𝐿2-projection [Léger

et al. 2014; Vavourakis et al. 2013] to optimally map simulated phys-

ical quantities across mesh changes. Critically, we construct our

physical remeshing objective with the 𝐿2-projection directly embed-

ded within. This ensures solutions that avoid simulation artifacts

from mapping degeneracies (see e.g., Figure 6), but, at the same time,

requires us to develop algorithms that enable robust minimization

with the projection operator included.

3 Background
We focus on the solution of large-deformation elastodynamics with

frictional contact in 𝑑-dimensional space. With a reference material

domain Ω ⊂ R𝑑 (𝑑 = 2, 3), deformation over time is defined globally

by the deformation map 𝜑 : Ω × R+ → R𝑑 . Locally, for each time,

𝑡 , and material point, 𝑋 ∈ Ω, we then have deformed positions,

𝑥 (𝑋, 𝑡) = 𝜑 (𝑋, 𝑡), and material velocities, 𝑣 (𝑋, 𝑡) = ¤𝜑 (𝑋, 𝑡).

3.1 Semi-Discrete Setting
Following Ferguson et al.[2023], we begin by discretizing in time
(remaining continuous in space) to construct the solution of each

timestep’s problem in semi-discrete optimization form as

𝑥𝑡+1 = argmin

𝑥
𝐸𝑡 (𝑥), (1)

with a spatially continuous Incremental Potential (IP),

𝐸𝑡 (𝑥) =
∫
Ω
𝜌 𝐾

(
𝑥 (𝑋 ), 𝑥𝑡 (𝑋 )

)
𝑑𝑉

+ 𝛼ℎ2
∫
Ω
Ψ
(
𝑥 (𝑋 )

)
− 𝑥 (𝑋 )𝑇 𝑓 (𝑋 ) 𝑑𝑉

+ 𝛼ℎ2
∫
𝜕Ω
𝐵
(
𝑥 (𝑋 )

)
+ 𝐷

(
𝑥 (𝑋 )

)
𝑑𝐴.

(2)

Here ℎ is timestep size, Ψ is a hyperelastic deformation-energy

density (e.g. neo-Hookean), 𝑓 contains the sum of body forces and

(when ranging over boundary regions) any applied tractions, 𝜌 is

density, and 𝐵 and 𝐷 are the spatially-continuous analogs of the

IPC energies [Ferguson et al. 2023] for, respectively, contact barrier

and friction pseudo-potential. The energy density 𝐾 is an inertial

term for the discrete momentum contributions from “predictor”

position, 𝑥𝑡 . We cover our specific choice of construction for 𝐾 , and

its importance for adaptivity, below in Section 4.3.

In turn, choice of predictor 𝑥𝑡 (an explicit update function of

prior deformed position, velocity, and possibly acceleration fields,

𝑥𝑡 , 𝑥𝑡−1, . . . , 𝑣𝑡 , 𝑣𝑡−1, . . . , 𝑎𝑡 , 𝑎𝑡−1, . . .), scaling term 𝛼 ∈ R+, and cor-
responding explicit update equation for velocity (also acceleration

as needed) from optimal solution 𝑥𝑡+1, jointly define the specific

choice of numerical time-integration method. Here, in the main text,

for simplicity, we will use implicit Euler with

𝑥𝑡 = 𝑥𝑡 + ℎ𝑣𝑡 , 𝑣𝑡+1 = 1

ℎ
(𝑥𝑡+1 − 𝑥𝑡 ), 𝛼 = 1, (3)

while a range of alternate time integration methods are similarly

covered [Li et al. 2020].

3.2 Piecewise-Linear Spatial Discretizations
We build piecewise-linear discretizations of our spatial domain using

simplicial meshes T = (𝑢, 𝑒) with 𝑛 nodal reference coordinates
1
,

𝑢𝑖 ∈ Ω (defined at mesh vertices for the piecewise linear elements

we cover here) stored in vector 𝑢 = (𝑢𝑇
1
, . . . , 𝑢𝑇𝑛 )𝑇 ∈ R𝑑𝑛 , and a

corresponding mesh topology, 𝑒 , defining mesh connectivity (tri-

angles in 2D, tetrahedra in 3D) between mesh vertices. Discrete

1
We emphasize that here and throughout we reserve 𝑢 to always denote reference

coordinates and never displacements.
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vector fields are then correspondingly defined at nodes and stored

as vectors 𝑥, 𝑣, 𝑎 ∈ R𝑑𝑛 .
Per discretization, each term in our Incremental Potential is now

expressed as a weighted sum of energy functions over mesh element

stencils, 𝑠 (tetrahedral, triangle, edge, point, or pairings thereof

depending on energy and dimension) in T ,∑︁
𝑠∈T

𝑤𝑠 (𝑢)𝑊𝑠 (𝑥) ,

where𝑤𝑠 is the volume, area, or length-weighted scaling of the rest

shape element 𝑠 , and𝑊𝑠 is the respective energy density function

of each potential restricted to this element’s stencil.

4 Optimal In-Timestep Remeshing
If we restrict ourselves to use a single unadapted mesh throughout

simulation, solutions for each timestep in Equation (2), then reduce

(by spatial discretization) to simply solving the local minimization

of the standard fully discrete Incremental Potential [Li et al. 2020]

for the next timestep’s nodal deformations 𝑥 . In contrast, for optimal
in-timestep remeshing we instead evolve both mesh and discrete

physical state defined on it, to best capture the solution of our

simulated system at each time step.

We advance our simulation domain through time by incremen-

tally updating the tetrahedralization (respectively triangulation) of

the material domain, T (𝑡), together with fields for deformations,

𝑥 (𝑡), and velocities, 𝑣 (𝑡), defined at T (𝑡)’s vertices. Inputs for each
solve to advance the simulation from time 𝑡 to 𝑡 + 1 are the neces-
sary fields, e.g., 𝑥𝑡 , 𝑣𝑡 , 𝑥𝑡 , and the current applied forces (body and

external), 𝑓 𝑡+1. These quantities are all defined on the current mesh

T 𝑡
with a guaranteed invariant that the deformed mesh (𝑥𝑡 ,T 𝑡 )

from the last timestep solve, is penetration-free and (as required)

inversion-free. Our timestep solves then maintain this invariant.

To perform each timestep solve, rather than minimizing the stan-

dard fully discrete IP, we instead minimize our spatially continuous

IP (Equation 2) over all deformation fields realizable by admissi-

ble piecewise linear T , and corresponding admissible deformation

fields defined upon them.

4.1 In-Optimization 𝐿2-Projections
Our remeshing process thus evolves ourmeshwithin each timestep’s

solve. However, each time we update our mesh, we must correspond-

ingly also remap all fields used to compute our continuous IP objec-

tive, to the new mesh. If we were to instead ignore this necessary

remapping and leave quantities (e.g., 𝑥𝑡 ) as-is in-optimization, we

would distort our timestep problem’s discretization, and so end up

with unusable simulation artifacts and biased meshes. See Figure 6.

This means that in order to find optimal remeshings, we must

incorporate continual remappings of all discrete nodal quantities

within our optimized objective function. To do so we apply the

𝐿2-Projection [Ferguson et al. 2023; Léger et al. 2014],

𝜋 (𝑦,T 𝑐 ,T 𝑝 ), (4)

to continuously remaps discrete fields, 𝑦, on a prior mesh, T 𝑝
, to

discrete fields on current mesh, T 𝑐
, with minimal 𝐿2 error between

finite-element spaces. In contrast to Ferguson et al. [2023] we must

then also compute the corresponding derivatives of this remapping

ITR optimization

ITR optimization without L2-projection

Fig. 6. Necessity of 𝐿2-Projections.We drop an elastic circle onto rigid
spikes. Top: optimal ITR adapts interior vertices to capture the large deforma-
tion and sharp contact geometry robustly. Bottom: applying 𝐿2-projection
only after optimization, velocities and positions are polluted during mesh
adaptation, leading to unnatural deformation and instability.

across meshing variations. We cover this in detail, along with nec-

essary background on the computation of the 𝐿2-Projection below

in Section 5.

While each applied remapping via the projection, 𝜋 , is optimally

error reducing, we seek to avoid unnecessary projections of fields,

and so unnecessary accumulation of residuals. We do so during in-

timestep optimization solves by solely (re-)computing projections

from start-of-step mesh quantities to each newly evaluated mesh.

