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Abstract. We consider the geometric numerical integration of Hamiltonian systems subject
to both equality and “hard” inequality constraints. As in the standard geometric integration set-
ting, we target long-term structure preservation. Additionally, however, we also consider invariant
preservation over persistent, simultaneous, and/or frequent boundary interactions. Appropriately
formulating geometric methods for these cases has long remained challenging due the inherent non-
smoothness and one-sided conditions that they impose. To resolve these issues we thus focus both
on symplectic-momentum preserving behavior and the preservation of additional structures, unique
to the inequality constrained setting. Toward these goals we introduce, for the first time, a fully
nonsmooth, discrete Hamilton’s principle and obtain an associated framework for composing ge-
ometric numerical integration methods for inequality-equality–constrained systems. Applying this
framework, we formulate a new family of geometric numerical integration methods that, by construc-
tion, preserve momentum and equality constraints and are observed to retain good long-term energy
behavior. Along with these standard geometric properties, the derived methods also enforce multiple
simultaneous inequality constraints, obtain smooth unilateral motion along constraint boundaries,
and allow for both nonsmooth and smooth boundary approach and exit trajectories. Numerical ex-
periments are presented to illustrate the behavior of these methods on difficult test examples where
both smooth and nonsmooth active constraint modes persist with high frequency.
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1. Introduction. Recent attention has focused on geometric numerical integra-
tion methods that closely preserve invariants of continuous systems (Sanz-Serna and
Calvo (1994); Hairer, Lubich, and Wanner (2002); Leimkuhler and Reich (2004)).
In particular, symplectic-momentum preserving integration schemes have been suc-
cessfully applied over a wide range of applications. In the unconstrained setting,
these methods exactly preserve the symplectic form and momenta and maintain good
long-term energetic behavior by approximately conserving energy (up to an additive
constant) over long spans of simulation.

While extensions of symplectic methods to equality-constrained systems have
been extensively investigated (Hairer, Lubich, and Wanner (2002); Leimkuhler and
Reich (2004)), appropriately formulating symplectic methods to include inequality
constraints continues to remain a challenging problem. The difficulty in treating
these latter cases stems from the inherent nonsmoothness imposed by such condi-
tions. Stewart (2000), in particular, notes that, despite good conservative properties
in the smooth setting, symplectic methods do not necessarily translate easily into
nonsmooth problems. Direct extensions of existing symplectic methods (e.g., implicit
midpoint method, Newmark methods, etc.) lose their good energetic properties and
often generate surprisingly nondeterministic errors when subject to inequality con-
straints (Stewart (2000)).

∗Department of Computer Science, Columbia University, New York, NY 10027 (kaufman@
cs.columbia.edu).
†Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4,

Canada (pai@cs.ubc.ca).

1



2 DANNY M. KAUFMAN AND DINESH K. PAI

In this work we consider Hamiltonian systems subject to both equality and in-
equality constraints. As in the standard geometric integration setting, we target
long-term structure preservation. In the inequality-constrained setting, however, we
additionally must consider structure preservation over persistent, simultaneous and/or
frequent boundary interactions. With these concerns in mind we focus both on
symplectic-momentum preserving behavior and the preservation of additional struc-
tures, unique to the inequality-constrained setting. Toward these goals we introduce,
for the first time, a fully nonsmooth, discrete Hamilton’s principle and an associ-
ated framework for composing geometric methods for the numerical integration of
inequality- and equality-constrained systems.

Applying this framework, we formulate a family of geometric numerical integra-
tion methods that, by construction, preserve momentum and equality constraints and
are observed to retain good long-term energy behavior. Along with these standard ge-
ometric properties the derived methods also enforce multiple simultaneous inequality
constraints, obtain smooth unilateral motion along constraint boundaries, and allow
for both nonsmooth and smooth boundary approaches and exit trajectories. Under the
simplest interpretation, these integrators can be viewed as splitting methods for con-
strained systems formulated by a careful combination of a smooth predictor method,
in the form of an appropriately augmented, symplectic, constrained-integrator (sec-
tion 5) and a nonsmooth corrector method, in the form of a reflection applied to
discrete momenta (section 6).

While these initial methods could be derived independently of the discrete vari-
ational framework, we find that the variational perspective is particularly suited to
unilateral problems. Briefly, as we will discuss further below, the variational approach
illuminates the sources of many difficulties in existing methods, eases the formulation
of the inherently variational, constrained numerical optimization problems needed for
implementation, and naturally leads to the general framework proposed here and thus
offers the promise of future developments in the area.

