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1 𝐿2-Projection Assembly
Consider a step of ITR optimization changing the reference mesh
from T 1 (𝑣, 𝑒) with function space 𝑉 1 and basis {𝜙1

𝑖
|1 ≤ 𝑖 ≤ 𝑛}, to

T 2 (𝑢, 𝑒) with corresponding function space 𝑉 2 and basis {𝜙2
𝑖
|1 ≤

𝑖 ≤ 𝑛}. The 𝐿2-projection operator required is then

𝜋 : 𝑉 1 → 𝑉 2, (1)

so that for functions 𝑓 1 ∈ 𝑉 1 their projection 𝑓 2 = 𝜋 (𝑓 1) ∈ 𝑉 2

minimizes the 𝐿2 residual 1
2 | |𝑓

1 − 𝑓 2 | |2. For discrete vector fields
𝑦1 defined on T 1 (𝑣, 𝑒), the projected vector field 𝑦2 on T 2 (𝑢, 𝑒) is
given by

𝑦2 = 𝜋 (𝑦1) = 𝑀 (𝑢)−1𝐴(𝑢, 𝑣)𝑦1, (2)
Here𝑀 (𝑢) is the density-normalized, consistent mass matrix on

the mesh T 2 (𝑢, 𝑒), and 𝐴(𝑢, 𝑣) is the transfer matrix between bases
so that submatrix blocks 𝐴𝑖, 𝑗 =

∫
Ω 𝜙

1
𝑗
𝜙2
𝑖
𝑑𝑉 ⊗ 𝐼𝑑 .

We apply quadratures to compute the inner products of the two
meshes’, T 1 and T 2, shape functions. Here we demonstrate the
assembly of the transfer matrix using a 2D triangulation as an
example. Assembly for tetrahedral meshes in 3D follows directly.
For each triangle△(𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑘 )
in the modified reference
mesh, T 2 (𝑢, 𝑒), we ap-
ply quadrature sampling
with𝑚 quadrature points
{𝑞𝑙 |1 ≤ 𝑙 ≤ 𝑚}
and corresponding quad-
rature weights {𝑤𝑙 |1 ≤
𝑙 ≤ 𝑚}.

We construct anAABB-
based BVH on T 1 (𝑣, 𝑒).
For each quadrature point 𝑞𝑙 , we use this BVH to accelerate the
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look up of which triangle △(𝑣𝑝 , 𝑣𝑞, 𝑣𝑟 ) in the original mesh, T 1,
contains it. We then compute the barycentric coordinates 𝜙1𝑝,𝑞,𝑟
of 𝑞𝑙 in △(𝑣𝑝 , 𝑣𝑞, 𝑣𝑟 ) and the barycentric coordinates 𝜙2

𝑖, 𝑗,𝑘
of 𝑞𝑙 in

△(𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑘 ). The contribution of the quadrature point 𝑞𝑙 to the
transfer matrix 𝐴(𝑢, 𝑣) is then

𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜙1𝛼𝜙
2
𝛽
, (3)

where𝑊𝑖 𝑗𝑘 gives the triangle area of △(𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑘 ).

2 Computing the 𝐿2-Projection Derivatives
With assembly covered above we now focus on our computation of
projection derivatives in terms of the operator,

𝑏 (𝑦, 𝑥,𝑢, 𝑣) = 𝜌 𝑥𝑇𝐴(𝑢, 𝑣) 𝑦. (4)

As a concrete example of why we focus on this operator recall
our inertial energy is

𝐾 (𝑥, 𝑥𝑡 ,T) = 1
2𝑥

𝑇𝑀 (T )𝑥 − 𝑥𝑇𝑀 (T )𝜋𝑡 (𝑥𝑡 ,T). (5)

Substituting the projection, 𝜋𝑡 (𝑥𝑡 ,T), via Equation (2), we then
have (with the assumption of constant, per-body density),

𝐾 (𝑥, 𝑥𝑡 ,T) = 1
2𝑥

𝑇𝑀 (T )𝑥 − 𝑥𝑇𝑀 (T )𝑀 (T )−1𝐴𝑡𝑥𝑡

=
1
2𝑥

𝑇𝑀 (T )𝑥 − 𝜌 𝑥𝑇𝐴𝑡𝑥𝑡 .
(6)

More generally, for optimal ITR, we need only consider computing
the derivatives of𝑏 = 𝜌𝑥𝑇𝐴𝑦, where𝑦 is an arbitrary constant vector,
to account for projection terms. In the following, to simplify, we
drop the constant 𝜌 term, and use the same quadrature application
(and notation) as in the last section to evaluate 𝑏 and its derivatives.