As such it’s useful to specialize these 𝐿2 projections as

𝜋𝑡 (·,T) = 𝜋 (·,T ,T 𝑡 ) . (5)

Repeatedly applying 𝜋𝑡 to our start-of-step quantities, 𝑥𝑡 , 𝑓 𝑡+1, dur-
ing optimizations (at each newly evaluated mesh), ensures no ac-

cumulation of consecutive projection errors over the course of our

optimization solve. At the same time, at each solver iteration, 𝑖 ,

position unknowns, 𝑥𝑖 , are implicitly updated on each new corre-

sponding mesh, T 𝑖
, so that we can safely skip their re-mapping

altogether. See Section 5.5 below for details.

4.2 Incremental Potential Objective for Remeshing
We now construct our per-timestep IP objective for each new mesh

candidate, T , and corresponding deformed nodal positions, 𝑥 , as,

𝐸𝑡 (𝑥,T) = 𝐸𝑡 (𝑥,T , 𝑥𝑡 )
= 𝜌𝐾

(
𝑥, 𝜋𝑡 (𝑥𝑡 ,T),T

)
+ 𝛼ℎ2

(
Ψ(𝑥,T) + 𝐵(𝑥,T) + 𝐷 (𝑥,T)

− 𝑥𝑇 𝜋𝑡 (𝑓 𝑡+1,T)
)
.

(6)

Here, energies 𝐾 (·, ·,T), Ψ(·,T), 𝐵(·,T) and 𝐷 (·,T) are the total
resultant potentials generated, respectively, by our piecewise linear

discretizations (recall Section 3.2) of corresponding inertial, deforma-

tion, contact barrier, and friction energy densities from the spatially

continuous IP in (2), on mesh T , with deformed nodal positions 𝑥 .

Admissible meshes, T , with corresponding admissible deforma-

tion solutions, 𝑥 , that together give locally lowest values of (6), are

the locally optimal remeshed solutions to timestep 𝑡 + 1. We cover
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Ferguson et al. 2023 Inertia

IP

Optimal ITR Inertia

IP

Fig. 7. Choice of inertial energy. We construct a simple 1D example
to illustrate source of errors in the standard IP’s inertial term. Here (see
far right) we discretize a rod with three free vertices. Second and third
vertices have non-zero downwards velocities, velocity for the first vertex
is zero, with 𝑥0 = 𝑢0 = 0, 𝑥2 = 𝑢2 = 1. In left and right plots we compute
Incremental Potentials with, respectively, standard inertial energy (left),
and our corrected inertial energy (right), across adaptations of 𝑢1. Left:
minimization with the uncorrected inertial energy biases the middle vertex
towards the boundary, and so generates degenerate elements. Right: our
modified inertial energy avoids this issue, here with a well defined basin.

admissibility criteria for both meshes and deformations below in

Section 4.4.

4.3 Inertial Contribution
In constructing their inertial term, Ferguson et al. [2023]mirror prior,

fully discrete optimization-based time-stepping work [Gast et al.

2015; Li et al. 2020], and so employ a bilinear inertial contribution

(for 𝐾 ) for their spatially continuous Incremental Potential,

1

2

| |𝑥 (𝑋 ) − 𝑥𝑡 (𝑋 ) | |2 . (7)

This gives, per discretization mesh T , a satisfyingly positive-definite
quadratic term for the inertial energy potential

1

2

(𝑥 − 𝑥𝑡 )𝑇𝑀 (T )(𝑥 − 𝑥𝑡 ) . (8)

Here𝑀 (T ) is the discretization’s consistent mass matrix. This stan-

dard “mass-metric” form is enticing. Positive-definiteness of the en-

ergy contribution helps downstream numerical optimization solves,

and the metric form provides geometric intuition for the IP energy’s

landscape.

However, once we optimize with meshing parameters as free

variables, we observe that this prior formulation pollutes the ob-

jective with terms that bias solutions away from physical accu-

racy and so generate unnecessary simulation errors and artifacts

(see e.g., Figure 7). To see the source of these errors, we expand

Ferguson et al.’s [2023] inertial term in (8), noting the final term

1

2
(𝑥𝑡 )𝑇𝑀 (T )𝑥𝑡 . Under fixed discretizations this is a constant term

and so can safely be added to IPs without changing minima. How-

ever, when we jointly optimize over position and meshing parame-

ters this term is no longer constant. Instead, it changes with meshing

and non-physically biases our objective to solutions that unnecessar-

ily decrease the mass-metric magnitude of our fixed initial predictor

field, 𝑥𝑡 , given by the previous time step.

To address these errors, we instead construct our inertial energy

density as

𝐾
(
𝑥 (𝑋 ), 𝑥𝑡 (𝑋 )

)
=

1

2

| |𝑥 (𝑋 ) | |2 − 𝑥 (𝑋 )𝑇 𝑥𝑡 (𝑋 ) . (9)

This term, after spatial discretization, then defines our discrete iner-

tial energy contribution to our objective (6) as

𝐾 (𝑥, 𝑥𝑡 ,T) = 1

2

𝑥𝑇𝑀 (T ) 𝑥 − 𝑥𝑇𝑀 (T ) 𝜋𝑡 (𝑥𝑡 ,T) . (10)

Note that this change now removes an extraneous term from the

IP. While, (as covered above) in fixed-mesh simulation this term is

safely constant, when optimizing ITR it is not, and so adds a non-

physical energy that distorts minimizers. All other terms in the IP,

including those with 𝑥𝑡 (which is remapped), are not extraneous for

momentum balance and so do not distort. With our ITR objective

now fully specified, we next define admissibility criteria for adaptiv-

ity below and then construct our corresponding general-form ITR

optimization.

4.4 Admissibility
While tempting, we can not directly optimize our above-defined

ITR objective over all possible deformations, 𝑥 , and meshes, T . We

require admissible solutions.

Geometric Admissibilty. We begin with the geometric admissibility
constraints, that each mesh variation, T , should be

(1) Injective, and so provide a non-overlapping and locally injec-

tive parametrization of the reference domain of integration;

and

(2) Domain Preserving, and so maintain the shape (and thus

boundary) of the reference domain.

Beginning with an initial, non-overlapping domain we can en-

sure full geometric admissibility of both conditions, if each mesh,

T , maintains the reference domain boundary and element non-

inversion.

Physical Admissibility. In turn, for each considered mesh vari-

ation, T , corresponding deformations defined upon it, should be

physically admissible solutions of the discrete equations of motion

defined by our selected numerical time-integration method. Apply-

ing our ITR objective in Equation (6), physical admissibility then

reduces to requiring,

𝑥 = argmin

𝑦
𝐸𝑡 (𝑦,T) . (11)

4.5 ITR Optimization Model
Physical Admissibility Constraint. If we ignore geometric admis-

sibility, we note that unconstrained optimality of our objective,

𝐸𝑡 (𝑥,T), satisfies physical admissibility. However, this energy is

strongly non-convex in (𝑥,T) with unbounded and degenerate so-

lutions. To address this challenge, we minimize 𝐸𝑡 (𝑥,T) subject to
physical admissibility, ∇𝑥𝐸𝑡 (𝑥,T) = 0. This provides well-posed,

constrained minimizers with correspondingly nondegenerate phys-

ical solutions. In Figure 8 we demonstrate exactly this difference

in behavior between physical-admissibility constrained and uncon-

strained remeshing optimizations. Here, even in simple 1D (left) and

2D (right) elastostatic examples (issues only worsen for dynamics)

we see that the unconstrained solutions obtain fully degenerate

remeshings with collapsed or inverted elements (for solutions re-

spectively with and without geometric admissibility additionally
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Deformed position

Reference position

Initial condition
✅physical admissibility

E = 2.5
❌physical admissibility

E = 3.2
Initial condition ❌physical admissibility

❌geometric admissibility
IP = nan IP = 0.26

✅physical admissibility
❌geometric admissibility

❌physical admissibility
✅geometric admissibility

✅physical admissibility
✅geometric admissibility

IP = 0.61 IP = 0.26

Fig. 8. Adaptively computing static equilibrium with and without physical admissibility. Evaluating the need for physical admissibility constraints in
ITR optimization, we compare on the right (rendering per-element strain, ranging from red, high strain, to blue, low strain) in 2D ITR solves, progressing
left-to-right in order, with no-admissibility, just geometric admissibility, just physical admissibility and finally our full optimal ITR model problem solved with
both geometric and physical admissibility constraint. On the left we correspondingly demonstrate the same ablation with a simple 1D rod where geometric
admissibility is automatically satisfied. Please see Section 4.5 for detailed discussion of these results and their implications for variational adaptivity solves.

enforced). In contrast, the same optimizations, with physical admis-

sibility now added as constraint, generate low-energy, well-shaped

deformations. Here the result is the same for with and without geo-

metric constraint, as geometric admissibility is naturally enforced

by optimal ITR in this case (see Section 5.3.2).