Notation. In the following sections we reserve the sans serif font for generalized
configurations, momenta, and velocities, as well as for corresponding sets, matrices,
and vector-valued functions. Scalar values and scalar-valued functions are indicated
in italics, while discretized functions are further distinguished by a subscript d. Oth-
erwise, italic subscripts denote constraint indices, italic superscripts indicate time
indices, and blackboard-bold subscripts denote constraint subset indices as detailed
in section 3.1.1. Finally, note that throughout, to simplify discussion, visualization,
and notation, we focus on separable Hamiltonians with a flat metric on configuration.

1.1. Problem statement. We consider the general case of a Hamiltonian sys-
tem subject to generalized constraints that restrict system configurations, q, to an
admissible set, A (i.e., q ∈ A). In general, this admissible set can be both nonconvex
and nonsmooth.

More concretely, when the admissible set is given by a manifold, it will often be
defined by a set of constraint equations of the form

(1.1) f(q) = (f0(q), . . . , fn(q))T = 0.
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For these cases the resulting holonomic Hamiltonian system reduces to a set of
differential algebraic equations (DAEs) for which a wide range of existing geometric
approaches may be suitable (Hairer, Lubich, and Wanner (2002); Leimkuhler and
Reich (2004)).

In the following, we consider generalizations where the admissible set, A, can
always be described by both a set of constraint equalities (as above) and constraint
inequalities, given by functions of the configuration variables,

(1.2) g(q) = (g0(q), . . . , gm(q))T ≥ 0.

We start by considering the underlying, unconstrained system, with its natural
Hamiltonian and Lagrangian functions,

H(q, p) =
1

2
pTM−1p + V (q) and L(q, q̇) =

1

2
q̇TMq̇− V (q).(1.3)

We can then compactly include constraint forces by adding an additional po-
tential term that, when extremized, will penalize all nonadmissible configurations to
ensure constraint compliance. In particular, to enforce so-called “hard” or “exact”
constraints it is standard to consider the most extreme penalization available; we
apply the extended value indicator function that infinitely penalizes noncompliance.
For an arbitrary admissible set A, the indicator penalty function is given by

(1.4) IA(x) =

{
0, x ∈ A,
∞, x /∈ A.

The full, nonsmooth, inequality constrained, Hamiltonian and Lagrangian formula-
tions for the system are then obtained by augmenting the unconstrained system’s
natural potential function, V , with the indicator function on the admissible set, IA
(Clarke (1983)).

The corresponding generalized equations of motion for the constrained system are
then given by the Euler–Lagrange differential inclusion (DI),

(1.5) Mq̈ +∇V (q) ∈ −∂IA(q).

This inclusion, obtained from the application of ∂, the generalized gradient operator,1

to the nonsmooth penalty function (Rockafellar and Wets (1998)), indicates that
feasible constraint forces must lie in the inward pointing normal cone to the admissible
set at q, given by −∂IA(q). On the interior of the feasible set the normal cone
is trivially the origin. In this case the Euler–Lagrange DI simply reduces to the
standard unconstrained equations of motion. Elsewhere, on the boundary, where
constraint forces may be necessary, the normal cone is given by a nontrivial, negative
span of the active constraint gradients at q. See Figure 1.1.

Our problem is then to derive geometric numerical methods that integrate the
generalized Euler–Lagrange system in (1.5) forward in time while preserving momenta
and maintaining the good approximate energy preserving properties that are standard
for symplectic integration schemes in the unconstrained setting (Hairer, Lubich, and
Wanner (2002)). In the inequality constrained setting, however, there is additional
critical behavior to consider as follows.

1Note that here and throughout we reserve the ∂ notation to exclusively designate the generalized
gradient operator (Rockafellar and Wets (1998)).
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Fig. 1.1. An example of an admissible set and a few evaluations of its associated normal cones.
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Fig. 1.2. Examples of (a) smooth-boundary, (b) nonsmooth, (c) smooth-exiting, and (d) smooth-
approaching trajectories.

