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We propose Hierarchical Optimization Time Integration (HOT) for effi-

cient implicit timestepping of the material point method (MPM) irrespec-

tive of simulated materials and conditions. HOT is an MPM-specialized

hierarchical optimization algorithm that solves nonlinear timestep prob-

lems for large-scale MPM systems near the CFL limit. HOT provides con-

vergent simulations out of the box across widely varying materials and

computational resolutions without parameter tuning. As an implicit MPM

timestepper accelerated by a custom-designed Galerkin multigrid wrapped

in a quasi-Newton solver, HOT is both highly parallelizable and robustly

convergent. As we show in our analysis, HOT maintains consistent and ef-

ficient performance even as we grow stiffness, increase deformation, and

vary materials over a wide range of finite strain, elastodynamic, and plastic

examples. Through careful benchmark ablation studies, we compare the ef-

fectiveness of HOT against seemingly plausible alternative combinations of

MPM with standard multigrid and other Newton-Krylov models. We show

how these alternative designs result in severe issues and poor performance.

In contrast, HOT outperforms existing state-of-the-art, heavily optimized

implicit MPM codes with an up to 10× performance speedup across a wide

range of challenging benchmark test simulations.
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1 INTRODUCTION

The material point method (MPM) is a versatile and highly effec-

tive approach for simulating widely varying material behaviors

ranging from stiff elastodynamics to viscous flows (e.g., see Fig-

ures 12 and 14) in a common framework. As such, MPM offers

the promise of a single unified, consistent, and predictive solver

for simulating continuum dynamics across diverse and potentially

heterogenous materials. However, to reach this promise, signifi-

cant hurdles remain. Most significantly, obtaining accurate, consis-

tent, and robust solutions within a practical time budget is severely

challenged by small timestep restrictions. This is most evidenced

as we vary material properties, amounts of deformation, and/or

simulate heterogenous systems (Table 1).

Although MPM’s Eulerian grid resolution limits timestep sizes

to the CFL limit1 [Fang et al. 2018], the explicit time integra-

tion methods commonly employed for MPM often require much

smaller timesteps. In particular, the stable timestep sizes of explicit

MPM time integration methods remain several orders of magni-

tude below the CFL limit when simulating stiff materials like metal

(see Table 1) and snow [Fang et al. 2018; Stomakhin et al. 2013]. A

natural solution then is to apply implicit numerical time integra-

tion methods, such as implicit Euler, which can enable larger stable

timestep sizes for MPM [Fang et al. 2019; Gast et al. 2015]. How-

ever, doing so requires solving challenging and potentially expen-

sive nonlinear systems at every timestep.

1.1 Challenges to Implicit MPM Timestepping

Although implicit MPM timestepping methods in engineering pro-

vide larger step sizes [Cummins and Brackbill 2002; Guilkey and

Weiss 2001, 2003; Nair and Roy 2012], they do not target CFL-rate

timestep sizes as is typically desired in graphics applications. Thus,

1A particle cannot travel more than one grid cell per timestep, although in practice,
a CFL number of 0.6 is often used [Gast et al. 2015].
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Fig. 1. Hierarchical Optimization Time Integration (HOT) is naturally

suited for simulating dynamic contact of heterogeneous solid materials

with substantial stiffness discrepancy. In this bar twisting example, com-

pared across all available state-of-the-art, heavily optimized implicit MPM

codes, HOT achieves more than 4× speedup overall and up to 10× per-

frame. HOT obtains rapid convergence without need for per-example hand

tuning of either outer nonlinear solver nor inner linear solver parameters.

in engineering, the standard Newton method is often directly ap-

plied without globalizations to solve the nonlinear timestepping

problem [Charlton et al. 2017; Nair and Roy 2012]; with larger

timestep sizes near the CFL limit, the nonlinearity grows and the

first-order Taylor expansion becomes less accurate, which can then

make the Newton method unstable and even explode. More re-

cently, state-of-the-art implicit MPM methods in graphics have

been introduced that enable timesteps closer to the CFL limit.

Gast et al. [2015] introduced a globalized Newton-Krylov method

for MPM, whereas Fang et al. [2019] extended ADMM to solve

implicit MPM timesteps. However, their convergence and perfor-

mance are limited for simulations involving heterogeneous and/or

stiff materials, leading to slow computations and inconsistent, un-

predictable, and even unstable results. Although ADMM [Fang

et al. 2019] for MPM is attractively efficient, the underlying ADMM

algorithm has no guarantee of convergence for nonconvex and

nonlinear continua problems. In practice, it can at best achieve lin-

ear convergence. As we show in Section 7, when able to converge,

the ADMM solver is thus exceedingly slow to reach reasonable

solutions.

However, inexact Newton-Krylov methods exemplified by Gast

et al. [2015] are seemingly ideal for solving implicit MPM prob-

lems where the sparsity structure of the Hessian can change at ev-

ery timestep. Key to the efficiency and stability of these methods

are the inexact iterative linear solve of each inner Newton iterate.

In turn, this requires setting a tolerance to terminate each such

inner loop. However, no single tolerance setting works across ex-

amples. Instead, suitable tolerances can and will vary over many

orders of magnitude per example and so must be experimentally

determined as we change setups over many expensive, successive

simulation trials. Otherwise, as we demonstrate in Section 7 and in

our supplemental material, a tolerance suitable for one simulated

scene will generate extremely slow solves, nonphysical artifacts,

instabilities, and even explosions in other simulations.

Next, we observe that Newton-Krylov methods employing

Jacobi or Gauss-Seidel preconditioned CG solvers significantly

lose efficiency from deteriorating convergence as material stiff-

nesses increase (Table 3). In such cases, multigrid preconditioners

Table 1. Parameters for Solid Materials Studied in This Article

Density Young’s Poisson’s Yield
(kg/m3) Modulus (Pa) Ratio Stress (Pa)

Tissue 300−1,000 1 × 102−1 × 106 0.4−0.5 —
Rubber 1,000−2,500 1 × 106−5 × 107 0.3−0.5 —
Bone 800−2,000 7 × 107−3 × 1010 0.1−0.4 —
PVC 1,000 − 2,000 2 × 109−4 × 109 0.3−0.4 1 × 107−4 × 107

Metal 5,00−20,000 1 × 1010−4 × 1011 0.2−0.4 2 × 108−2 × 109

Ceramic 2,000−6,000 1 × 1011−4 × 1011 0.2−0.4 —

[Tamstorf et al. 2015; Wang et al. 2018; Zhu et al. 2010] are often

effective solutions, as the underlying hierarchy allows aggregation

of multiple approximations of the system matrix inverse across

a range of resolutions. This accelerates information propagation

across the simulation domain and thereby improves convergence.

We focus on h-multigrid that coarsens the degrees of freedom

for coarser levels to reduce the computational cost. H-multigrid

has been investigated for MPM by Cummings and Brackbill [2002]

via merging particles level by level. However, they conclude that it

performs similarly to Jacobi preconditioners, which indicates that

building a multigrid hierarchy for MPM is challenging. This may

be because merging particles lacks error bounds and can poten-

tially make DOF coarsening inconsistent. However, as we discuss

in Section 7.3, although building each coarser-level system using

the original particles without merging improves convergence of

inner linear solves, the computational overhead of this seemingly

reasonable hierarchy still does not reduce the overall cost of MPM

simulations. This is because (1) construction and evaluation of sys-

tem matrices in each coarser level can be as expensive as the fine-

level computation, and (2) at the domain boundaries, the coarsen-

ing of DOFs may not be consistently defined between matrices and

right-hand side vectors of the coarse-level systems.

1.2 Hierarchical Optimization Time Integration

We propose the Hierarchical Optimization Time Integration (HOT)

algorithm to address these existing limitations and so provide “out-

of-the-box” efficient MPM simulation. To enable consistent, au-

tomatic termination of both outer Newton iterations and inner

inexact linear solves across simulation types, we extend the char-

acteristic norm (CN) [Li et al. 2019; Zhu et al. 2018] to inhomoge-

nous MPM materials. As we show in Section 5.2 and Table 1 in

our supplemental material, this produces consistent, automatic,

high-quality results for inexact Newton-Krylov simulations that

match the quality and timing of the best hand-tuned results of Gast

et al. [2015].

Next, to obtain both improved convergence and performance for

MPM systems with multigrid, we develop a new, MPM-customized

hierarchy. We begin by embedding progressively finer-level grid

nodes into coarser-level nodes via the MPM kernel. We then con-

struct coarse-level matrices directly from their immediate finer-

level matrix entries. This avoids computation and storage of each

coarse level’s geometric information automatically handles bound-

ary conditions and enables sparsity by our choice of MPM embed-

ding kernel. This resulting multigrid hierarchy then retains im-

proved convergence while significantly improving performance

(see Figure 19).
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While offering a significant gain, our MPM-customized

multigrid still requires explicit matrix construction. In many elas-

todynamic simulation codes, such matrix construction costs are

alleviated by applying just a fixed number of Newton iterations

irrespective of convergence. However, this strategy is neither suit-

able for artistic control nor engineering, as it sacrifices consistency

and accuracy for efficiency—for example, it can produce artificially

softened materials, numerically damped dynamics, and inaccu-

rate predictions. Following recent developments in mesh-based

elasticity methods [Li et al. 2019], we instead alleviate matrix

construction costs by constructing our hierarchy just once per

timestep but then apply it as an efficient, second-order initializer

(with one V-cycle per iteration) inside a quasi-Newton solver.