Our full optimization problem is then

min

𝑥,T
𝐸𝑡

(
𝑥,T

)
s.t. 𝑥 = argmin

𝑧
𝐸𝑡 (𝑧,T) and T ∈ G, (12)

whereG is the set of geometrically admissiblemeshes. In the absence

of other criteria, admissible joint minimizers (𝑥,T) of 𝐸𝑡 in (6) can

be solved via (12) to give locally optimal piecewise-linear solutions

to the minimization of our spatially continuous IP (2).

Note that, as we cover above and illustrate in Figure 8, solely

enforcing geometric feasibility, T ∈ G, is insufficient. As in Equa-

tion (12), we require physical admissibility conditions applied as
constraint whenminimizing 𝐸𝑡 in our ITR optimization. To do so, we

find it generally useful to apply our physical admissibility constraint

implicitly, and so reformulate our optimization of the ITR timestep

solves solely over meshing variables as

min

T
𝐸𝑡

(
argmin

𝑥
𝐸𝑡 (𝑥,T),T

)
s.t. T ∈ G. (13)

At the same time, we may also wish to consider criteria such

as geometric meshing metrics, penalties, or adaptivity inertias to

regularize and/or constrain our physical metric, 𝐸𝑡 , in our adaptive

meshing process. We thus construct our final objective function for

optimal ITR as

𝑅(𝑥,T) = 𝐸𝑡 (𝑥,T) +
∑︁
𝑖

𝛽𝑖𝐶𝑖 (T ), (14)

where functions 𝐶𝑖 and corresponding weights 𝛽𝑖 add regulariza-

tions and/or penalties
2
. Our corresponding full ITR optimization

problem is then

T 𝑡+1 = argmin

T
𝑊 (T ), s.t. T ∈ G with

𝑊 (T ) = 𝑅(argmin

𝑥
𝐸𝑡 (𝑥,T),T) .

(15)

2
As we will demonstrate in Section 5, functions𝐶𝑖 can also be applied as penalties for

geometric admissibility, in which case our side constraint for T ∈ G drops out from

our final optimization problem.

A final timestep solution is then delivered by a locally optimal

mesh, T 𝑡+1
, and updates

3
,

𝑥𝑡+1 = argmin

𝑥
𝐸𝑡 (𝑥,T 𝑡+1),

𝑣𝑡+1 =
1

ℎ

(
𝑥𝑡+1 − 𝜋𝑡 (𝑥𝑡 ,T 𝑡+1)

)
.

(16)

4.6 Example Systems
Putting this all togetherwe next consider here the action of the above

ITR optimization contributions with simple, illustrative systems.

Optimality. We begin with a unit length 1D compressing elastic

rod with uniform density 𝜌 , an energy density of Ψ(𝑥 ′) = 𝑘 (𝑥 ′−1)2
and initial inward-pointing velocities with magnitudes 𝑣 at rod

boundaries. Discretizing in time, our spatially continuous IP from

Equation (6) reduces to

𝐸𝑡 (𝑥 (𝑢), 𝑥 ′ (𝑢), 𝑢) =
1∫

0

1

2

𝜌𝑥2 − 𝜌𝑥𝑥𝑡 + ℎ
2

2

𝑘𝑠 (𝑥 ′ − 1)2𝑑𝑢, (17)

where we have 𝑥𝑡 (𝑢) = ℎ𝑣 + 𝑢 (1 − 2ℎ𝑣) from symmetry. Next,

beginning with an initially uniform spatial discretization of the rod

with four vertices spaced along the rod, in Figure 9, we compare our

ITR optimized re-meshed solution with the ground-truth optimal

timestep update given by the above continuous IP’s Euler-Lagrange

3
The velocity update is demonstrated here with our running implicit Euler example.

Our method
Ground truth

our method
uniform discretization

IP landscape

Fig. 9. Optimality. We evaluate all spatially continuous IP values across a
simple 1D elastic rod simulation step (see setup on far right). Left: starting
from a uniform discretization (red point), optimal ITR computes a remeshing
and state solution at the energy’s minimum (blue point). Right: plotting the
continuous 𝑥 (𝑢 ) solution curve for the timestep update with optimal ITR’s
solution overlaid, we see a corresponding small error of 4.4𝑒−6.
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equation,

ℎ2𝑘𝑥 ′′ − 𝜌 (𝑥 − 𝑥𝑡 ) = 0. (18)

In Figure 9 right, we see that overlaying the ground-truth solution

and our ITR-optimized four-node solution curve
4
gives a low-error

solution with closely matching energy. In Figure 9 left we then plot

the IP energy over enumerated node discretizations confirming that

our solution obtains the minimum energy solution on the landscape.

In-Optimization 𝐿2-projection. In Figure 6 we drop a 2D elastic

ball on spikes using our new IP objective with the 𝐿2 projection in

Equation 6 (top), compared with (bottom) 𝐿2-projection remappings

performed after IP optimization. Even in this simple example, solv-

ing with unmapped fields quickly introduces warped mesh solutions

and extreme simulation artifacts (please also see the supplemental

video).

5 Optimal r-adaptive ITR Simulation
In the last sectionwe built a general model and optimization problem

that, when minimized, gives locally optimal timestep solutions for

adapted mesh and physical state. We have not yet covered how such

an optimization problem can be numerically solved for practical

simulation application.

In this section we now focus on building the necessary algo-

rithmic contributions to enable the numerical solution of our ITR

optimization problem for the optimal r-adaptive simulation of fric-

tionally contacting elasto-dynamics, statics, and quasi-statics. For

r-adaptive ITR we optimize the simulation mesh’s reference nodal

positions, 𝑢, while leaving connectivity parameters, 𝑒 , fixed. Fo-

cusing on r-adaptive simulation allows us to construct a smooth,

Newton-type optimization method. We leave optimal h-adaptive

ITR simulation (optimizing mesh connectivity) for future work, and

briefly cover challenges and future opportunities for it, e.g., via

differentiable mesh connectivity, in Section 7.

5.1 𝐿2-Projections for r-adaptive Updates
In order to compute our 𝐿2-projections for r-adaptivity, we begin

by recalling (Section 4.1) that we can restrict ourselves to comput-

ing projections from start of timestep, to new r-adaptive updates,

𝜋𝑡 (·, 𝑢) = 𝜋𝑡
(
·, (𝑢, 𝑒)

)
.

Each iteration of our ITR optimization modifies the simulation

mesh (𝑢𝑡 , 𝑒) → (𝑢𝑖 , 𝑒), and so, in turn, these changes in mesh

update the underlying function space of our FE model. For each such

referential update 𝑢𝑡 → 𝑢𝑖 we have corresponding function spaces,

𝑉 𝑡
, with basis {𝜓𝑡

𝑝 |1 ≤ 𝑝 ≤ 𝑛}, and 𝑉 𝑖
, with basis {𝜓 𝑖𝑞 |1 ≤ 𝑞 ≤ 𝑛},

for our start of step, 𝑡 , and current iterate, 𝑖 , meshes respectively.