1. Smooth trajectories along the admissible set boundary. Consider,
as a simple example, a mass-particle moving with a tangential velocity across a
smooth region of the boundary (Figure 1.2(a)). If a force is pushing the particle into
the boundary, the particle’s trajectory should remain smooth along the boundary.
No upward bounce or other type of normal motion should result. Likewise, unless
dissipative forces are additionally applied, constraints should not apply “boundary
capturing”-type forces that slow the particle’s tangential motion. Nevertheless, ex-
isting symplectic-based methods generally fail in one or both of these categories.
This has important implications since, in the general setting, many important phys-
ical phenomena are covered by the abstraction of smooth-boundary motion. Such
smooth-boundary systems include oscillatory elastica resting on foundations, twisted
elastic knots (such as DNA filaments), mechanical and biological grasping models,
masonry structures, granular flow, and many other boundary relative systems that
are important across critical application areas such as structural engineering, robotics,
mechanics, and biology.

2. Nonsmooth exit and approach trajectories. Many trajectories in the
hard constraint context cannot be resolved by finite forces. For instance, consider a
mass-particle approaching a smooth boundary in the normal direction (Figure 1.2(b)).
To resolve the impact, the mass-particle’s trajectory must be reflected about the sur-
face normal, and thus we require a nonsmooth transition. More generally, whenever
a trajectory is nontangential to the admissible set boundary, an instantaneous non-
smooth jump in state is demanded. Nevertheless, many symplectic-based approaches
require, by construction, that constraints always be resolved by forces. Nonsmooth
motion, however, is an intrinsic aspect of many important physical models applied
to better understand the complex behaviors exhibited by mechanical collisions, multi-
impact systems, shock-wave propagation in granular media, molecular dynamics
(using hard-sphere constraints), geophysical phenomena (e.g., earthquakes, iceberg,
calving, etc.) and other difficult, nonlinear systems. As such, appropriately resolving
nonsmooth motion is likewise critical.

3. Smooth exit and approach trajectories. Consider once again the simple
example of a mass-particle traveling smoothly along a boundary subject to a force
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pushing into the boundary (Figure 1.2(c)). If the particle encounters a sufficiently
large concavity, it must be able to “break contact” and leave the surface. Likewise,
if a similar mass-particle is on a ballistic trajectory that approaches the boundary
tangentially (Figure 1.2(d)), it must not bounce back off, but instead maintain a
smooth on-surface trajectory. More generally, smooth trajectories on the admissible
set boundary should not in any way be constrained to remain on the boundary, while
initially off-boundary trajectories that encounter the boundary tangentially should
remain smooth.

Finally, we note that many fundamental applications of inequality constrained
systems (e.g., granular systems, biomechanical locomotion, structural engineering)
intrinsically combine both smooth and nonsmooth modes and thus require the appro-
priate resolution of both modes within the same framework.

1.2. Overview. In the following sections we discuss related approaches (sec-
tion 1.3) and then begin to incrementally construct our numerical integration meth-
ods step by step. We first consider the discrete variational perspective (section 2) and
note that a nonsmooth, discrete Hamilton’s principle for unilateral constraints has
not been previously considered. To address this gap we propose a discrete nonsmooth
Hamilton’s principle that leads to the Discrete Euler–Lagrange Inclusion (DELI) for-
mulation (section 2.2). We then observe that standard discrete variational structure is
not sufficient, on its own, to define a well-posed integrator in this setting (section 2.3).
The proposed DELI formulation thus provides a framework for numerical integration
in addition to which further structure is required to compose a fully specified inte-
gration method. To instantiate the first such DELI-based method we next consider
the structure preserving behavior of both smooth (section 3.4) and nonsmooth (sec-
tion 3.5) time-continuous constrained trajectories. With these observations in place,
we then return to the time-discrete problem (section 4), and show that introducing
time-discrete analogues of smooth (section 5) and nonsmooth (section 6) boundary
structures to DELI allows us to construct a corresponding, symplectic-momentum pre-
serving, smooth-discrete integrator and a momentum preserving, nonsmooth-discrete
integrator with observed good long-term energy behavior. Finally, in section 7, we
derive a discrete, Generalized Variational Integrator (GVI) for generalized inequality-
equality–constrained systems that resolves both smooth and nonsmooth modes. Fur-
ther numerical examples illustrating these methods are presented and discussed in
section 8.

1.3. Related work. To date, approaches for the structure-preserving integra-
tion of such inequality-constrained, nonsmooth Hamiltonian systems can effectively
be divided into two strategies.