The contribution of each quadrature point 𝑞𝑙 to 𝑏 is then

𝑏𝑙 = 𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜙1𝛼𝜙
2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 . (7)

Triangle areas𝑊𝑖 𝑗𝑘 are then functions of 𝑢𝑖, 𝑗,𝑘 , while the quadra-
ture weights,𝑤𝑙 , are constant. As 𝑞𝑙 is interpolated from 𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑘 ,
the corresponding shape functions, 𝜙1𝛼 , are also a linear function of
𝑢𝑖, 𝑗,𝑘 . In turn, shape functions 𝜙2

𝛽
are constant values predefined by

the quadrature pattern, while the input vector 𝑦𝛼 is also constant.
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#V: 0.3K Partial adaptivity #V: 0.3K Full adaptivity

#V: 90.4K No adaptivity

Fig. 2. Supplement to the deep elastic punch. See our detailed analysis
in the main paper.

Gradient terms are then
𝜕𝑏𝑙

𝜕𝑢𝛾
= 𝑤𝑙

𝜕𝑊𝑖 𝑗𝑘

𝜕𝑢𝛾
(

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜙1𝛼𝜙
2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 )

+𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜕𝜙1𝛼
𝜕𝑢𝛾

𝜙2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 ,

𝜕𝑏𝑙

𝜕𝑥𝛾
= 𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

𝜙1𝛼𝜙
2
𝛾𝑦𝛼 ,

(8)

and corresponding Hessian terms are

𝜕2𝑏𝑙
𝜕𝑢𝛾 𝜕𝑢𝛿

= 𝑤𝑙

𝜕2𝑊𝑖 𝑗𝑘

𝜕𝑢𝛾 𝜕𝑢𝛿
(

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜙1𝛼𝜙
2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 )

+𝑤𝑙

𝜕𝑊𝑖 𝑗𝑘

𝜕𝑢𝛾
(

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜕𝜙1𝛼
𝜕𝑢𝛿

𝜙2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 )𝑇

+𝑤𝑙

𝜕𝑊𝑖 𝑗𝑘

𝜕𝑢𝛿
(

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜕𝜙1𝛼
𝜕𝑢𝛾

𝜙2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 )𝑇

+

���������������: 0

𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

∑︁
𝛽=𝑖, 𝑗,𝑘

𝜕2𝜙1𝛼
𝜕𝑢𝛾 𝜕𝑢𝛿

𝜙2
𝛽
𝑥𝑇
𝛽
𝑦𝛼 ,

𝜕2𝑏𝑙
𝜕𝑢𝛾 𝜕𝑥𝛿

= 𝑤𝑙

𝜕𝑊𝑖 𝑗𝑘

𝜕𝑢𝛾
(

∑︁
𝛼=𝑝,𝑞,𝑟

𝜙1𝛼𝜙
2
𝛿
𝑦𝛼 )𝑇 +𝑤𝑙𝑊𝑖 𝑗𝑘

∑︁
𝛼=𝑝,𝑞,𝑟

𝜕𝜙1𝛼
𝜕𝑢𝛾

𝜙2
𝛿
𝑦𝑇𝛼

𝜕2𝑏𝑙
𝜕𝑥𝛾 𝜕𝑥𝛿

= 0.

(9)
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Damped optimization 
with geometric admissibility

IP = 0.32 

[Mosler and Ortiz 2006]
IP = nan

Our method
IP = 0.26

Deformed position

Reference position

Fig. 1. Using the same example as in Figure 8 of the main paper we compare
Mosler and Ortiz’s [2006] proposed damped Newton solve (left column) of
the unconstrained incremental potential with, for reference, our optimal
r-ITR (“our method”, right column) solution. As discussed in the main paper,
even in this simple 2D example, Mosler and Ortiz’s unconstrained solution
reaches degenerate meshes with inverted elements. In the middle column
we experiment by augmenting Mosler and Ortiz [2006] with an additional
admissibility constraint that disallows inverted elements. Here, we see the
Mosler and Ortiz solution improves somewhat, but now, as expected, with
a degenerate mesh that has close-to-collapsed elements instead of inverted
ones.