For functions 𝑓 𝑡 ∈ 𝑉 𝑡
, their 𝐿2-projections onto 𝑉 𝑖

, given as 𝑓 𝑖 ,

minimize the 𝐿2 residual 1
2
∥ 𝑓 𝑖 − 𝑓 𝑡 ∥2 [Léger et al. 2014]. Optimality

of this least-squares problem then gives, for discrete vector fields

𝑦𝑡 , defined on T 𝑡 = (𝑢𝑡 , 𝑒), our r-adaptive projection operator,

𝜋𝑡 (𝑦𝑡 , 𝑢𝑖 ) = 𝑀 (𝑢𝑖 )−1𝐴𝑡 (𝑢𝑖 ) 𝑦𝑡 . (19)

Here 𝑀 (𝑢𝑖 ) is the density-normalized consistent mass matrix on

the mesh T 𝑖 = (𝑢𝑖 , 𝑒), and 𝐴𝑡 (𝑢𝑖 ) is the transfer matrix between

bases so that submatrix 𝐴𝑡 𝑝,𝑞 =
∫
Ω𝜓

𝑖
𝑝𝜓

𝑡
𝑞 𝑑𝑉 ⊗ 𝐼𝑑 .

4
For solving we use 𝑘 = 2𝑒5, 𝜌 = 1𝑒3, and ℎ = 1𝑒−2.

We then require a quadrature to compute the corresponding

energy, gradient, and Hessians of the terms in our objective that

include projections, 𝜋𝑡 . To begin with, considering Equation (6),

we can pre-multiply all appearances of 𝜋𝑡 in our objective, with

𝑥𝑇𝑀 (𝑢) and so can focus (when simulating with constant density

bodies) on the differentiable computation of terms

𝑏𝑡 (𝑦𝑡 , 𝑥,𝑢) = 𝑥𝑇𝑀 (𝑢)−1𝑀 (𝑢)𝐴𝑡 (𝑢) 𝑦𝑡 = 𝜌 𝑥𝑇𝐴𝑡 (𝑢) 𝑦𝑡 , (20)

for discrete vector fields, 𝑦𝑡 ∈ R𝑑𝑛 . This allows us to simplify evalu-

ations and avoid additional computation of derivatives with respect

to our mass matrix in our projection operator derivatives.

5.2 Computing the 𝐿2-Projection and its Derivatives
Prior work, including Ferguson et al. [2023], compute the necessary

integrals to evaluate the transfer matrix by a quadrature arrange-

ment [Krause and Zulian 2016] formed from the intersection cells of

the two overlapping meshes of the material domain. I.e., computed

via PolyClipper [Powell 2021] and further decomposed by triangu-

lation. For evaluation of 𝐴𝑡 this strategy is effective and efficient.

However, for computation of the transfer matrix’s derivatives we
find this solution is no longer stable nor practical and so we can

not apply Ferguson et al.’s [2023] numerical integration. This is

primarily due to two connected issues. First, jumps in intersection

cell structure, and so corresponding jumps in their quadrature ar-

rangements and weights, can not be parameterized with respect

to arbitrarily updating vertex coordinates, 𝑢𝑖 , during optimization.

Second, even if we restrict ourselves to small vertex changes that

preserve cell-structure topology, we still observe rapid changes in

cell geometries (and so the corresponding shape function we are

integrating) that, in turn, can generate unstable evaluations of the

integrals’ derivatives.

To address these issues we instead compute the integration of

𝐴𝑡 by direct quadrature on just the adapted mesh, so that our ar-

rangement and weights are directly parameterized by 𝑢. Effectively,

we are applying each new mesh T = (𝑢, 𝑒) to integrate the same

sharply varying function given by the inner products of the two dif-

ferent meshes’ shape functions. To efficiently compute our integrals,

we construct an AABB-based BVH [Schneider et al. 2024] at start of

each time step on the last mesh, T 𝑡
, and use it, at each quadrature

point evaluation inside the new mesh T 𝑖
, to look up which element

(and so basis function) in T 𝑡
we are integrating against. Simply

put, we compute and assemble the projector with quadrature sam-

pling per-element of adapted mesh, a check per quadrature point for

which element in the original mesh it overlaps with, and calculation

of shape function multiplications. See our supplemental for details.

However, while our parameterization is now smooth, the under-

lying function we are integrating over still sharply varies with 𝑢

over the domain. A low quadrature order (e.g., a three-point triangle

stencil in 2D, as applied by Ferguson et al. [2023]) can and will

miss sampling different values from smaller regions of the domain.

In order to robustly capture and integrate piecewise changes, we

apply Witherden and Vincent’s [2015] 49-point and 95-point ar-

rangements for 2D and 3D domains respectively [Schlömer et al.

2024]. We emphasize that, while we apply a higher-order quadrature
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Fig. 10. Chicken Drop! We drop a soft marshmallow chicken, squashing onto stiff sharpened spikes, with (top to bottom) visualizations of the full scene, a
bottom deformed meshed view, and a bottom view of the reference-mesh’s adaptivity.

for computation of the projection, the order of our underlying finite

elements remains unchanged.

We find that these quadratures work well, generating tight numer-

ical convergence to locally optimal solutions in all our experiments,

see Section 6. However, we note that the underlying function we

integrate can be, independent of sufficient sampling density, discon-

tinuous within our simplices and so could still lead to discontinuous

derivatives. In practice however, we do not encounter cases pre-

venting solver convergence across our examples and note that this

merits further investigation, see Section 7.

While we initially prototyped our gradient and Hessian compu-

tation via automatic differentiation (AD), the resulting code was

significantly bottlenecked by the AD computation. In our final im-

plementation, we use hand-derived analytic derivatives, which give

a ∼ 2X speedup. See our supplemental for the analytic derivatives

of the 𝐿2-projector.

5.3 Geometric Admissibility for r-Adaptive Solves
To enable efficient Newton-type optimization for r-adaptive solves

(see Section 5.5) we apply our geometric admissibility conditions

via penalty terms, 𝐶𝑖 , folded into our final objective𝑊 in Equation

(14).

5.3.1 Boundary Maintenance. To preserve our piecewise-linear ref-

erence domain we enable boundary vertices to adapt by sliding

along boundary facets (lines in 2D, planar regions in 3D) and along

straight edges (in 3D). For exact enforcement, facet-sliding member-

ship in both 2D and 3D simply amounts to comparing the normals of

incident boundary faces to each boundary vertex. If normals agree

these vertices can be enabled to adapt in-facet. If a 3D boundary

vertex then does not lie in a one-ring facet, it is suitable to check

for edge-sliding membership. If the directions of just two boundary

edges in the vertex’s one ring are collinear the vertex can be enabled

to adapt in-line.

Rather than requiring the above hard membership criteria, we

loosen membership tolerances and so also correspondingly weaken

sliding constraints to be approximate. This allows on-boundary slid-

ing on perturbed geometries and approximately planar regions. For

each reference boundary vertex, 𝑢𝑖 , we apply its area-weighted (re-

spectively length-weighted) vertex normal, 𝑛𝑖 = 1/𝑑∑𝑡 ∈N(𝑖 ) 𝑤𝑡𝑛𝑡 ,

to define tentative sliding directions. We assign facet-sliding mem-

bership for the vertex to this approximated sliding facet, if incident

boundary face normals are all closer than a user prescribed toler-

ance, 𝜖𝑏 , to the proposed sliding direction, 𝑛𝑖 , so that 1 − 𝑛𝑖𝑇𝑛𝑡 ≤
𝜖𝑏 ,∀𝑡 ∈ N (𝑖). We then add the corresponding “loose” boundary-

facet sliding penalty𝐶𝑖 (𝑢) = 1/2𝜅𝑠 ((𝑢𝑖 −𝑢0𝑖 )/∥𝑢 𝑗 −𝑢
0

𝑖
∥ ·𝑛𝑖 )2 to our

objective𝑊 , with𝜅𝑠 set to match the IPC contact barrier stiffness [Li
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et al. 2020]. If a 3D boundary vertex, 𝑢𝑖 , is not so assigned, we then

correspondingly check collinearity of non-adjacent one-ring edge

pairs 𝑐 𝑗,𝑘 = (𝑢 𝑗 − 𝑢𝑖 )𝑇 (𝑢𝑘 − 𝑢𝑖 ) + 1, 𝑗, 𝑘 ∈ N (𝑖). If just one pairing
𝑗, 𝑘 satisfies user tolerance with 𝑐 𝑗,𝑘 ≤ 𝜖𝑏 , then we assign edge-

sliding membership for the vertex to with an approximated sliding

direction 𝑡𝑖 = 1/2((𝑢 𝑗 − 𝑢𝑖 )/∥𝑢 𝑗 − 𝑢𝑖 ∥ + (𝑢𝑖 − 𝑢𝑘 )/∥𝑢𝑖 − 𝑢𝑘 ∥)). We

then add the corresponding “loose” boundary-edge sliding penalty

𝐶𝑖 (𝑢) = 1/2𝜅𝑠 ((𝑢𝑖 − 𝑢0𝑖 )/∥𝑢 𝑗 − 𝑢
0

𝑖
∥ × 𝑡𝑖 )2 to our objective𝑊 . Re-

sulting constraints are tightly enforced at converged solutions, with

violations less than 10
−8

across all examples in Section 6.