1.3 Contributions

HOT’s inner multigrid provides efficient second-order informa-

tion, whereas its outer quasi-Newton low-rank updates provide

efficient curvature updates. This enables HOT to maintain consis-

tent, robust output with a significant speedup in performance—

even as we grow stiffness, increase deformation, and widely vary

materials across the simulation domain. The combined application

of node-embedding multigrid, automatic termination, and cus-

tomized integration of multigrid V-cycle into the quasi-Newton

loop jointly enables HOT’s significant and consistent performance

gains. In summary, our contributions are the following:

• We derive a novel MPM-specific multigrid model exploit-

ing the regularity of the background grid and construct a

Galerkin coarsening operator consistent with rediscretiza-

tion via particle quadrature. To our knowledge, this is the

first time Galerkin h-multigrid is applied for the MPM dis-

cretization of nonlinear elasticity with significant perfor-

mance gain.

• We develop a new, node-wise CN [Li et al. 2019; Zhu et al.

2018] measure for MPM. Node-wise CN enables unified tol-

erancing across varying simulation resolutions, material pa-

rameters, and heterogenous systems for both termination of

inner solves in inexact Newton and convergence determina-

tion across methods. CN likewise ensures a fair comparison

across all solvers in our experiments.

• We construct HOT—an out-of-the-box implicit MPM time

integrator—by employing our multigrid as an efficient inner

initializer inside a performant quasi-Newton MPM timestep

solve. A carefully designed set of algorithmic choices cus-

tomized for MPM then achieves both efficiency and accuracy

that we demonstrate on a diverse range of numerically chal-

lenging simulations.

• We perform and analyze extensive benchmark studies on

challenging, industrial-scale simulations to determine the

best data structure and algorithmic choices for MPM numer-

ical time integration. Across these simulation examples, we

compare HOT against a wide range of alternative, seemingly

reasonable algorithmic choices to demonstrate their pitfalls

and the carefully designed advantages of HOT.

Across a wide range of challenging elastodynamic and plastic

test simulations, we show (see Section 7) that HOT without the

need of any parameter tuning outperforms existing state-of-the-art,

Fig. 2. Stiffness comparisons. A stiff lucky cat is smashed onto sheets

with different Young’s moduli starting from aluminum (6.9 Gpa, with yield

stress 240 Mpa) and then scaled down by 10, 100, and 1,000. Different stiff-

ness gives drastically different behavior for elastoplastic materials.

heavily optimized implicit MPM codes. All alternative methods ei-

ther exhibit significantly slower performance or else suffer from

large variations across simulated examples. Our study then sug-

gests HOT as a robust, unified MPM time integrator with fast con-

vergence and outstanding efficiency of up to 10× speedup to best

alternatives across a wide range of possible simulation input.

2 RELATED WORK

2.1 Material Point Method

MPM was introduced by Sulsky et al. [1994] as a generalization

of FLIP [Brackbill et al. 1988; Zhu and Bridson 2005] to solid me-

chanics. MPM’s convergence was demonstrated computationally

and explained theoretically by Steffen et al. [2008] with a smooth

(e.g., quadratic B-spline) basis for grid solutions. This was further

verified by Wallstedt [2009] with manufactured solutions.

In graphics, MPM has been applied to model a diverse array

of materials and behaviors. These include the modeling of snow

[Stomakhin et al. 2013], sand [Daviet and Bertails-Descoubes

2016; Gao et al. 2018b; Klár et al. 2016; Yue et al. 2018], foam [Fang

et al. 2019; Ram et al. 2015; Yue et al. 2015], cloth [Guo et al. 2018;

Jiang et al. 2017a], rods [Fei et al. 2019; Han et al. 2019], mixtures

[Nagasawa et al. 2019], fracture [Wang et al. 2019; Wolper et al.

2019; Wretborn et al. 2017], multiphase flow [Gao et al. 2018a;

Pradhana et al. 2017; Stomakhin et al. 2014], and even baking [Ding

et al. 2019]. The coupling between softer MPM materials and rigid

bodies has also been explored in both explicit [Hu et al. 2018] and

implicit [Ding and Schroeder 2019] settings. Although rigid body

dynamics provides an efficient approximation of extremely stiff

materials for many applications, it is not suitable for capturing

elastoplastic yielding nor for computing accurate mechanical

responses.

Implicit time integration, such as via implicit Euler, is often the

preferred choice for timestepping stiff materials and large defor-

mations due to explicit integration’s often unacceptable sound-

speed CFL restriction [Fang et al. 2018]. Early implicit MPM

[Guilkey and Weiss 2001, 2003] solutions applied Newmark time

integration, demonstrating improved stability and solution accu-

racy over explicit MPM when compared to validated finite ele-

ment solutions. More recently, Nair and Roy [2012] and Charlton

et al. [2017] further investigated implicit generalized interpola-

tion MPM for hyperelasticity and elastoplasticity, respectively.
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Fig. 3. ArmaCat. A soft armadillo and a stiff lucky cat are both dropped

onto an elastic trampoline, producing interesting interactions between

them.

However, research in graphics has explored force linearization

[Stomakhin et al. 2013] and optimization-stabilized Newton-

Raphson solutions for both implicit Euler [Gast et al. 2015] and

implicit midpoint [Jiang et al. 2017b] to achieve larger timestep

sizes.

2.2 Optimization and Nonlinear Integrators

Numerical integration of differential systems is often reformulated

variationally to be solved as a minimization problem. This allows

methods to often achieve improved accuracy, robustness, and per-

formance by taking advantage of available numerical optimization

techniques. In computer graphics, simulation methods are increas-

ingly applying this strategy to simulate both fluid [Batty et al. 2007;

Weiler et al. 2016] and solid [Bouaziz et al. 2014; Dinev et al. 2018a,

2018b; Gast et al. 2015; Overby et al. 2017; Wang and Yang 2016]

dynamics. For optimizations originating from nonlinear problems,

Newton-type methods are generally the standard mechanism, de-

livering quadratic convergence near solutions. However, when the

initial guess is far from a solution, Newton’s method may fail to

provide a reasonable search direction, as the Hessian can be indef-

inite [Li et al. 2019; Liu et al. 2017; Smith et al. 2018]. Teran et al.

[2005] propose a positive definite fix to project the Hessian to a

symmetric positive definite form to guarantee a descent direction

can be found; we compare with this method and further augment

it with a backtracking line search to ensure energy decrease. We

refer to this method as projected Newton (PN). Since PN requires

a potential energy to be defined for the timestepping, we lag the

plasticity update and only perform it once per timestep so that

our system stays integrable. This is unlike Charlton et al. [2017],

Klár et al. [2016], and Fang et al. [2019], who handle plasticity fully

implicitly.

In each PN iteration, a linear system is solved. For MPM simula-

tions that generally involve a large number of nodes and can have

changing sparsity, Krylov iterative linear solvers such as conjugate

gradient (CG) are generally preferred over direct factorization. To

improve CG convergence, different preconditioning options exist.

We apply the most efficient and straightforward Jacobi (diagonal)

preconditioner as our baseline PN method, which we refer as PN-

PCG. To further minimize memory consumption and access cost,

existing implicit MPM methods in graphics apply matrix-free PN-

PCG (PN-PCG(MF)) without explicitly constructing system matri-

ces. However, when many CG iterations are required, such as for

large timestep sizes and/or stiff materials, matrix free is no longer

necessarily a better option than matrix construction (Section 7).

This is because the cost of recomputing the intermediate variables

becomes more dominant, although such a cost could be signifi-

cantly reduced if the matrix is explicitly constructed only once at

the beginning of the timestep. Convergence can then be further

improved with multigrid preconditioning. However, doing so for

MPM presents new challenges.

2.3 Multigrid Methods

Multigrid methods [Briggs et al. 2000] are widely employed to ac-

celerate both solid [McAdams et al. 2011; Tamstorf et al. 2015;

Tielen et al. 2019; Wang et al. 2018; Xian et al. 2019; Zhu et al. 2010]

and fluid [Aanjaneya et al. 2017; Fidkowski et al. 2005; Gao et al.

2018a; McAdams et al. 2010; Setaluri et al. 2014; Zhang and Bridson

2014; Zhang et al. 2015, 2016] dynamics simulations. Here, multi-

level structures allow information of computational cells to better

propagate, making multigrid methods highly efficient for systems

with long-range energy responses and/or high stiffnesses. Unlike

p-multigrid [Fidkowski et al. 2005; Tielen et al. 2019] methods that

apply higher-order shape functions with same DOFs to improve

convergence, h-multigrid methods construct hierarchies of coarser

DOF models with potentially lower computational cost.

