1 Benchmark Summary Table

For performance and convergence comparison, we put timing and iteration results in the following two tables. *avg time* measures average absolute cost (seconds) per playback frame, *total* measures the HOT speedup factor of the wall clock time for the entire rendered animation sequence, *max* records the maximum speedup factor HOT achieved on a simulated (and rendered) at 24Hz frame, *avg iter* (or *iter*) measures the average number of Newton or quasi-Newton outer iterations (per method) required per frame to achieve the requested accuracy. Each example is run for all methods on the same machine. Machines employed per example: *Twist, Chain* and *Wheel*: Intel Core i7-7700K; all other examples are run on an Intel Core i7-8700K. Both machines has 64GB memory. Cat Young's modulus values are $^{\dagger}10^{6}$ and $^{\ddagger}10^{9}$ respectively. * indicates that the examples could not finish in reasonable time, and was manually terminated.

Table 1: Newton's Method Timings: Here we summarize statistics across all benchmark examples using Newton's methods (including the previous state-of-the-art Gast15 [1] in comparison with HOT. Here, Gast15 method consistently adopts 1e-3 as the outer tolerance for all examples, which is the maximum that guarantees artifact-free results.

Example	НОТ		Gast15(MF)			PN-PCG			PN-PCG(MF)			PN-MGPCG		
	avg time	avg iter	avg time	total	iter	total	max	iter	total	max	iter	total	max	iter
Twist	77.73	13.49	*2308.70	$*29.70 \times$	*19.33	$4.65 \times$	$8.17 \times$	11.14	$4.73 \times$	$9.57 \times$	11.14	$6.79 \times$	$9.85 \times$	5.42
Boxes	129.81	5.76	*10142.33	$*78.13 \times$	*12.14	$3.59 \times$	$9.29 \times$	7.21	$3.73 \times$	9.19 imes	7.21	$3.57 \times$	$7.91 \times$	3.94
Donut	121.19	27.76	*1150.41	$*9.49 \times$	*15.68	$1.98 \times$	$7.61 \times$	9.07	$1.98 \times$	$9.39 \times$	9.07	$10.67\times$	$17.97 \times$	4.68
$^{\dagger}\mathrm{ArmaCat}$	32.55	6.22	62.78	$1.93 \times$	8.60	$3.41 \times$	$4.53 \times$	7.03	$1.22 \times$	$1.79 \times$	7.03	$3.21 \times$	$3.87 \times$	4.69
[‡] ArmaCat	36.61	8.72	324.77	8.87 imes	13.94	$4.19 \times$	$6.28 \times$	8.40	$2.02 \times$	$3.78 \times$	8.40	$3.42 \times$	$3.43 \times$	5.38
Chain	98.78	5.55	*766.47	$*7.76 \times$	*9.84	$5.79 \times$	$11.99 \times$	6.04	$1.98 \times$	$6.85 \times$	6.04	$4.02 \times$	$8.69 \times$	3.42
Boards	105.99	3.72	296.43	$2.80 \times$	2.74	$2.95 \times$	$5.77 \times$	3.11	$1.73 \times$	$7.39 \times$	3.11	$2.51 \times$	$4.76 \times$	2.402
Wheel	44.38	8.56	*39447.37	$*888.85 \times$	* 54.5	$4.64 \times$	$5.93 \times$	8.42	$5.76 \times$	$6.74 \times$	8.42	$3.58 \times$	$4.88 \times$	5.96
Faceless	3.49	6.44	2.84	$0.81 \times$	2.09	$2.06 \times$	$5.74 \times$	4.49	$1.68 \times$	$7.05 \times$	4.49	$2.25 \times$	$6.42 \times$	3.81
Sauce	13.11	4.54	10.42	$0.79 \times$	3.21	$2.22 \times$	$5.77 \times$	4.93	$1.05 \times$	2.69 imes	4.93	$2.26 \times$	$2.82 \times$	3.18

Table 2: **HOT Timing Comparisons:** Here we summarize statistics across all benchmark examples and methods that partly resemble our HOT. Compared to HOT, both LBFGS-GMG and LBFGS-H use LBFGS as the quasi-Newton solver but with different initializers, i.e. baseline particle quadrature multigrid for LBFGS-GMG and inexact PCG for LBFGS-H. PN-MGPCG adopts the same multigrid formulation from HOT yet a different nonlinear optimization method. HOT-quadratic is the derivation of HOT whose multigrid is built according to quadratic kernel rather than linear kernel. As a result, all these alternatives are much less efficient than HOT in general.