5.3.2 Non-Inversion. In practice, we observe that ITR optimization,

with just the physical admissibility constraint, generally produces

injective parameterizations naturally, without requiring explicit ap-

plication of geometric non-inversion constraints. See e.g., Figure 8.

However, we observe that r-adaptivity will sometimes seek to com-

press elements towards a flattened (but not inverting) shape. Upon

close examination we then confirm that, in these configurations,

this flattening effectively is, variationally, the better solution. The re-

moval of these elements, if applied in these timesteps, would indeed

give better, lower energy, solutions. This is a promising hint for the

potential utility of the ITR optimization in future work combining

h-adaptivity with r-adaptivity which would allow these identified

elements to be removed and added in a numerically robust way.

However, for our current, purely r-adaptive application, we wish to

avoid these degeneracies while at the same time, not strongly penal-

izing anisotropic elements from forming when advantageous, e.g.,

to better capture locally anisotropic strain distributions [Shewchuk

2002]. To balance between these needs we add a small volume (re-

spectively area) barrier [Ferguson et al. 2023] to our objective𝑊

(with stiffness again matching the IPC contact barrier’s), for each

element 𝑡 ∈ T ,

𝐶𝑡 (𝑢) =
{
−(𝑤𝑡 (𝑢) − 𝑤̂)2 ln( 𝑤𝑡 (𝑢 )

𝑤̂
), 0 < 𝑤𝑡 (𝑢) < 𝑤̂,

0, 𝑤𝑡 (𝑢) ≥ 𝑤̂ .
(21)

Here𝑤𝑡 is the volume (respectively area) function of the reference

element, and 𝑤̂ > 0 is the minimum element volume threshold. In

practice, we set 𝑤̂ to 1/10 of the smallest element volume in the our

starting mesh, T 0
.

5.4 Truncated System for r-adaptive ITR Newton Solves
We build an efficient Newton-type solver to r-adaptively minimize

our ITR energy from Equation (15),

𝑢𝑡+1 = min

𝑢
𝑊𝑡

(
(𝑢, 𝑒)

)
, (22)

to tight tolerances.

To solve each iterate 𝑖 + 1, we first build a truncated Hessian

approximation from (𝑢𝑖 , 𝑥𝑖 ), by the positive semi-definite projection

of the reference-coordinate Hessian,

𝐻𝑖 = Proj
+
(
𝜕2𝑅(𝑥𝑖 , 𝑢𝑖 )

𝜕𝑢2

)
. (23)

We then compute a next descent direction in reference coordinates,

𝑢, by solving the linear system

𝐻𝑖Δ𝑢 = −𝑔𝑖 , (24)

where 𝑔𝑖 = 𝜕𝑅(𝑥𝑖 , 𝑢𝑖 )/𝜕𝑢.

We choose these terms by first expanding the ITR energy’s gradi-

ent and Hessian terms wrt 𝑢 as

𝜕𝑊𝑡

𝜕𝑢
=
𝜕𝑅

𝜕𝑢
+
�

�
�>

0

𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑢
, (25)

and

𝜕2𝑊𝑡

𝜕𝑢2
=
𝜕2𝑅

𝜕𝑢2
+ 𝜕2𝑅

𝜕𝑢𝜕𝑥

𝜕𝑥

𝜕𝑢
+
���

��𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝑅

𝜕𝑥2

𝜕𝑥

𝜕𝑢
+
����𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝑅

𝜕𝑥𝜕𝑢
+
��

��* 0

𝜕𝑅

𝜕𝑥
:

𝜕2𝑥

𝜕𝑢2
.

(26)

With 𝑥 (𝑢) = argmin𝑧 𝐸 (𝑧,𝑢) in𝑊𝑡 , local optimality gives 𝜕𝐸/𝜕𝑥 = 0.

Observing that 𝜕𝑅/𝜕𝑥 = 𝜕𝐸/𝜕𝑥 , the last term in both the gradient

and Hessian then drop out. Next, expanding the optimality condi-

tions, we have

𝜕2𝐸

𝜕𝑥2

𝜕𝑥

𝜕𝑢
+ 𝜕2𝐸

𝜕𝑥𝜕𝑢
= 0. (27)

The third and fourth terms in the Hessian then respectively simplify

to

𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝑅

𝜕𝑥2

𝜕𝑥

𝜕𝑢
=
𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝐸

𝜕𝑥2

𝜕𝑥

𝜕𝑢
and

𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝑅

𝜕𝑥𝜕𝑢
= − 𝜕𝑥

𝜕𝑢

𝑇 𝜕2𝐸

𝜕𝑥2

𝜕𝑥

𝜕𝑢
, (28)

and so cancel.

For the remaining terms in the ITR Hessian, we directly compute

the sparse reference-coordinate Hessian, 𝜕2𝑅/𝜕𝑢2. To build the final
remaining term in the ITR Hessian, we could implicitly solve for

𝜕𝑥/𝜕𝑢 from Equation (27) above. However, the resulting Jacobian

is dense, requires expensive computation to generate, and, once

computed, results in dense fill-in contributions to our final Hessian.

Timestep

Iterations to converge
Truncated Hess
Full Hess

Fig. 11. Truncated System Convergence.
Full Hessian ITR solves converge faster than
our truncated Hessian solver. However, total
cumulative improvement in convergence rate,
for the full Hessian, generally concentrate in
just a few timesteps, and does not outweigh
its significant compute costs over the trun-
cated Hessian.

To address this potential

bottleneck we explored

two possible strategies.

For the first we observed

that most entries in the

dense Jacobian are rela-

tively small (correspond-

ing to the influence of ref-

erence node positions on

far awayDOF 𝑥 ). To lever-

age this we tried apply-

ing a filtered Jacobian, ze-

roing out all terms below

a filtering threshold. This

removes dense fill-in at

the cost of reduced accu-

racy. Our second, strat-

egy was to simply and di-

rectly apply a truncated

Hessian (see Equation 23) that drops the second term. In the end,

this simplest strategy converges much faster (than either full or

filtered Hessian strategies) in wall-clock time (albeit taking more

iterations) and so is, by far, most effective. See Figure 11.

5.5 Algorithm for r-adaptive ITR Simulation
We parameterize the target accuracy of our ITR solver with two tol-

erances. The first, 𝜖𝑒 , defines the accuracy to which each numerical

timestep is solved on its optimal mesh. The second, 𝜖𝑟 , controls how
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tightly we solve for the optimal mesh. Lower values of 𝜖𝑟 indicate

a tighter solve of the ITR problem, and so more adaptivity, while

higher values indicate looser solves and so less adaptivity in regions

where a mesh is already reasonably effective, see e.g., Figure 12.

Initial mesh = -0.236 = -0.243
= 1e-5= 1e-3 = 1e-4
= -0.245IP IP IP

Fig. 12. Static equilibrium under different 𝜖𝑟 . We fix the left boundary
of an elastic beam and calculate the static equilibrium under different
𝜖𝑟 . The beam bends under gravity and has contact with the sharp rigid
spike obstacle. Optimal r-ITR automatically adapts boundary vertices to
the contact point, and cluster vertices to capture the curvature and bulging
due to bending deformation. As users decrease the 𝜖𝑟 , tolerance optimal
ITR generates increasingly aggressive adaptivity.