H-multigrid is generally categorized as geometric or algebraic.

Unlike algebraic multigrid, geometric multigrid constructs coarse-

level system matrices from coarsened grids or meshes [Stüben

2001]. However, the mismatch at the irregular boundaries due to

geometric coarsening can require special treatment to ensure con-

vergence improvement (e.g., extra smoothing at boundaries as in

McAdam et al. [2010]). Alternately, Chentanez and Muller [2011]

demonstrate that with a volume weighted discretization, robust

results can be obtained without additional smoothing at bound-

aries. However, Ando et al. [2015] derive a multiresolution pres-

sure solver from a variational framework that handles boundaries

using signed-distance functions. Cummings and Brackbill [2002]

propose a geometric multigrid preconditioned Newton-Krylov im-

plicit MPM method that resamples particles for coarser levels.

However, they conclude that such multigrid preconditioning per-

forms similarly to Jacobi preconditioning; this is consistent with

our analysis of geometric multigrid in Section 7.

However, Galerkin multigrid [Strang and Aarikka 1986] auto-

matically handles boundary conditions by projection. Yet smooth

projection matrices often deteriorate sparsity with large increases

in the nonzero entries in coarse-level systems. Xian et al. [2019]

designed their special Galerkin projection criterion based on skin-

ning space coordinates with piecewise constant weights to main-

tain sparsity, but their projection could potentially lead to singu-

lar coarser-level matrices, and thus extra care needs to be taken.

In our work, we derive prolongation and restriction operators via

node embedding. Our resulting model is then consistent with an

MPM-customized Galerkin multigrid while, due to the regularity

of the MPM grid, our resulting coarse-level matrices both maintain

sparsity via an appropriate choice of kernel and are full rank.

As in Ferstl et al. [2014], McAdams et al. [2011], and Zhang et al.

[2016], a natural approach would then be to apply our multigrid

as a preconditioner in a Krylov solver. However, as demonstrated

in our benchmark experiments, this straightforward application
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would not outperform existing diagonally preconditioned alterna-

tives (PN-PCG) because of the repeated expense of hierarchy re-

construction at each Newton iterate. Instead, we develop HOT by

applying our multigrid model as an efficient inner initializer within

a quasi-Newton solver.

2.4 Quasi-Newton Methods

Quasi-Newton methods such as L-BFGS have long been applied

for simulating elastica [Deuflhard 2011]. L-BFGS can be highly

effective for minimizing potentials. However, an especially good

choice of initializer is required and makes an enormous difference

in convergence and efficiency [Nocedal and Wright 2006]. Directly

applying a lagged Hessian at the beginning of each timestep is of

course the most straightforward option that effectively introduces

second-order information [Brown and Brune 2013]; unfortunately,

it is generally a too costly option with limitations in terms of scal-

ability. Liu et al. [2017] proposed to instead invert the Laplacian

matrix that approximates the rest-shape Hessian as the initializer.

This provides better scalability and more efficient evaluations,

but convergence speed drops quickly in nonuniform deformation

cases [Li et al. 2019]. Most recently Li et al. [2019] proposed a

highly efficient domain-decomposed initializer for mesh-based FE

that leverage start of timestep Hessians—providing both scalability

and fast convergence in challenging elastodynamic simulations.

For the MPM setting, inexact rather than direct methods are

required to approximate the system Hessian given the scale and

changing sparsity patterns of MPM simulations. Following Li et al.

[2019], HOT applies our new multigrid as an inner initializer for

L-BFGS to build an efficient method that outperforms or closely

matches best-per-example prior methods across all tested cases on

state-of-the-art, heavily optimized implicit MPM codes. Unlike in

the work of Wen and Goldfarb [2009] that requires many configu-

ration parameters to alternate between multigrid and single-level

solves and uses L-BFGS as the solver for certain multigrid levels,

HOT consistently applies V-cycles on our node-embedding multi-

grid constructed from the projected Hessian [Teran et al. 2005] as

the inner initializer, without the need of any parameter tuning.

3 PROBLEM STATEMENT AND PRELIMINARIES

3.1 Optimization-Based Implicit MPM

MPM assembles a hybrid Lagrangian-Eulerian discretization of dy-

namics. A background Cartesian grid acts as the computational

mesh while material states are tracked on particles. In the follow-

ing, we apply subscripts p,q for particles and i, j,k for grid quan-

tities, respectively. We then remove subscripts entirely, as in ζ , to

denote vectors constructed by concatenating nodal quantities ζi

over all grid nodes. Superscripts n, and n + 1 distinguish quanti-

ties at timesteps tn and tn+1. An implicit MPM timestep with im-

plicit Euler from tn to tn+1 is performed by applying the following

operation sequence:

Particles-to-grid (P2G) projection: Particle massesmn
p and veloc-

ities vn
p are transferred to the grid’s nodal masses mn

i and

velocities vn
i by APIC [Jiang et al. 2015].

Grid time step: Nodal velocity increments, Δvi , are computed

by minimizing implicit Euler’s incremental potential in (1)

Fig. 4. Boxes. A metal box is concatenated with two elastic boxes on both

sides. As the sphere keeps pushing the metal box downward, the elastic

boxes end up being torn apart.

and are then applied to update nodal velocities by vn+1
i =

vn
i + Δvi .

Grid-to-particles (G2P) interpolation: Particle velocities vn+1
p are

interpolated from vn+1
i by APIC.

Particle strain-stress update: Particle strains (e.g., deformation

gradients Fp ) are updated by the velocity gradient ∇v via the

updated Lagrangian. Where appropriate, inelasticity is like-

wise enforced through per-particle strain modification [Gao

et al. 2017; Stomakhin et al. 2013].

Particle advection: Particle positions are advected by vn+1
p .

Here we focus on developing an efficient and robust nonlinear

solver for the preceding MPM Grid timestep operation. All other

operations are standard for MPM (see Jiang et al. [2016]).

Assuming an MPM nodal-position-dependent potential energy

Φ(x) (e.g., a hyperelastic energy), Gast et al. [2015] observe that

minimization of

E (Δv) =
∑

i

1

2
mn

i ‖Δvi ‖2 + Φ
(
xn + Δt (vn + Δv)

)
(1)

subject to proper boundary conditions is equivalent to solving the

MPM implicit Euler update fi (xn
i + Δtvn+1

i ) = (vn+1
i − vn

i )mn
i /Δt ,

where fi is the implicit nodal force. Minimization of a correspond-

ing incremental potential for the mesh-based elasticity has been

widely explored for stable implicit Euler timestepping [Bouaziz

et al. 2014; Li et al. 2019; Liu et al. 2017; Overby et al. 2017].

For MPM, however, a critical difference is that nodal positions xi

are virtually displaced from the Eulerian grid during the implicit

solve and are then reset to an empty Cartesian scratchpad. Signif-

icantly, across timesteps, the system matrix can change sparsity

pattern. This changing sparsity, together with large MPM system

sizes (where more than 100K DOFs are common), generally moti-

vate the application of matrix-free Newton-Krylov methods rather

than direct factorization in existing MPM codes.

3.2 Inexact Newton-Krylov Methods

To minimize (1) with Newton-Krylov methods, further compu-

tational savings can be achieved by employing inexact Newton

where computational effort in early Newton iterations can be

saved by inexactly solving the linear system. For example, Gast

et al. [2015] apply the L2 norm of the incremental potential’s gradi-

ent to adaptively terminate Krylov iterations. However, Gast et al.

[2015] mainly target softer materials. However, more generally,

materials often have large material stiffnesses, such as Young’s at
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ALGORITHM 1: Inexact Newton-Krylov Method

Given: E , ϵ

Output: Δvn

Initialize and Precompute:

i ← 1, Δv1 ← 0

д1 ← ∇E (Δv1) // E is defined in Equation (1)

while scaledL2norm(дi ) > ϵ
√

nnode do // termination criteria (Sect-

ion 5.2)

Pi ← projectHessian(∇2E (Δvi )) // [Teran et al. 2005]

k ← min(0.5,

√
max(

√
дT

i Pдi , τ )) // adaptive inexactness (Sect-

ion 5.3)

pi ← ConjugateGradient(Pi , 0, −дi , k ) // k as relative tolerance

α ← LineSearch(Δvi , 1, pi , E ) // backtracking line search

Δvi+1 ← Δvi + αpi

дi+1 ← ∇E (Δvi+1)
i ← i + 1

end while

Δvn ← Δvi

109 for the metal wheel in Figure 12. It becomes even more chal-

lenging when materials with widely varying stiffnesses interact

with each other. In these cases, the inexact Newton strategy in Gast

et al. [2015] can simply fail to converge in practical time, such as

in our experiments for the scenes in Figures 1 and 10.