Time

Inertial Inertial

Time

Our method (0.2K)
Fix discretization (7K)

(a) (b)
Fig. 3. ITR solutions avoid trajectory jumps and jitters, and maintain physi-
cally consistent kinetic energy by (1) solving for r-adaptive updates inside
each timestep, and (2) by ensuring consistent joint remapping of velocities
and mass matrix on each remeshing update. Optimal ITR trajectories are
then smooth (with correspondingly smooth kinetic energy evolution) where
dynamics are expected to be so; see (a) where we plot the kinetic energy
over time of an optimal r-ITR simulation of the 3D drop-through example.
Of course optimal r-ITR will then exhibit sharper changes where physically
appropriate, as during impacts: see (b) where we overlay the kinetic energy
plot of a coarse optimal r-ITR simulation of the high-speed impact example
with a much (35X) finer fixed mesh simulation of the same.
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Table 1. Timing breakdown. Here we breakdown timing statistics for individual examples. "Evaluation" gives total time in evaluating energy gradients and
Hessians that form the linear system per Newton iterate. "Linear solve" gives total solve time for linear system solves. "Line search" is the corresponding time
used to perform line search in finding optimal meshes; note this includes inner argmin𝑥𝐸𝑡 solves involved. "L2-assembly" is the time to compute the transfer
matrix for 𝐿2-projections. "L2-derivative" is the time to compute the 𝐿2-projection derivatives in the inertial energy.

Example #V #E Linear solve (s) Line search (s) Evaluation (s) L2-assembly (s) L2-derivative (s) Timestep Timing per timestep (s)
High-speed impact 218 392 0.029 2.479 1.481 0.788 1.194 0.010 4.057
3D drop through 234 588 0.010 2.846 2.006 2.127 1.777 0.010 5.000
Gingerbread 694 1,266 0.017 0.841 0.524 0.351 0.424 0.010 1.483
Masticator 738 2,508 0.042 6.495 16.130 7.524 15.205 0.050 25.100
Chicken 10,218 31,555 0.237 49.845 46.919 29.791 41.897 0.010 118.169
Jelly 11,139 46,347 1.064 134.651 194.437 132.345 173.113 0.010 347.006

Table 2. Simulation parameters.

Example Young’s modulus Poisson’s ratio E_tol R_tol timestep frictional coefficient
Jelly 2.00E+06 0.1 1.00E-04 1.00E-04 1.00E-02 0.3

Chicken 4.00E+04 0.4 1.00E-04 1.00E-03 1.00E-02 0.15
Stamps 2.00E+05 0.3 1.00E-04 1.00E-04 1.00E-02 0

Masticator 1.00E+04 0.4 1.00E-04 5.00E-04 5.00E-02 0
High-speed impact 2.00E+05 0.3 1.00E-04 1.00E-04 1.00E-02 0

Gingerbread 2.00E+05 0.2 1.00E-04 1.00E-04 1.00E-02 0.1
Bending beam test 2.00E+06 0.3 1.00E-04 1.00E-04 static 0
3D drop through 2.00E+05 0.25 1.00E-04 1.00E-04 1.00E-02 0

2D static drop through 4.00E+04 0.05 1.00E-04 1.00E-04 static 0
Deep elastic punch 2.00E+05 0.3 1.00E-04 1.00E-04 static 0

L2-projection 2.00E+04 0.3 1.00E-04 1.00E-04 1.00E-02 0.2

Fixed discretization (#V: 0.6K)    2.2 s     Avg. Hausdor�: 0.02 

Fixed discretization (#V: 2.1K)    8.6 s     Avg. Hausdor�: 0.02 

Fig. 4. Additional fixed discretization resolutions for reference for the High-speed impact and transients example.
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Fig. 5. Additional optimal r-ITR and fixed discretization reference solutions for the High-speed impact and transients example.

Table 3. Performance statistics.

Example #Vertices #Elements Timing per timestep (s) Memory (MB)
Masticator (Optimal r-ITR) 738 2,508 25.100 679

Masticator (Ferguson et al. 2023) 484–21273 1740–97667 1,830.900 2,619
Masticator (Fixed mesh) 71,057 384,042 210.830 5,111

3D drop through (Optimal r-ITR) 234 588 5.000 255
3D drop through (Fixed mesh) 234 588 0.030 94
3D drop through (Fixed mesh) 1,445 5,447 0.582 273
3D drop through (Fixed mesh) 6,416 26,191 5.776 500
3D drop through (Fixed mesh) 27,296 115,719 46.494 1,389
3D drop through (Fixed mesh) 113,421 489,726 556.798 4,711