To timestep with r-adaptive ITRwe begin each simulation with an

initial admissible starting mesh, T 0 = (𝑢0, 𝑒), and initial admissible

state, 𝑥0, 𝑣0. We start each new timestep solve with the admissible

ITR state 𝑥𝑡 , 𝑣𝑡 , 𝑎𝑡 , 𝑢𝑡 ∈ R𝑑𝑛 from the last step. We then explicitly

compute the predictor term, 𝑥𝑡 (e.g., to 𝑥𝑡 + ℎ𝑣𝑡 for implicit Euler),

on the current mesh, T 𝑡 = (𝑢𝑡 , 𝑒).
OurNewton-type solver then effectively follows a standard projected-

Newton algorithm pipeline with our truncated Hessian, with one

Algorithm 1 Optimal r-adaptive ITR

1: procedure R-ITR(𝑥𝑡 , 𝑣𝑡 , 𝑢𝑡 , 𝑒)
2: 𝑥𝑡 ← 𝑥𝑡 + ℎ𝑣𝑡
3: 𝑥 ← argmin𝑥 𝐸𝑡

(
𝑥, (𝑢𝑡 , 𝑒), 𝑥𝑡

)
4: 𝑢 ← 𝑢𝑡

5: loop
6: 𝑔← 𝜕𝑅(𝑥,𝑢)/𝜕𝑢
7: 𝐻 ← Proj

+ (𝜕2𝑅(𝑥,𝑢)/𝜕𝑢2)
8: Δ𝑢 ← −𝐻−1𝑔
9: if | |Δ𝑢 | | ≤ 𝜖𝑟 break
10: 𝛼 ← min

(
1, StepFilter(𝑢,Δ𝑢)

)
11: 𝑅0 ← 𝑅(𝑥,𝑢)
12: do
13: 𝑢′ ← 𝑢 + 𝛼Δ𝑢
14: 𝑥 ← argmin𝑥 𝐸𝑡

(
𝑥, (𝑢′, 𝑒), 𝑥𝑡

)
15: 𝛼 ← 𝛼/2
16: while 𝑅(𝑥,𝑢′) > 𝑅0
17: 𝑢 ← 𝑢′

18: end loop
19: 𝑢𝑡+1 ← 𝑢

20: 𝑥𝑡+1 ← 𝑥

21: 𝑣𝑡+1 ← 1/ℎ
(
𝑥𝑡+1 − 𝜋𝑡

(
𝑥𝑡 , (𝑢𝑡+1, 𝑒)

) )
22: return 𝑥𝑡+1, 𝑣𝑡+1, 𝑢𝑡+1

23: end procedure

key caveat. This being that evaluations of our minimized energy

are nested. Specifically, the trade-off for our not solving a problem

twice the size of system DOF (i.e., in both 𝑥 and 𝑢) is that we solve

a standard implicit timestep solve within each energy evaluation of

𝑊 . See Algorithm 1.

In future work it remains a to-be-explored acceleration opportu-

nity to evaluate our energy with nested, fast approximate timestep

solves. However, in this work we’ve first focused on end-to-end ac-

curate solves. Even so, as we evaluate next in Section 6, we see that

with optimal r-adaptivity, we can capture comparable and better

accuracy than with unadapted meshes orders-of-magnitude larger

and so with up to 27,000X speedup and 31X decrease in memory

usage (see Figure 17).

6 Evaluation
Our method is implemented in C++, parallelizing assembly and eval-

uations with Intel TBB, using Eigen [Guennebaud et al. 2010] for

basic linear-algebra routines and Eigen’s Cholesky (𝐿𝐿𝑇 ) factoriza-

tion for the Newton solves. We run all the experiments on an Apple

M3 pro machine with 18 GB memory. We use uniform refinement

with per edge subdivision to create increasing resolution meshes,

for our refinement studies. Please see our supplemental document

for simulation and material parameters used for all examples, as

well as corresponding and timing breakdown and memory statistics.

6.1 Dynamics Benchmarks
Here we evaluate quantitatively and qualitatively the trajectories

generated by low-resolution optimal r-adaptive ITR simulations

with much-higher resolution fixed-discretization simulated meshes.

High-speed impact and transients: We first consider the high-

speed impact of a 2D elastic bar fired at high-speed at the ground,

with an initial uniform downward velocity of 80m/s. We consider

the behavior of a low-resolution, 0.2K vertices, optimal ITR sim-

ulation with respect to fixed-mesh simulations over increasingly

fine resolutions. In Figures 13 and 14 we compare, respectively the

deformation (also meshing for ITR) and strain for each timestep

moving through the initial collision, compression, and restoration

phases of the impact. Over progressive fixed-mesh resolution sim-

ulations (please see Figures 4 and 5 in our supplemental for the

remainder of fixed resolution results and strain distribution on the

reference mesh) we reach a comparable trajectory, with a simulation-

averaged Hausdorff distance of 8𝑒−3 and IP error of 9𝑒−2, to fixed

discretization solution with 7.1K vertex mesh.

Dynamic drop through: In Figure 2we next drop a 3D neo-Hookean

elastic wedge through a tight frictionless gap obstacle, again com-

paring a coarse-mesh (0.2K vertices) optimal r-ITR simulation with

successively finer fixed-mesh simulations. Lower-resolution fixed

mesh solutions, with numerical stiffening and geometric locking

near contacts (please see our video and Figure 6 in our Supplemen-

tal), are unable to pass through the gap. While finer mesh simu-

lations pass through, it’s not until a 113K vertex simulation (with

a resultant 110X slower runtime and a 18.5X increase in memory

usage) that a fixed-mesh simulation’s motion obtains a close match,

per-step, to the optimal r-ITR simulation’s dynamics.
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Time

Fixed discretization (#V: 0.2K)          

Fixed discretization (#V: 7.1K)     

Optimal r-ITR (#V: 0.2K)     

Reference mesh

0.7 s Avg. Hausdor�: 0.05 

62.4 s

45.9 s     Avg. Hausdor�: 0.008

Fig. 13. High-speed impact, deformation and meshing. We fire a 2D neo-Hookean elastic bar at high-speed towards the ground. Simulated (bottom
green) with optimal r-ITR using a coarse 0.2K vertex mesh we see both the evolving ITR deformation and reference mesh per timestep. Middle orange: over
progressive fixed-mesh resolution simulations (please see our supplemental for the remainder of evaluated fixed-resolution simulation results) we reach a
comparable trajectory (trajectory averaged Hausdorff distance of 8𝑒−3) to our optimal ITR solution with 7.1K vertex fixed mesh (red contour). Top orange: A
comparable fixed-mesh simulation with the same coarse resolution as the bottom optimal ITR solution, generates a distinctly different per timestep trajectory
and strain (see Figure 14).

Fig. 14. High-speed impact, strain and deformation A coarse-resolution 0.2K vertex optimal r-ITR simulation’s deformation and strain closely match (see
Figure 13 and the text for details) a finest-resolution 7.1K vertex fixed-mesh simulation, (please see Figures 4 and 5 in our supplemental for strain distributions
on additional reference mesh resolutions).

Varying friction: In Figure 21, we consider adaptivity for a 2D neo-

Hookean wedge dropped through a conforming angled gap with

r-ITR’s adaptivity responding to increasing coefficients of friction.

At lower coefficients the wedge slides, catches and compresses with

adaptivity enabling the sliding of the deformed wedge through the

gap. Simulations correspondingly slide through faster as friction

lowers (respectively 𝜇 = 0 and 0.1). At higher friction (𝜇 = 0.5)

the wedge likewise compresses partially through the gap, but can

not slide fully through, with adaptivity enabling the simulation to

capture the final configuration of the wedge caught between gap

corners. In contrast, without adaptivity even the frictionless wedge
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Fixed discretization (#V: 0.3K)
0.3 s     134 MB 

Optimal r-ITR (#V: 0.3K)
10.2 s     148 MB 

Fixed discretization (#V: 90.4K)
522.3 s     4,681 MB 

Deformed mesh

Reference mesh

Deformed mesh

Reference mesh

Fixed discretization (#V: 0.3K)
0.6 s     137 MB 

Optimal r-ITR (#V: 0.3K)
21.7 s     150 MB 

Fixed discretization (#V: 90.4K)
1,311.6 s     4,566 MB 

Fig. 15. Deep elastic punch. We incrementally punch a neo-Hookean
elastic foam block with a rigid bar to different depths. We show the strain
distribution and the wireframes on both deformed mesh and reference
mesh. Red indicates higher strain, blue lower. We apply a uniform-refined
90K vertex mesh as a benchmark baseline. In both scenarios, our method
produces a very similar outline and strain distribution to the benchmark
with only 0.3K vertices (300X less vertices), while comparable-resolution
fixed discretization produces significant, obvious artifacts. We also show
that at the same time cost and peak memory usage, our method obtains a
much lower energy. See Figure 16 and our discussion for details.

is unable to pass through and simply ends at rest, without significant

deformation, against the obstacle.