This observation has motivated the question as to whether an

early termination criterion for Newton-type iterations can be com-

puted to obtain visually consistent and stable results across vary-

ing simulation inputs. Li et al. [2019] extend the CN from distortion

optimization [Zhu et al. 2018] to elastodynamics and demonstrate

its capability to obtain consistent, relative tolerance settings across

a wide set of elastic simulation examples over a range of material

moduli and mesh resolutions. However, for a scene with materi-

als with drastically different stiffness parameters, the averaging

L2 measure will not suffice to capture the multiscale incremental

potential gradient in a balanced manner.

We thus propose an extended scaled CN to support multima-

terial applications in MPM. Incremental potential gradients are

nonuniformly scaled so that multiscale residuals can be effectively

resolved. We apply this new CN to both terminate outer Newton

iterations and improve the inexact Newton iterations in our base-

line PN solver. See Algorithm 1 for our inexact Newton; details are

in Section 5.

With extended CN and improved inexact Newton, iterative

methods can still suffer from ill conditioning from stiff materials

and so we require preconditioning. Unfortunately, incomplete

Cholesky is not suitable, as elastodynamic system Hessians

are not M-matrices [Kershaw 1978], leading us to multigrid

strategies. However, multigrid construction costs may not be

well compensated by the resulting convergence improvement

with Newton-Krylov. We thus apply our custom MPM multigrid,

next constructed in Section 4, as an inner initializer inside our

quasi-Newton loop (see Section 5).

4 MPM MULTIGRID

We propose to construct our hierarchy by embedding finer-

level grids into the coarser-level grids analogously to MPM’s

Fig. 5. Boards. A granular flow is dropped onto boards with varying

Young’s moduli, generating coupled dynamics.

embedding of particles into grid nodes. Then by explicitly stor-

ing the system matrix, we progressively constructing coarser-

level matrices directly from the adjacent finer-level matrix entries,

avoiding the need to compute or store any coarser-level geometric

information. We next show that our multigrid is consistent with

Galerkin multigrid where boundary conditions are automatically

handled, and by selecting different node-embedding kernels, we

support flexible control on sparsity.

4.1 Node-Embedding Multigrid Derivation

We begin with an M-level multigrid hierarchy. We denote level

0 and level M − 1 as the finest and coarsest levels, respectively.

System matrices are constructed at each level with prolongation,

Pm+1
m , and restriction operators, Rm+1

m , between adjacent levelsm
andm + 1.

We illustrate the construction of our restriction and prolonga-

tion operators by considering operations between levels 0 and 1.

Nodal forces in the finest level are

f0
i = −

∑
p

Vp
∂ϕ (xp )

∂x0
i

= −
∑

p

Vp Pp FT
p ∇ω0

ip . (2)

Here, Vp is the initial particle volume, ϕ is the energy density

function, Pp is the first Piola-Kirchhoff stress, Fp is the deforma-

tion gradient, and ωip are corresponding particle-grid interaction

weights.

In the multigrid hierarchy, residuals, following forces, are re-

stricted from finer to coarser levels. Forces at nodes j in the next

level are then f1
j = −

∑
p Vp

∂ϕ (xp )

∂x1
j

. Embedding finer-level nodes

to coarser-level nodes, we then can simply apply the chain rule,

converting derivatives evaluated at a coarse node to those already

available at the finer level:

f1
j = −

∑
i

∑
p

Vp

( ∂x0
i

∂x1
j

)T ∂ϕ (xp )

∂x0
i

=
∑

i

( ∂x0
i

∂x1
j

)T
f0
i . (3)

This gives our restriction operation as f1 = R1
0f0 with R1

0 =

( ∂x0

∂x1 )T .

Prolongation is correspondingly given by the transpose P1
0 =

(R1
0 )T . Recalling that MPM particle velocities vp are interpolated
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Fig. 6. Geometric equivalence. Left: In the finest level, particles’ properties

are transferred to the grid nodes via the B-spline quadratic weighting func-

tion. Middle: Then the finer nodes transfer information to coarser nodes

via linear embedding relationships—based on which we perform Galerkin

coarsening. Right: Galerkin coarsening can then be reinterpreted as a new

weighting function, with a smaller kernel width, connecting coarser nodes

directly with the particles.

from grid node velocities vi as vp =
∑

i wip vi , we have

v0
j =
∑

i

∂x0
i

∂x1
j

v1
i =
∑

i

(R1
0 )Tji v1

i , (4)

giving us v0 = P1
0 v1 = (R1

0 )T v1.

For matrix coarsening, we similarly can compute the second-

order derivative of (1) w.r.t. x1. Applying the chain rule, with x0 as

intermediate variable, we obtain

(H1)jk =
∂f1

j

∂x1
k

=
∑

l

∂
∑

i

(
∂x0

i

∂x1
j

)T
f0
i

∂x0
l

∂x0
l

∂x1
k

=
∑

i

∑
l

( ∂x0
i

∂x1
j

)T
(H0)il

∂x0
l

∂x1
k

.

(5)

Here, H0 is the Hessian of (1) w.r.t. x0. We then have the Galerkin

operator

H1 = R1
0H0P1

0 , (6)

confirming our construction is consistent with Galerkin multigrid.

Dirichlet boundary conditions are then resolved at all levels by

projection of the corresponding rows and columns of the system

matrix and entries in the right-hand side.

4.2 Geometric Multigrid Perspective and Kernel
Selection

Our multigrid is now complete up to our choice of embedding ker-

nel, ∂x0

∂x1 , and MPM particle-grid kernel, ωip . A careful choice of

kernels enables us to maintain sparsity as we coarsen. This allows

us to improve both convergence and cost. We apply MPM kernels

for our node embedding. Convolution with the particle-grid ker-

nel can then be viewed as a direct embedding of our finest-level

particles into coarser-level grids. This provides a geometric multi-

grid perspective where we can consider coarse grid matrices as

constructed from fine particle quadratures. We next apply this per-

spective to select our multigrid kernels.

Fig. 7. Kernel width. The width of our geometric weighting function,

equivalently in our algebraic derivation, changes with level increase. For

linear embedding (our choice for HOT), width becomes smaller with coars-

ening, whereas for quadratic embedding, width becomes larger but with

an upper bound at 2.

We start with a direct MPM derivation defining nodal forces at

level 1:

f1
j = −

∑
p

Vp Pp FT
p ∇ω1

jp . (7)

Compare this with a reformulation of (3) where we apply our

newly defined restriction operator:

f1
j = −

∑
p

Vp Pp FT
p
�
�

∑
i

(R1
0 )ji∇ω0

ip
�
�
. (8)

Here, particle-grid weight gradients between level 1 and particles

are now given by
∑

i (R1
0 )ji∇ω0

ip , and our multigrid obtains a sim-

ple geometric interpretation as illustrated in Figure 6. As a geo-

metric multigrid, this provides a weighting function directly bridg-

ing between particles and coarse grid nodes. The grid itself can

be generated by traversing all particles to find occupied coarse

nodes. Similarly, a concatenation of prolongation operators for

each coarse level, right multiplied by the original weight gradi-

ent, gives us the new weight gradients required in each successive

level. In turn, with this weight gradient, the Hessian matrix can

be defined to complete the geometric multigrid model. We use the

corresponding weighting function to plot curves in Figure 7.

For HOT, we apply B-spline quadratic weighting for our base

particle-grid kernel and choose the linear kernel for our embed-

ding. The latter defines our prolongation and restriction opera-

tors between adjacent levels in the hierarchy. With this choice,

the stencil size of our coarser-level systems become progressively

smaller, providing better sparsity. As shown in Figure 7 (left), ker-

nel width reduces from 3Δx to 2Δx as levels increase. An alterna-

tive would be to uniformly apply the B-spline quadratic weight-

ing for all kernels. However, stencil size would then grow as we

coarsen (c.f. Figure 7 (right)), making it computationally less at-

tractive (see Table 2 in our supplemental material for the com-

parison). Likewise, direct geometric multigrid, where particles are

directly coarsened, also exhibits impractical fill-in as stencil sizes

grow with coarsening. For example, see Figure 8, where we com-

pare the matrix sparsity patterns for the ArmaCat simulation in

Figure 3.
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Fig. 8. Sparsity pattern. Our MPM multigrid system matrices gain better

sparsity as levels increase because stencil sizes decrease. Left and middle:

Our level-0 and level-4 matrices for the ArmaCat simulation in Figure 3.

Right: Direct geometric multigrid generates denser matrices for increas-

ingly coarse levels, here shown at level 4 for the same simulation. Note

that although in simulation we only used a three-level multigrid, here we

illustrate the sparsity patterns with five levels for visual clarity.