Example	НОТ		HOT-quadratic		LBFGS	-GMG	LBFGS-H			PN-MGPCG			
	avg time	avg iter	total	\max	iter	total	iter	total	max	iter	total	max	iter
Twist	77.73	13.49	$7.10 \times$	$86.42 \times$	51.24	*186.93×	*1234.94	$4.12 \times$	$9.53 \times$	20.45	$6.79 \times$	$9.85 \times$	5.42
Boxes	129.81	5.76	$2.54 \times$	$4.60 \times$	9.61	$*61.41 \times$	*296.56	$2.39 \times$	$8.84 \times$	6.78	$3.57 \times$	$7.91 \times$	3.94
Donut	121.19	27.76	$2.18 \times$	$4.59 \times$	32.81	$*85.38 \times$	*1182.52	$4.79 \times$	$2.63 \times$	16.42	$10.67 \times$	$17.97 \times$	4.68
† ArmaCat	32.55	6.22	$2.01 \times$	$2.09 \times$	6.17	$2.93 \times$	18.70	$0.94 \times$	$1.72 \times$	8.09	$3.21 \times$	$3.87 \times$	4.69
[‡] ArmaCat	36.61	8.72	$1.94 \times$	$3.18 \times$	8.67	$^{*201.56 \times}$	*709.05	$1.37 \times$	$2.45 \times$	8.95	$3.42 \times$	$3.43 \times$	5.38
Chain	98.78	5.55	$2.91 \times$	$5.77 \times$	4.54	$*7.59 \times$	$^{*}166.57$	$1.92 \times$	$5.83 \times$	6.26	$4.02 \times$	$8.69 \times$	3.42
Boards	105.99	3.72	$2.83 \times$	$4.09 \times$	3.56	$4.98 \times$	39.87	$2.01 \times$	$5.13 \times$	6.252	$2.51 \times$	$4.76 \times$	2.402
Wheel	44.38	8.56	$2.27 \times$	$2.49 \times$	7.77	$^{\star}2403.47\times$	*5817	$^{\star}51.62\times$	$*217.75 \times$	*16.36	$3.58 \times$	$4.88 \times$	5.96
Faceless	3.49	6.44	$1.80 \times$	$2.20 \times$	6.56	$6.12 \times$	9.64	$1.03 \times$	$1.31 \times$	9.19	$2.25 \times$	$6.42 \times$	3.81
Sauce	13.11	4.54	$1.97\times$	$2.82 \times$	4.56	$2.86 \times$	6.13	$0.92 \times$	$5.45 \times$	7.76	$2.26 \times$	$2.82 \times$	3.18

Figure 1: Artifacts. Various scales of explosions can be observed among *twist*, *boxes*, *donut*, and $^{\dagger}armacat(1e6)$. Artificial softening occurs in $^{\ddagger}armacat(1e9)$, *boards*, *faceless* and *sauce*. In *chain*, rings in the middle are not pulled from each other under forces from both two sides.

2 Gast15 Failed Cases

In this section, we demonstrate all failed results (Figure 1) generated from the previous state-of-the-art Gast15 [1] using the same tolerance 10^2 . These models exhibit obvious artifacts of all kinds due to the inappropriate tolerance setting in each example except for wheel. The largest tolerance that produce artifact-free results varies across examples and this inconsistency brings significant inconvenience to the setup of a new simulation, even worse for cases where material properties change throughout the simulation.

References

T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. Optimization integrator for large time steps. *IEEE Trans Vis Comp Graph*, 21(10):1103–1115, 2015.