2D static drop through (Optimal r-ITR) 117 196 2.158 74
2D static drop through (Optimal r-ITR) 429 784 7.065 122
2D static drop through (Optimal r-ITR) 1,641 3,136 67.009 284
2D static drop through (Optimal r-ITR) 6,417 12,544 2,353.040 1,659
2D static drop through (Optimal r-ITR) 25,377 50,176 19,620.626 5,401
2D static drop through (Fixed mesh) 117 196 0.072 68
2D static drop through (Fixed mesh) 429 784 0.271 72
2D static drop through (Fixed mesh) 1,641 3,136 3.057 91
2D static drop through (Fixed mesh) 6,417 12,544 47.177 190
2D static drop through (Fixed mesh) 25,377 50,176 415.183 440
2D static drop through (Fixed mesh) 100,957 200,704 4,486.742 747
2D static drop through (Fixed mesh) 402,561 802,816 57,018.258 2,336
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#V: 0.2K #V: 1K #V: 6K #V: 113K #V: 0.2K

1st frame

10th frame

20th frame

30th frame

40th frame

50th frame

Fixed discretization Our method
#V: 27K

Fig. 6. Supplement to the Dynamic drop through example. We compare overlaid frames of the successively finer fixed-discretization simulations with
our optimal r-ITR’s coarse simulation in the drop through example. Optimal ITR keeps comparable height with the finest fixed-mesh simulation along the
trajectory.
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Table 4. Performance statistics.

Example #Vertices #Elements Timing per timestep (s) Memory (MB)
Deep elastic punch1 (Optimal r-ITR) 81 128 0.129 87
Deep elastic punch1 (Optimal r-ITR) 285 512 0.378 149
Deep elastic punch1 (Optimal r-ITR) 617 1,152 0.666 194
Deep elastic punch1 (Optimal r-ITR) 1,077 2,048 1.053 189
Deep elastic punch1 (Optimal r-ITR) 2,580 5,000 2.656 470
Deep elastic punch1 (Optimal r-ITR) 6,525 12,800 4.921 1,752
Deep elastic punch1 (Optimal r-ITR) 10,155 20,000 8.436 3,665
Deep elastic punch1 (Optimal r-ITR) 12,270 24,200 16.211 5,052
Deep elastic punch1 (Optimal r-ITR) 13,172 25,992 17.468 5,171
Deep elastic punch1 (Fixed mesh) 81 128 0.004 82
Deep elastic punch1 (Fixed mesh) 285 512 0.012 134
Deep elastic punch1 (Fixed mesh) 617 1,152 0.042 153
Deep elastic punch1 (Fixed mesh) 1,077 2,048 0.057 162
Deep elastic punch1 (Fixed mesh) 2,580 5,000 0.155 238
Deep elastic punch1 (Fixed mesh) 6,525 12,800 0.331 452
Deep elastic punch1 (Fixed mesh) 10,155 20,000 0.650 723
Deep elastic punch1 (Fixed mesh) 17,100 33,800 1.744 1,103
Deep elastic punch1 (Fixed mesh) 40,305 80,000 3.603 2,352
Deep elastic punch1 (Fixed mesh) 62,880 125,000 7.566 3,590
Deep elastic punch1 (Fixed mesh) 90,455 180,000 19.343 4,681

Deep elastic punch2 (Optimal r-ITR) 81 128 0.136 86
Deep elastic punch2 (Optimal r-ITR) 285 512 0.483 150
Deep elastic punch2 (Optimal r-ITR) 617 1,152 0.863 197
Deep elastic punch2 (Optimal r-ITR) 1,077 2,048 1.475 185
Deep elastic punch2 (Optimal r-ITR) 2,580 5,000 4.539 468
Deep elastic punch2 (Optimal r-ITR) 6,525 12,800 11.225 1,784
Deep elastic punch2 (Optimal r-ITR) 10,155 20,000 23.710 3,672
Deep elastic punch2 (Optimal r-ITR) 12,270 24,200 35.415 4,961
Deep elastic punch2 (Fixed mesh) 81 128 0.004 85
Deep elastic punch2 (Fixed mesh) 285 512 0.013 136
Deep elastic punch2 (Fixed mesh) 617 1,152 0.047 156
Deep elastic punch2 (Fixed mesh) 1,077 2,048 0.061 164
Deep elastic punch2 (Fixed mesh) 2,580 5,000 0.157 244
Deep elastic punch2 (Fixed mesh) 6,525 12,800 0.454 450
Deep elastic punch2 (Fixed mesh) 17,100 33,800 1.670 1,099
Deep elastic punch2 (Fixed mesh) 40,305 80,000 6.811 2,345
Deep elastic punch2 (Fixed mesh) 62,880 125,000 11.176 3,504
Deep elastic punch2 (Fixed mesh) 90,455 180,000 29.146 4,566
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