5 HIERARCHICAL OPTIMIZATION TIME
INTEGRATION

Our newly constructed MPM multigrid structure can be used as

a preconditioner by applying one V-cycle (Algorithm 2) per it-

eration for a CG solver to achieve superior convergence in a

positive-definite fixed, inexact Newton method. In the following,

we denote this approach as “projected Newton, multigrid precon-

ditioned conjugate gradient,” or PN-MGPCG. However, in practice,

the cost of reconstructing the multigrid hierarchy at each New-

ton iteration of PN-MGPCG is not well compensated by the con-

vergence improvement, providing only little or moderate speedup

compared to a baseline projected Newton PCG solver (PN-PCG)

(see Figures 17 and 20) where a simple diagonal preconditioner is

applied to CG. This is because in PN-MGPCG, each outer iteration

(PN) requires reconstructing the multigrid matrices, and each in-

ner iteration (CG) performs one V-cycle. One reconstruction of the

multigrid matrices would take around 4× the time for one V-cycle

and over 20× the time for one Jacobi preconditioned PCG itera-

tion. Unlike the Poisson system in Eulerian fluids simulation, the

stiffnesses of elastodynamic systems are often not predictable, as

it varies a lot under different timestep sizes, deformation, and dy-

namics. Therefore, it is hard for PN-MGPCG to consistently well

accelerate performance in all timesteps.

5.1 Multigrid Initialized Quasi-Newton Method

Rather than applying MPM multigrid as a preconditioner for a

Krylov method (which can still both be slow and increasingly

expensive as we grow stiffness; see Figure 20), inspired by Li

et al. [2019], we apply our MPM multigrid as an inner initial-

izer for a modified L-BFGS solver. In the resulting hierarchical

method, multigrid then provides efficient second-order informa-

tion, whereas our outer quasi-Newton low-rank updates [Li et al.

2019] provide efficient curvature updates to maintain consistent

performance for timesteps with widely varying stiffness, deforma-

tions, and conditions. In turn, following recent developments, we

choose a start of timestep lagged model update [Brown and Brune

2013; Li et al. 2019]. We reconstruct our multgrid structure once at

the start of each timestep solve. This enables local second-order in-

formation to efficiently bootstrap curvature updates from the suc-

cessive light-weight, low-rank quasi-Newton iterations.

Fig. 9. Summary of HOT’s design choices.

ALGORITHM 2: Multigrid V-Cycle Preconditioner

Given: R, P, M
Input: b0, H

Output: u0

for m = 0, 1, . . . ,M − 2

um ← 0

um ← SymmetricGaussSeidel(Hm, um, bm )
bm+1 ← Rm+1

m (bm − Hmum )
end for

uM−1 ← ConjugateGradient(HM−1, uM−1, bM−1, 0.5)
for m = M − 2,M − 3, . . . , 0

um ← um + Pm+1
m um+1

um ← SymmetricGaussSeidel(Hm, um, bm )
end for

This completes the core specifications of our Hierarchical Op-

timization Time integrator algorithm. The HOT multigrid hierar-

chy is constructed at the beginning of each timestep. Then, for

each L-BFGS iteration, the multiplication of our initial Hessian

inverse approximation to the vector is applied by our multigrid

V-cycle. To ensure the symmetric positive definiteness of the V-

cycle operator, we apply colored symmetric Gauss-Seidel as the

smoother for finer levels and employ Jacobi preconditioned CG

solves for our coarsest-level system (see Algorithm 2). We apply

PCG for our coarsest level rather than a direct solve, as the sub-

tle convergence improvement overhead could not compensate for

the overhead of factorization (see Section 7.2). Weighted Jacobi is

effectively applied in Eulerian fluid simulation [Zhang et al. 2016]

as a smoother for multigrid; however, here, in testing, we observe

that determining proper weighting that obtains efficient or even

convergent behavior for nondiagonally dominant elastodynamic

Hessians is challenging. Similarly, we found Chebyshev smoothers

[Adams et al. 2003] impractical, as estimating reasonable upper

and lower eigenvalues of the system matrix introduces unaccept-

ably large overhead.

HOT’s curvature information is updated by low-rank secant up-

dates with window size w = 8, producing a new descent direc-

tion for line search at each L-BFGS iteration. Pseudocode for the

HOT method is presented in Algorithm 3. We analyze its perfor-

mance, consistency, and robustness in Section 7.2 with compar-

isons to state-of-the-art MPM solvers. In Figure 9, we highlight

design choices for HOT together with superficially reasonable al-

ternatives that we compare and analyze in Section 7.
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ALGORITHM 3: Hierarchical Optimization Time Integrator

Given: E , ϵ , w , R, P
Output: Δvn

Initialize and Precompute:

i ← 1, Δv1 ← 0

д1 ← ∇E (Δv1) // E is defined in Equation (1)

P1 ← projectHessian(∇2E (Δv1)) // [Teran et al. 2005]

H← buildMultigrid(P1, R, P) // Equation (6)

// Quasi-Newton loop to solve timestep n + 1:

while scaledL2norm(дi ) > ϵ
√

nnode do // termination criteria (Section

5.2)

q ← −дi

// L-BFGS low-rank update

for a = i − 1, i − 2, . . . , i −w // break if a < 1

sa ← Δva+1 − Δva, ya ← дa+1 − дa, ρa ← 1/((ya )T sa )
α a ← ρa (sa )T q

q ← q − α aya

end for

r ← V-cycle(q, H) // Algorithm 2

// L-BFGS low-rank update

for a = i −w, i −w + 1, . . . , i − 1 // skip (continue) until a ≥ 1

β ← ρa (ya )T r

r ← r + (α a − β )sa

end for

pi ← r

α ← LineSearch(Δvi , 1, pi , E ) // backtracking line search

Δvi+1 ← Δvi + αpi

дi+1 ← ∇E (Δvi+1)
i ← i + 1

end while

Δvn ← Δvi

5.2 Convergence Tolerance

To reliably obtain consistent results across heterogenous simula-

tions while saving computational effort, we extend the CN [Li et al.

2019; Zhu et al. 2018] from FE mesh to MPM discretization, taking

multimaterial domains into account. To simulate multiple mate-

rials with significantly varying material properties, coupled in a

single simulated system, the traditional averaging L2 measure fails

to characterize the multiscale incremental potential’s gradient.

For MPM, we thus first derive a node-wise CN in MPM dis-

cretization and then set tolerances with the L2 measure of the

node-wise CN scaled incremental potential gradient. Concretely,

we compute the norm of the stress derivative evaluated at the

undeformed configuration in the diagonal space, ξp = | | d P̂

d F̂
| |p , for

each particle p, and transfer this scalar field with mass weighting

and normalization to corresponding grid node quantities ξi . Here,

ξi is in units of J/m3 as P is in the unit of energy density and F is

unitless. We then compute a node-wise CN as

�iξi Δt , (9)

per node where �i characterizes discretization, ξi characterizes av-

eraged material stiffness per node, and Δt provides timestep scal-

ing. In mesh-based FE, �i is the area of the polyhedron formed

by the one-ring elements connecting to node i [Zhu et al. 2018].

For MPM, we correspondingly have �i = 24Δx2 from the uniform

Cartesian grid discretization.

Fig. 10. Rotating chain. A chain of alternating soft and stiff rings is rotated

until soft rings fracture, dynamically releasing the chain.

To check convergence, we scale each entry of the incremental

potential gradient vector g (in units of kg ·m/s as our optimiza-

tion variable is velocity) with the corresponding node-wise CN

computed in Equation (9), obtaining the unitless ĝ. Termination

queries then compare | |ĝ| | against ϵ
√
n, where n gives the num-

ber of active grid nodes and ϵ is the selected accuracy tolerance.

We confirm that when a single, uniform material is applied in the

simulation, our extended CN measure correctly reduces to the L2

measure of Li et al. [2019].

5.3 Inexact Linear Solves

We apply the preceding extended CN criterion to terminate outer

nonlinear solve iterates. Within each outer nonlinear iteration, in-

ner iterations are performed to solve the corresponding linear sys-

tem to a reasonable accuracy. For the first few Newton iterations

of an inexact Newton-Krylov solve, the initial nonlinear residuals

are generally far from convergence and so inexact linear solves

are preferred. As discussed in Gast et al. [2015], inexact linear

solves can significantly relieve the computational burden in large

timestep simulations. Thus, they set a relative tolerance k on the

energy norm
√
rT
0 Pr0, where P is the preconditioning matrix, of the

initial residual r0 = −∇E (Δvi ) for each linear solve in Newton iter-

ation i . Gast et al. [2015] use k = min(0.5,
√

max( | |∇E (Δvi ) | |,τ )),
where τ is a nonlinear tolerance, and perform CG iterations un-

til the current
√
rT Pr is smaller than k

√
rT
0 Pr0. This strategy can

be traced back to classical optimization strategies where setting

k = min(0.5,
√
| |∇E (Δvi ) | |) can be shown to yield superlinear con-

vergence [Nocedal and Wright 2006].