6.2 Statics Benchmarks
Next we consider corresponding evaluations of optimal r-adaptive

ITR simulation on challenging contact-driven elastostatics problems.

Deep elastic punch: Scripting a bar obstacle, we incrementally

punch it into a 2D elastic neo-Hookean foam block (width 1m, height

0.5m), fixed on its base, to two depths of 0.21m and 0.36m. We solve

each scenario to equilibrium with optimal ITR on a coarse 0.3K

vertex mesh and correspondingly over a range of successively in-

creasing resolutions, see Figure 15. Deformation of each block is

driven by frictionless contact with the bar. We see that we qualita-

tively, in terms of both deformation and strain distribution, begin

obtaining a close match to our optimal r-ITR solution with fixed-

mesh solution at 90.4K vertices, with a 60X slower runtime and

32X increase in memory. However, even here, at this much (300X)

finer resolution we still observe (Figure 16) that the optimal r-ITR

solution has a significantly lower IP energy. To better understand

this we observe that, due to imposed boundary conditions on the

base of the block, the fixed mesh is unable to obtain deformation

freedom to relax near the base as optimal r-ITR is. As confirmation,

in Figure 2 of our supplemental, we additionally fix optimal ITR’s

reference coordinates along the base and now find that we reach a

closely matching solution to the 90.4K fixed discretization.

Memory (MB)Timing (s)

IP

Ours memory
Fix memory
Ours time
Fix time

IP

log(#V)

Ours
Fix

Ours memory
Fix memory
Ours time
Fix time

Timing (s) Memory (MB)

IP

Ours
Fix

log(#V)

IP

Fig. 16. Memory and timing for deep elastic punch examples. For
same timing cost, peak memory usage, and mesh resolution, optimal ITR
obtains much lower Incremental Potential energies than fixed-discretization
simulations.

Static drop-through: Next, to continue examining the difference

in locking behaviors between fixed-meshed simulations and opti-

mal r-ITR, we consider a simplified 2D elastostatics variation of

the above dynamic drop-through experiment. In Figure 17 we drop

a 2D neo-Hookean elastic wedge, pinned along its left and right

upper edges, through a tight frictionless gap obstacle and solve to

equilibrium. As a baseline we first simulate with a coarse-mesh,

0.1K vertices, optimal r-ITR simulation. In Figure 17 bottom we

visualize intermediate steps of the solve, and optimal r-ITR’s fi-

nal compliant equilibrium solution on the right. Next, successively

solving the static drop-through across increasingly finer-resolution,

fixed-mesh equilibrium solves, we again see improving results with

lower-resolutions locking on top of the obstacle and finer resolu-

tions, beginning to pass through. However, even with a simulation

mesh of 400K vertices we still see that equilibrium solutions fail

to match the compliance and low energy of our starting coarse

resolution ITR simulation; see Figure 17 and Figure 18. To better

understand this behavior, we zoom-in to the contact corners and

observe that across resolutions, fixed-mesh equilibrium solves the in-

teraction between sharp contact asperities and severely compressed

elements introduce a repeating locking pattern in which elements

rotate against each other and form seams; see Figure 19. This com-

plex behavior is best seen in animation (please see our supplemental

video) and remains in all fixed-discretization simulations up into

the 400K mesh (finest we have run) and so restricts the compliance

of each mesh’s solution.

Stamping. In Figure 23 we press four Chinese letter stamps (qí tiān

dà shèng for the famous mythological character Sun Wukong) into

four neo-Hookean elastic foam blocks. Here optimal r-ITR adapts the

reference mesh so that its deformation along mesh edges can tightly

conform to the shape of the contacting block edges. In contrast,
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Fig. 17. 2D static drop-through.We drop a 2D elastic wedge, pinned along it’s left and right upper edges (red lines), through a tight frictionless gap, and
solve to static equilibrium and here show solver steps towards equilibrium. Here, fixed-discretization simulations lock on top of the obstacle with coarser
meshes, and then begin to pass through as we go to finer meshes, but still remain far from a low energy compliant solution. In contrast, our optimal r-ITR
passes the gap with the coarsest-mesh resolution, with a corresponding lower Incremental Potential than the 402.5K fixed-discretization which requires
27, 000X longer compute time and 31X more memory usage.

Fixed discretization

Optimal r-ITR

log(#V)

IP

Fig. 18. Plot of 2D static drop-through.We plot the Incremental Potential
curve with respect to the number of vertices. For the same mesh resolution,
optimal r-ITR always converges to a lower Incremental Potential. We observe
that there is a sudden jump on the curve of fixed-discretization simulation;
this is because the fixed-discretization simulations are locked at lower
resolution, and pass through at the higher.

the fixed discretization fuzzes around the contacting letter-press

boundaries. Correspondingly, we see that the strain concentrations

for the optimal r-ITR solution are much more sharply and accurately

resolved, while energies are (as expected) significantly lower, see

Figure 23 right.

6.3 ITR Comparisons
Next, we apply Ferguson et al.’s [2023] Masticator benchmark to

compare optimal r-adaptive ITR with Ferguson et al.’s original ITR

formulation, and fixed-mesh baselines.

In Figure 3 bottom, we first run the original Masticator benchmark

from the ITR paper’s code release and see that the crushed neo-

Hookean elastic block simulates across timesteps with an average

mesh size of 6K vertices, and ranges up to meshes with a maximum

of 21K vertices. During simulation, please also see our accompanying

videos, we observe that ITR generates a range of unnaturally sharp

localized edges, dimples and folds during simulation. This is in

contrast to a baseline 71K vertex fixed-mesh Masticator simulation,

Figure 3 middle, which smoothly folds, curves, and bulges under

compression of the Masticator’s teeth. Correspondingly a 700 vertex

optimal-ITR simulation, Figure 3 top, closely follows the 71K fixed-

mesh simulation with generally a 3X smaller Hausdorff distance

(e.g., 0.05m for optimal ITR and 0.16m for ITR in the Figure’s current

frame) than original ITR. Here optimal ITR uses orders of magnitude
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Fig. 19. Locking behavior of fixed-discretization simulations in the
2D static drop-through. Here, we zoom-in to sharp contact corners
and demonstrate the locking behavior during static solve steps for fixed-
discretization simulations. Boundary edges are highlighted in red. As New-
ton iteration proceeds, the fixed-discretization simulation suffers from a re-
peating locking pattern where elements rotate against each other, form tight
contact seams and release (see our supplemental video for animation of this
process). The locking mitigates but remains as we refine fixed-discretization
simulations up into a 400K mesh simulation.

Fixed discretization (#V: 40.3K)

log(#V)

IP

Fixed discretization

Optimal r-ITR

Optimal r-ITR (#V: 0.3K)
Hausdor�: 0.008

Fixed discretization (#V: 0.3K)
Hausdor�: 0.011

Fig. 20. Bending beam convergence.We bend a neo-Hookean elastic bar
by moving its two ends together and solve for static equilibrium; bottom of
each sub-figure is the corresponding reference mesh. We plot strain distri-
bution ranging from high (red) at creases where optimal ITR concentrates
DOF for significantly faster convergence under refinement.

Fixed discretization

Optimal r-ITR

Optimal r-ITR

Optimal r-ITR

Fig. 21. Adaptivity under varying friction. We drop an elastic wedge
through a tight angled gap. At lower friction, ITR captures the sliding of
the deformed wedge through the gap at increasing speed as 𝜇 decreases. At
higher friction the wedge can not slide fully through, with adaptivity en-
abling the simulation to capture the final configuration of the wedge caught
between gap corners. In contrast, without adaptivity, even the frictionless
wedge is unable to pass through and simply ends at rest, without significant
deformation, against the obstacle.