However, this approach is challenged when it comes to het-

erogeneous materials in two aspects. First, the L2 norm of the

incremental potential does not take into account its multiscale

nature, potentially providing too small relative tolerances for

stiff materials. Second, as discussed earlier, the nonlinear tol-

erance in Gast et al. [2015] is challenging to tune per example,

especially with stiff material models. Therefore, we modify

this inexact strategy for our baseline PN-PCG by applying

k = min(0.5,

√
max(

√
rT
0 Pr0,τ )) as the relative tolerance to

terminate CG iterations. Here, the preconditioning matrix P in

the energy norm
√
rT
0 Pr0 has the effect of locally scaling per-node
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residuals to account for varying material stiffnesses, whereas τ is

simply Li et al.’s [2019] tolerance on L2 measure characterizing

the most stiff material in the running scene, ensuring that our

tolerance will not be too small for stiffer materials.

HOT similarly exploits our inexact solving criterion for the

coarsest-level PCG during early L-BFGS iterations. Specifically, in

each V-cycle, we recursively restrict the right-hand side vector b0

to the coarsest level to obtain bm−1. We then set the tolerance for

the CG solver to 1/2
√

bT
m−1D−1

m−1bm−1, where Dm−1 is the diago-

nal matrix extracted from the system matrix at level m − 1. Note

that the same V-cycle and termination criterion is also adopted in

our PN-MGPCG. As L-BFGS iterations proceed, the norm of bm−1

decreases, leading to increasingly accurate solves at the coarsest

level. As demonstrated in Section 7, this reduces computational

effort, especially when the system matrices at the coarsest level

are not well conditioned.

6 IMPLEMENTATION

Accompanying this article, we open source all of our code includ-

ing scripts for running all presented examples with HOT and all

other implemented methods compared with in test code. ADMM

MPM [Fang et al. 2019] is separately available.2 Here we provide

remarks on the nontrivial implementation details that can signifi-

cantly influence performance.

Lock-free multithreading. For all particle-to-grid transfer op-

erations (including each matrix-vector multiplication in PN-

PCG(MF)), we adopt the highly optimized lock-free multithread-

ing from Fang et al. [2018]. This also enables the parallelization

of our colored symmetric Gauss Seidel smoother for the multigrid

V-cycle. All optimizations are thus consistently utilized (wherever

applicable) across all compared methods so that our timing com-

parisons more reliably reflect algorithmic advantages of HOT.

Sparse matrix storage. We apply the quadratic B-spline weight-

ing kernel for particle fine-grid transfers. The number of nonzero

entries per row of the system matrix at the finest level can then

be up to 5d , where d denotes dimension. In more coarsened levels,

the number of nonzero entries decreases due to the linear embed-

ding of nodes in our MPM multigrid, as can be seen from Figure 7.

Similarly, for our restriction/prolongation matrix, the number of

nonzero entries per row/column is 3d for linear kernel. Notice that

in all cases, the maximum number of nonzeros per row can be pre-

determined, and thus we employ diagonal storage format in our im-

plementation to store all three matrix types for accelerating matrix

computations.

Multigrid application. In our experiments (Section 7), our MPM

multigrid is tested both as a preconditioner for the CG solver in

each PN-MGPCG outer iteration, and as the inner initializer for

each L-BFGS iteration of HOT.

Prolongation and restriction. Our prolongation operator is de-

fined as in traditional particle-grid transfers in hybrid methods—

finer nodes are temporarily regarded as particles in the coarser

2https://github.com/squarefk/ziran2019.

Fig. 11. Faceless. We rotate the cap and then release the head of the “face-

less” mesh. Upon release, dynamic rotation and expansion follow. Here

we plot the computation time of each single timestep frame for HOT and

PN-PCG (both matrix based and matrix free). HOT outperforms across all

timestep solves during the simulation.

level. Spatial hashing is then applied to record the embedding re-

lation between finer- and coarser-grid nodes for efficiency.

7 RESULTS AND EVALUATION

7.1 Benchmark

Methods in comparison. We implement a common test-harness

code to enable the consistent evaluation comparisons between

HOT and other possible Newton-Krylov methods, such as PN-

PCG, PN-PCG(MF), and state-of-the-art (MF) from Gast et al.

[2015]. To ensure consistency, PN-PCG and PN-PCG(MF) adopt

our node-wise CN with the same tolerances. For Gast et al. [2015]

where a global tolerance for the residual norm is applied, we manu-

ally select the largest tolerance value (10−3) that produces artifact-

free results for all experiments. In addition to Gast et al. [2015], we

also compare to the ADMM-based state-of-the-art implicit MPM

method [Fang et al. 2019] on the faceless example to demonstrate

differences in the order of convergence (Figure 16). We note that

other than Gast et al. [2015] and Fang et al. [2019], all other meth-

ods in our study are applied here, to the best of our knowledge, for

the first time for MPM.

We continue our ablation study here on how our design choices

for HOT impact performance and convergence. We compare HOT

with other potential new MPM solvers that one may consider de-

signing, including (1) HOT-quadratic: HOT’s framework with the

quadratic (rather than linear) embedding kernel; (2) LBFGS-GMG:

L-BFGS with a more standard geometric multigrid as the initial-

izer; (3) PN-MGPCG: a Newton-Krylov solver replacing PN-PCG’s

Jacobi-preconditioned CG with HOT’s multigrid preconditioned

CG; (4) and an MPM extension of the quasi-Newton LBFGS-H

(FEM) from Li et al. [2019]. Note that unlike in Li et al. [2019]

where the LBFGS-H is based on fully factorizing the beginning

of timestep Hessian with a direct solver, here we only partially

invert the Hessian by conducting Jacobi preconditioned CG iter-

ations with adaptive terminating criteria identical to that of the

coarsest-level solve in HOT (Section 5.3). In other words, it is an

inexact LBFGS-H equivalent to a single-level HOT. We find that

this inexact LBFGS-H often leads to better performance than those

with direct solvers in large-scale problems.
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All methods in our ablation study together with Gast et al. [2015]

are implemented in C++ and consistently optimized (see Section 6).

Assembly and evaluations are parallelized with Intel TBB.

Simulation settings. Timestep sizes are set to min( 1
FPS , 0.6

Δx
vmax

)

throughout all simulations. Here, 0.6 is selected to fulfill the CFL

condition. We observe in our tests that a three-level multigrid pre-

conditioner with one symmetric Gauss-Seidel smoothing and an

inexact Jacobi PCG as our coarsest-level solver works best for both

HOT and PN-MGPCG. We observe that a window size of 8 for

LBFGS methods yields favorable overall performance. In our ex-

periments, across a wide range of scenes, ϵ = 10−7 delivers consis-

tent visual quality for all examples even when we vary materials

with widely changing stiffness, shapes, and deformations.

Fixed corotated elasticity (FCR) from Stomakhin et al. [2012]

is applied as our elasticity energy in all examples. In addition to

our scenes with purely elastic materials, Twist (Figure 1), Arma-

Cat (Figure 3), Chain (Figure 10), and Faceless (Figure 11), we also

test with plastic models, von Mises for Sauce (Figure 14) and for

metal in Wheel (Figure 12), the center box in Boxes (Figure 4), and

the bars in Donut (Figure 13), and granular flow [Stomakhin et al.

2013] in Boards (Figure 5).

We perform and analyze extensive benchmark studies on chal-

lenging simulation settings, where the material parameters are all

from real-world data, and most of them are heterogenous. This

not only significantly simplifies the material tuning procedure in

animation production but also helps to achieve realistic physical

behavior and intricate coupling between materials with varying

stiffness. Figure 2 demonstrates that simulating a scene with alu-

minum sheets with inappropriate material parameters could end

up getting unexpected behavior. See Table 1 for the physical pa-

rameters in daily life and Table 2 for material parameters used in

our benchmark examples.

Detailed timing statistics for all examples are assembled in Ta-

ble 1 and Table 2 from the supplemental material. As discussed in

Section 5.2, all evaluated methods in our ablation study are termi-

nated with the same tolerance computed from our extended CN

for fair comparisons across all examples.

7.2 Performance

We analyze relative performance of HOT in two sets of compar-

isons. First, we compare HOT against the existing state-of-the-art

implicit MPM methods [Fang et al. 2019; Gast et al. 2015]. Second,

we perform an extensive ablation study to highlight the effective-

ness of each of our design choices.

Comparison to state of the art. As discussed earlier, the perfor-

mance and quality of results from Gast et al. [2015] are highly

dependent, per example, on the choice of tolerance parameter.

Across many simulation runs we sought optimal settings for this

parameter to efficiently produce visually plausible, high-quality

outputs. However, we find that suitable nonlinear tolerances vary

extensively with different simulation conditions such as materials

and boundary conditions. For example, we found an ideal tolerance

for the Wheel example (Figure 12) at 102, whereas for the Faceless

example (Figure 11), 10−3 worked best. However, applying the 102

tolerance generates instabilities and even explosions for all other

examples (see Figure 1 in the supplemental material), whereas

Table 2. Material Parameters

Example Particle # Δx (m) Density (kg/m3) Young’s Modulus (Pa) ν

(Figure 1) Twist 230k 1 × 10−2 2 × 103 5 × 105/5 × 109 0.4

(Figure 4) Boxes† 805k 8 × 10−3 2 × 103/2.7 × 103 2 × 105/6.9 × 1010 0.33

(Figure 13) Donut† 247k 5.7 × 10−3 2 × 103/2.7 × 103 1 × 105/6.9 × 1010 0.33

(Figure 3) ArmaCat 403k 4 × 10−2 1 × 103/1 × 103/2.5 × 103 1 × 105/1 × 106/1 × 109 0.4/0.47/0.4

(Figure 10) Chain 308k 1 × 10−2 2 × 103/2 × 103 5 × 105/3 × 109 0.4

(Figure 5) Boards� 188k 7 × 10−3 1 × 103 1 × 105–1 × 108 0.33

(Figure 12) Wheel† 550k 5 × 10−3 2.7 × 103/2.7 × 103 1 × 105/6.9 × 1010 0.4/0.33

(Figure 11) Faceless 110k 1 × 10−2 2 × 103 5 × 104 0.3

(Figure 14) Sauce‡ 311k 1.5 × 10−2 2.7 × 103 2.1 × 105 0.33

The von Mises yield stress: †2.4 × 108 Pa; ‡720 Pa. �The plastic flow from Stom-
akhin et al. [2013], where singular values of the deformation gradient are clamped
into [0.99, 1.001].

using 10−3 tolerance produces extremely slow performance

especially for examples containing stiff materials (see Table 1 in

the supplemental material). As for ADMM MPM [Fang et al. 2019],

as it is a first-order method, we observe slow convergence. Thus,

we postpone detailed analysis to our convergence discussion

below (Section 7.3). In contrast, HOT requires no parameter

tuning. All results, timings, and animations presented here and in

the following were generated without parameter tuning using the

same input settings to the solver. As demonstrated they efficiently

converge to generate consistent visual quality output.

Ablation study. We start with the homogeneous “faceless” ex-

ample with a soft elastic material (E = 5 × 104 Pa); we rotate and

raise its head and then release. As shown in Figure 11, for this scene

with moderate system conditioning, HOT already outperforms the

two PN-PCG methods from our ablation set in almost every frame.

Here, there is already a nearly 2× average speedup of HOT for the

full simulation sequence compared to both the two PN-PCG varia-

tions, whereas the overall maximum speedup per frame is around

6×.

We then script a set of increasingly challenging stress-test sce-

narios across a wide range of material properties, object shapes,

and resolutions (e.g., see Figures 3 and 14, as well as the supple-

mental video). For each simulation, we apply HOT with three lev-

els so that the number of nodes is generally several thousand or

smaller at the coarsest level. In Table 1 in the supplemental ma-

terial, we summarize runtime statistics for these examples com-

paring HOT’s total wall clock speedup for the entire animation

sequence, and maximum speedup factor per frame compared to

PN-PCG, PN-PCG(MF), PN-MGPCG, and LBFGS-H across the full

set of these examples.

Timings. Across this benchmark set, we observe that HOT has

the fastest runtimes for all but two examples (see the following for

discussion of these) over the best timing for each example across all

methods: PN-PCG, PN-PCG(MF), PN-MGPCG, and LBFGS-H. Note

that these variations for our ablation study already well exceed the

state-of-the-art method from Gast et al. [2015] in most examples. In

general, HOT ranges from 1.98× to 5.79× faster than PN-PCG, from

1.05× to 5.76× faster than PN-PCG(MF), from 2.26× to 10.67× faster

than PN-MGPCG, and from 1.03× to 4.79× faster than LBFGS-

H on total timing. The exceptions we observe are for the easy
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Fig. 12. Wheel. Our HOT integrator enables unified, consistent, and predictive simulations of metals with real-world mechanical parameters (with stress

magnitude visualized).

Fig. 13. Donut. An elastic torus is mounted between two metal bars. Col-

lisions with rigid balls deform the attaching bars that then break the torus.

Sauce (Young’s 2.1 × 105Pa) and ArmaCat (Young’s 106Pa) exam-

ples, where materials are already quite soft and the deformation is

moderate. In these two simple examples, HOT performs closely to

the leading LBFGS-H method. However, when simulations become

challenging, we observe that LBFGS-H can have trouble converg-

ing. This is most evident in the stiff aluminum Wheel example (Fig-

ure 12), where the metal is undergoing severe deformation. Here,

HOT stays consistently efficient, outperforming all other methods.

See our convergence discussion in the following for more details.

Importantly, across examples, we observe that alternate methods

PN-PCG, PN-PCG(MF), PN-MGPCG, and LBFGS-H swap as fastest

per example so that it is never clear which would be best a priori as

we change simulation conditions. Although in some examples each

method can have comparable performance within 2× slower than

HOT, they also easily fall well behind both HOT and other meth-

ods in other examples (Figure 15). In other words, none of these

other methods have even empirically consistent good performance

across tested examples. The seemingly second-best LBFGS-H can

even fail in some extreme cases. For most of the scenes with het-

erogenous materials or large deformations, such as Twist, Boxes,

Donut, and Wheel, which results in more PN iterations, PN-PCG is

faster than its matrix-free counterpart PN-PCG(MF). Among these

examples, only Boxes and Wheel can be well accelerated by using

MGPCG for PN.

Gauss-Seidel preconditioned CG. Here we additionally compare

the symmetric Gauss-Seidel (SGS) and Jacobi preconditioned

PN-PCG to show that a simple trade-off between convergence and

Fig. 14. HOT Sauce. HOT sauce is poured onto a turkey.

Table 3. Jacobi vs. Gauss-Seidel Preconditioned PN-PCG

Example
Symmetric Gauss-Seidel Jacobi

Avg. Time Avg. CG Iter. Avg. Time Avg. CG Iter.

Twist 492.20 679.91 361.53 1,054.16

Boxes 1,368.54 34.13 466.94 248.98

Donut 410.34 45.59 240.65 375.39

ArmaCat (soft) 109.08 29.04 111.04 66.43

ArmaCat (stiff) 148.38 62.63 153.84 157.77

Chain 398.79 47.27 572.01 92.67

Boards 371.66 59.17 313.62 206.35

Wheel 269.08 106.13 206.14 424.13

Faceless 12.22 16.14 7.21 63.80

Sauce 22.66 9.98 29.07 27.06

The runtime environment for all benchmark examples are identical to Table 1 from
the supplemental material. Avg. Time measures average absolute cost (seconds) per
playback frame, Avg. Iter. measures the average number of PCG iterations (per
method) required per timestep to achieve the requested accuracy.

per-iteration cost might not easily lead to significant performance

gain (Table 3). SGS preconditioned PN-PCG significantly improves

convergence compared to Jacobi preconditioning as one would

expect, but due to its more expensive preconditioning computa-

tion, the performance is right at the same level and sometimes

even worse. This is also why we applied Jacobi preconditioned

CG to solve our coarsest-level system.

Changing machines. Across different consumer-level Intel CPU

machines, we tested (see Table 1 in the supplemental material), we

see that HOT similarly maintains the fastest runtimes across all

machines regardless of available CPU or memory resources over

the best timing for each example between PN-PCG, PN-PCG(MF),

PN-MGPCG, and LBFGS-H.
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Fig. 15. Speedup overview. Top: We summarize method timings for all

benchmark examples measuring the total runtime of each method normal-

ized w.r.t. the timing of the HOT algorithm (“how HOT”) over each simula-

tion sequence and so determine HOT’s speedup. Bottom: We comparably

report the normalized maximum frame-wise timing of each method w.r.t.

HOT across all benchmark examples and so again determine per-frame

max speedup of HOT. Here, each simulation example is labeled at the bot-

tom, where the cat in armacat and armacat* is with 1 MPa and 1 GPa

Young’s modulus, respectively.

7.3 Convergence

HOT balances efficient, hierarchical updates with global curva-

ture information from gradient history. In this section, we first

compare HOT’s convergence to the state-of-the-art ADMM MPM

[Fang et al. 2019] and then analyze the convergence behavior based

on our ablation study. Here we exclude Gast et al. [2015], as the

method applies a different stopping criteria and, as discussed ear-

lier, requires intensive parameter tuning.

Comparison to ADMM. Here we compare to the ADMM-MPM

[Fang et al. 2019] on a pure elasticity example faceless (Fig-

ure 11) by importing their open-sourced code into our codebase

and adopted our nodewise CN based termination criteria (Sec-

tion 5.2). Despite their advantages on efficiently resolving fully im-

plicit visco-elasto-plasticity, on this pure elasticity example we ob-

serve that as a first-order method, ADMM converges much slower

than all other Newton-type or Quasi-Newton methods including

HOT (Figure 16). Although the overhead per iteration of ADMM

is generally few times smaller, the number of iterations required to

reach the requested accuracy is orders of magnitudes more. Never-

theless, ADMM-MPM is more likely to robustly generate visually

plausible results within the first few iterations, whereas Newton-

type or Quasi-Newton methods might not.