Initial state

Deformed mesh

Reference mesh

Subdivision 1 Subdivision 2 Subdivision 3
Fig. 22. On-boundary adaptivity reduces with curvature complexity.
Here we drop onto spikes three similar shapes constructed to have the
same number of boundary vertices and approximately the same number of
total vertices. As curvature complexity increases we see that our boundary
preserving assumption locks more boundary nodes and so increasingly
limits the amount of r-adaptivity possible on the body’s surface.
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Fig. 23. Stamping.We press four rigid Chinese letter stamps (qí tiān dà shèng, the title of the famous Chinese mythological character Sun Wukong) into
four elastic foams. Optimal r-ITR sharply captures the contour of the stamps’ strokes, while fixed-discretization simulation produces stampings with fuzzy
boundaries. With the wireframe views we demonstrate that edges in the optimal r-ITR solutions’ meshes sharply align with the boundaries of the strokes
(transparent yellow areas); in contrast, there are many non-conforming contacting edges in the fixed-discretization solutions. We also show the resulting strain
distributions of all results; here we see that optimal ITR correspondingly resolves the sharp strain concentrations that the fixed-discretization simulations miss.

less DOF and memory (with a resultant 8.4X speedup) than the fine-

mesh simulation, and 8.5X less DOF, with a 73X speedup over ITR.

At the same time, in Figure 4 we see that, if we further coarsen

optimal ITR’s available resolution to 500 vertices, the solution cer-

tainly degrades with less resolution to capture curvature. However,

the overall simulation behavior remains close to the finer-resolution

optimal-ITRmodel. This is in contrast with corresponding-resolution

fixedmesh discretizations in Figure 4 (please also see our supplemen-

tal videos for animations) which both exhibit different simulation

artifacts, and so likewise different overall deformation behaviors.

6.4 Scaling, Performance and Convergence
Here we summarize takeaways on the scalability and performance

of optimal ITR and fixed-discretization simulation. In our small
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2D high-speed impact experiment (Figures 13 and 14), optimal r-

ITR generates contours and strain distributions closely matching

the fixed-discretization solution with 35X finer resolution, with a

1.3X speedup. In the 3D drop through experiment (Figure 2), opti-

mal ITR’s trajectory with 0.2K vertices closely matches the fixed

discretization solution with 113K vertices, which at 565X finer reso-

lution requires a 110X slower compute time and 18.5Xmore memory

usage. The fixed discretization fails to match for all lower mesh reso-

lutions evaluated, which implies good application of optimal ITR for

predicting high-fidelity simulation results with coarse meshing. In

the masticator benchmark (Figure 4), we demonstrate that under re-

finement, optimal ITR can generate consist dynamics (by improved

mesh allocation) across some resolutions.

Convergence. In the deep-punch experiment (Figure 16), we run

both optimal ITR and fixed discretization simulations across in-

creasing mesh resolutions. We evaluate their resulting Incremental

Potential curve and see in Figure 16 that optimal ITR converges

much faster than the fixed discretization meshes, with a significant

advantage in terms of timing and memory. Even more extreme, in

the static drop-through experiment (Figure 17), we see that opti-

mal ITR with the coarsest mesh converges to a lower energy than

all simulated fixed-discretizations up to a finest mesh with 4025X

more vertices. We explore this phenomena, and see that fixed-mesh

discretizations across resolutions can and will get partially or fully

locked at sharp contacts. We see this clearly in the sudden jump

in our energy plot in Figure 18. While this locking mitigates to

some degree as we go to finer resolution, we also see that it remains

with significant simulation error at very fine meshing (Figure 19).

Finally, in Figure 20, we bend a neo-Hookean, 2D elastic straight

beam by moving its two ends close to each other, and solve for

static equilibrium. We see that optimal ITR, even at coarse resolu-

tion, automatically clusters vertices into large strain (red) regions,

so that its strain distribution and contour are both closer to the

finest-resolution solution. Under refinement we see that optimal

ITR likewise converges at a faster rate than uniform refinement for

the same allocated number of nodes.

6.5 Additional Examples:
Gingerbread Squish: In Figure 5 we stress test an elastic “ginger-

bread” shape by tightly squishing it between compressing sharp

teeth. Here we visualize both the deformation and the reference

domain meshing and strain. As the teeth begin to press, we see adap-

tivity initially focusing DOF to capture localized contact regions.

Then, as compression increases, adaptivity further concentrates

DOF along internal stress bands. Finally as the teeth release back-

wards we see adapted meshing regions relaxing to more regular

shapes away from the persistent contacts.

Chicken Drop. In Figure 10, we drop a soft (neo-Hookean material,

𝐸 = 4𝑒4 Pa) chickenmarshmallow, at large timestep (ℎ = 0.01𝑠), onto

stiff (𝐸 = 2𝑒8 Pa) sharp spikes. As the chicken drops, compresses, vi-

brates, and finally bounces off, we observe optimal ITR dynamically

adjusts the meshing to enable capturing tight compliant contacts

with the spikes and elastic follow through as the spikes rebound.

Jelly. In Figure 1, we spike a jelly treat (neo-Hookean material,

𝐸 = 2𝑒6 Pa) on top of a plate with cat-shaped jello mold. with a

metal fork. Comparing optimal ITR with fixed discretization we

see accurate capture of contact crease lines and clear separation

of contact into separate punctures by all four fork tines. This is in

contrast to fixed discretization which is unable to separate the punc-

tures nor capture the contact shapes. In cutaway we see the strain

distribution on the cross-section where optimal ITR concentrates

strain within the deforming contact regions, and so automatically

clusters mesh vertices in those regions. Again, this in contrast to

fixed discretizations blurring of both the contact and its stresses.

We see a similar story on the bottom of the jelly, where optimal ITR

captures the sharp cat-shaped contour and corresponding strain of

the jello mold, while the fixed discretization again only captures a

blurred deformation and strain map.

7 Discussion, Limitations and Conclusion
Wehave presented a new objective, model problem and optimization,

to enable, per timestep, joint adaptive remeshing and state updates

for the simulation of frictionally contacting elastica. Applying this

simulation pipeline to r-adaptive modeling of dynamics and statics,

we demonstrated its ability to significantly improve in quality and

accuracy over the original ITR method and, moreover, to capture

comparable and often better simulation results than those generated

by direct, unadapted simulations using orders-of-magnitude more

mesh DOF. As covered in earlier sections, there also remains a range

of opportunities and limitations to next address.

For robust computation of 𝐿2 evaluations and derivatives we pro-

pose new quadrature domains and higher-density arrangements.

While we find that these quadratures work well, they may certainly

be doing too much or, possibly in some cases, too little sampling

depending on local deformation and meshing configuration. Pre-

liminary experiments in adpating quadrature with meshing are

promising, but significant challenges remain in order to maintain

efficient convergence behavior while updating quadratures. Like-

wise, our on-boundary r-adaptivity currently seeks to preserve the

piecewise-surface structure of our input triangulated reference-

mesh boundaries. This increasingly limits the amount of possible

on-boundary adaptivity for surface geometries with higher cur-

vature complexity (see e.g., Figure 22). Future work in balancing

boundary preservation with more flexible adaptivity, to refine lo-

cally to smoother surface representations is an exciting direction to

extend boundary r-adaptivity. However, this comes with challenges

in terms of preserving invariants.

We have so far focused on ensuring a first model and method to

provide numerically accurate, converged ITR solutions for simula-

tion. We currently do this, as covered above, at significant additional

cost in inner iteration IP solves. This is quite likely overkill, as most

iterations of our ITR optimization, especially early ones, do not

generally require tight solutions of the inner IP solves. Early explo-

rations on fast approximate inner IP solves in an inexact Newton

fashion are promising, but more exploration is required here to fur-

ther accelerate ITR timestep solutions. Despite these computational

challenges we have seen that exceedingly low-resolution optimal

ITR solves can now capture deformation behaviors of much finer
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mesh simulations. As such it is also exciting to now consider ex-

tending the application of our optimal ITR model and framework

from r-adaptivity, to joint rh-adaptivity with adaptive updates to

mesh connectivity. Here initial steps and challenges for h-adaptivity,

addressed in the original ITR model [Ferguson et al. 2023], and re-

cent work on differentiable meshing [Rakotosaona et al. 2021], both

point the way towards utilizing the optimal ITR model for fully

general remeshing adaptivity.
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