Ablation study. In Figure 17, we compare convergence rates

and timings across methods for a single timestep of the Wheel

example. In terms of convergence rate, we see in the top plot that

PN-MGPCG obtains the best convergence, whereas HOT, PN-PCG,

and PN-PCG(MF) converge similarly. Then, in this challenging

Fig. 16. Comparison to ADMM-MPM. CN-scaled gradient norm to timing

and iteration plots for the first timestep of the faceless example (Figure 11)

of all methods including ADMM-MPM [Fang et al. 2019]. With much lower

per-iteration cost, ADMM quickly reduces the residual within the first few

iterations (left). However, as a first-order method, it converges slowly to

the requested accuracy compared to all others that converge superlinearly.

As a result, it is 20× slower than our HOT.

example, LBFGS-H struggles to reach even a modest tolerance, as

shown in the extension in the bottom plots of Figure 17.

However, for overall simulation time, HOT outperforms all three

variations of PN and LBFGS-H due to its much lower per-iteration

cost. PN-MGPCG, although with the best convergence rate, falls

well behind HOT and only behaves slightly better than the two PN-

PCG flavors, as the costly reconstruction of the multigrid hierar-

chy and the stiffness matrix are repeated in each Newton iteration.

LBFGS-H then struggles where we observe that many linear solves

well exceed the PCG iteration cap at 10,000. At the bottom of Fig-

ure 17, we see that LBFGS-H eventually converges after 400 outer

iterations. Here, it appears that the diagonal preconditioner at the

coarsest level in HOT significantly promotes the convergence of

the whole solver; in contrast, although the same preconditioner in

LBFGS-H loses its efficiency at the finest level, the system is much

much larger and conditioning of the system matrix exponentially

exacerbates.

Visualization of convergence. In Figure 18 we visualize the pro-

gressive convergence of HOT and LBFGS-H w.r.t. the CN-scaled

nodal residuals for the stretched box example. Here, HOT quickly

smooths out low-frequency errors, as in iteration 6 the background

color of the box becomes blue (small error) and the high-frequency

errors are progressively removed until HOT converges in iteration

25. For LBFGS-H, both the low- and high-frequency errors are si-

multaneously removed slowly, and it takes LBFGS-H 106 iterations

to converge.

Comparison to the baseline geometric multigrid. As discussed

previously, building geometric multigrid directly from particle

quadratures generally obtains essentially no speedup for coarser

matrices and DoF mismatch. We compare to this baseline geomet-

ric multigrid on the ArmaCat example (Figure 2) by utilizing both

multigrids in a PN-MGPCG time integrator. As we see in the top

plot of Figure 19, geometric multigrid effectively achieves 5× faster

convergence than PN-PCG with the Jacobi preconditioner but is

still less effective than our 10× speedup in this specific timestep.

The bottom plot shows that this convergence relation among all

three candidates remains consistent throughout the animation of

the ArmaCat example. However, in very few cases (e.g., Boards),
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Fig. 17. Convergence comparisons. Top left: The iteration counts for the

Wheel example w.r.t. CN of different methods are visualized. Here, PN-

MGPCG demonstrates best convergence. Top right: Total simulation times

of all methods w.r.t. CN are plotted; here, HOT, with low per-iteration cost,

obtains superior performance across all methods. Bottom: In this extreme

deformation, high-stiffness example LBFGS-H converges at an extremely

slow rate.

we occasionally observed that baseline geometric multigrid pre-

conditioned PN-MGPCG converges even more slowly than Jacobi

preconditioned PN-PCG.

Then we compare HOT to applying GMG in LBFGS (LBFGS-

GMG, see Table 2 in the supplemental material). We see that the

convergence of LBFGS-GMG is orders of magnitude slower than

HOT for all scenes containing stiff materials. For the two scenes

with soft materials only (Sauce and Faceless), even if convergence

is only slightly slower than HOT, the timing is more than 2×
slower, which further demonstrates the inefficiency of the multi-

grid operations in GMG.

7.4 Varying Material Stiffness

Finally, to again consider consistency, we compare the conver-

gence and overall performance of all five methods on the same

simulation setup as we progressively increase the Young’s mod-

uli of a material. Here we form a bar composed of three materials

(see the inset of Figure 20). The two bar ends are kept with a fixed

constant Young’s modulus of 105Pa across all simulations in the

experiment. We then progressively increase the Young’s modulus

of the middle bar from 105Pa up to 1010Pa.

In the bottom plot of Figure 20, we see that HOT maintains a

low and close to flat growth in iterations for increasing stiffness

with PN-MGPCG demonstrating only a modestly greater iteration

growth for stiffness increase. When we consider computation

time, however, the modest growth in iterations for PN-MGPCG

translates into much less efficient simulations as stiffness in-

creases, due to PN-MGPCG’s much greater per-iteration cost.

Fig. 18. Convergence visualization on a stretched box. A soft box deforms

as its deformation gradient was initialized to some diagonal matrix with

the diagonal entries randomly sampled in [0.7, 1.3]. The nodal CNs of dif-

ferent iterations in the first timestep are visualized on the rest shape. Here,

HOT quickly removes low-frequency errors and converges in 25 iterations,

whereas LBFGS-H converges in 106 iterations, removing both low- and

high-frequency errors simultaneously.

Fig. 19. Comparison to the baseline geometric multigrid. Left: CG itera-

tion counts in one of the timesteps of the ArmaCat example w.r.t. CN of

all methods. Right: Per-frame CG iteration counts. Here, the convergence

of PN-MGPCG when using the baseline geometric multigrid is worse

than using our node-embedding multigrid but better than Jacobi precon-

ditioned PN-PCG. Moreover, timings of PN-PCG and PN-MGPCG highly

overlap, and they are both 3× faster than the baseline overall.

Here, despite greater iteration growth, L-BFGS-H does better for

scaling to greater stiffness due to its lower per-iteration cost.

However, HOT with both a close-to-flat growth in iterations and

low per-iteration cost maintains consistent behavior and generally

best runtime performance with respect to increasing stiffness.

7.5 Ablation Study on HOT’s Kernel

Since our multigrid can be constructed using either linear or qua-

dratic B-splines for node embedding that potentially leads to a

trade-off between convergence and per-iteration cost because of

the resulting coarser level shape functions, here we use an abla-

tion study on the two design choices to back up our decision on

using linear kernels. As shown in Table 2 from the supplemen-

tal material, HOT with linear embedding performs equally well

on convergence compared to using quadratic embedding. In a few

cases, such as Twist and Boxes, linear embedding converges much

faster. This is reasonable, as we can see in Figure 7 the resulting

shape functions on the coarser level when using linear or quadratic

node embedding do not have significant differences. But because

linear embedding leads to much sparser coarse systems, it is much

faster on timing than quadratic embedding.

8 CONCLUSION AND FUTURE WORK

Starting from node embedding, we derive, to the best of our knowl-

edge, the first MPM Galerkin multigrid. The resulting method
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Fig. 20. Convergence and performance consistency for increasing stiff-

ness. Twisting a multimaterial bar, we keep ends with fixed Young’s moduli

and progressively increase Young’s for the middle segment. Across increas-

ing stiffness HOT exhibits the best consistency w.r.t. both iteration count

and the overall simulation time.

is consistent with particle quadrature geometric multigrid while

still providing efficiency in construction and automatically han-

dling boundary conditions. We then build HOT to utilize our

multigrid as an inner initializer within L-BFGS to avoid the re-

peated expensive matrix reconstruction costs required in tradi-

tional PN-MGPCG. Together with efficient curvature updates, we

ensure fast yet inexpensive convergence. HOT accelerates implicit

MPM timestepping to a wide range of important material behav-

iors, achieving up to 10× speedup compared to the state-of-the-art

methods and shines among an exhaustive set of variations. It is our

hope that this will enable further research to leverage HOT-type

hierarchies to address both spatial and temporal discretization lim-

itations in current MPM pipelines.

Semi-implicit plasticity is a limitation of HOT. For current HOT

simulations with plasticity, we have not encountered instabili-

ties. Nevertheless, adding plasticity return mapping as a constraint

within HOT’s stable implicit timestep optimization is an excit-

ing and challenging future direction to explore. Another challeng-

ing but interesting extension would be to incorporate additional

physical constraints in our minimization framework. One partic-

ularly useful case is volume preservation, such as for simulating

stiff granular materials. Likewise, although our proposed inexact

criteria resolves heterogeneous materials, we believe that it can

and should be further improved. Currently, HOT offers consis-

tent and performant MPM simulations to gain the advantages of

implicit timestepping without the need for parameter tuning. We

look forward to further extensions, such as those mentioned previ-

ously, and its application as a tool kit to accelerate the applications

of MPM for the physical sciences, animation, engineering, and

beyond.

On the implementation side, the construction of the finest-level

system matrix is one of the bottlenecks for HOT. In our code,

it is realized with a scattering scheme, which suffers from cache

misses. Therefore, exploring the performance potential of alterna-

tive gathering schemes for building the stiffness matrices can be

meaningful future work.
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