1.3.1. Direct-substitution methods. Energy-momentum and symplectic-
momentum methods have been extended to the inequality case by the direct sub-
stitution of a nonsmooth constraint force (Laursen and Chawla (1997); Kane et al.
(1999); Stewart (2000); Laursen and Love (2002); Pandolfi et al. (2002); Deuflhard,
Krause, and Ertel (2008); Boumediène Khenous, Laborde, and Renard (2008); Krause
and Walloth (2012); Doyen, Ern, and Piperno (2011)). Following the time-continuous
case discussed above, the extended value Hamiltonian for inequality-constrained sys-
tems is naturally composed by concatenating the unconstrained system’s potential
with the extended value indicator function. Nonsmooth extensions of standard geo-
metric methods are then composed by direct substitution of the obtained nonsmooth
constraint force, −∂IA(q), as a standard force, handled as dictated by each numerical
method. (See section B.1 for examples.)
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Fig. 1.3. Point-mass example. In these figures we examine the behavior of direct-substitution
methods on the simple example of a one-dimensional point-mass subject to gravity and a single
ground plane constraint at zero. We plot position along the y-axis and time along the x-axis. All
examples shown here begin with implicit midpoint as the base, unconstrained numerical method. In
(a), starting with q(0) = 1, p(0) = 0, we plot the trajectories of the midpoint-constrained direct
method in blue, the endpoint-constrained direct method in red, and the exact solution’s trajectory is
plotted in green. Note, as well, that all trajectories are identical until the first impact. In (b) we
plot the trajectories of the endpoint-constrained direct method for three small perturbations in initial
position. Note that while the endpoint-constrained direct method generates fully dissipative solutions
for all cases, the degree of dissipation varies in an energetically inconsistent fashion.

Unfortunately, as foreshadowed above, direct substitutions generally destroy en-
ergy conservation and generate time-step–dependent, nondeterministic behaviors when
applied to symplectic methods. In particular, as we prove in Appendix B, all direct-
substitution, nonsmooth, one-step, symplectic methods cannot, in general, preserve,
either approximately or exactly, the energy of the Hamiltonian system. In practice,
this results in undesirable time-step–dependent and position-based restitution errors
that can produce both energy growth and dissipation behaviors, while momentum
similarly drifts.

Similarly, energy-momentum–based direct methods and a variety of extensions
and stabilizations are an active and promising area of research (Doyen, Ern, and
Piperno (2011)). Although behaviors comparable to direct symplectic schemes are
currently observed in practice (Doyen, Ern, and Piperno (2011)), drift and stability
properties of these methods remain under investigation.

Example: A one degree of freedom particle system. To illustrate some of these
issues, we consider the following simple example of a one-dimensional particle with
mass, m = 1, configuration, q ∈ R, subject to a simple unilateral constraint g(q) =
q ≥ 0, under gravity such that V (q) = 9.8q. (Also see Figure 1.3.) Stewart (2000)
uses this simple example to illustrate some of the potential issues involved in applying
direct methods to existing symplectic integration methods. Poor energy conservation
behaviors are observed for this case by Stewart for both the (symplectic) implicit
midpoint rule (Hairer, Lubich, and Wanner (2002)) and the IMEX Newmark scheme
from Kane et al. (1999). In particular, Stewart (2000) notes that the energy of these
systems is not conserved and that the effective coefficient of restitution varies with
state for both methods.

We start by dropping the particle from a height of q(0) = 1. In Figure 1.3(a), we
plot the obtained position for a range of algorithms along the y-axis and time along the
x-axis. We plot the midpoint-constrained direct method; e.g., using constraint forces

of the form −∂IA(q
t+1+qt

2 ). This generates, within the same simulation, effective
coefficients of restitution that vary widely between dissipation and unstable energy
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growth. In general these effects vary with the time-step size and relative position
with respect to the constraint boundary. We plot the exact solution. Note that
both standard collision integration methods (discussed below) and our new method
proposed in section 7 generate trajectories that closely match this solution.

Finally, we also plot the endpoint-constrained direct method, e.g., using con-
straint forces of the form −∂IA(qt+1). Note that while the endpoint method does
not preserve energy, it generates purely dissipative energy errors. For this reason,
endpoint constraints and/or additional dissipative stabilizations have often been fa-
vored for direct methods in the literature (Kane et al. (1999); Pandolfi et al. (2002);
Deuflhard, Krause, and Ertel (2008); Krause and Walloth (2012); Doyen, Ern, and
Piperno (2011)). The degree of dissipation, however, varies in a nonphysical manner.
In particular, as with the midpoint constraint, restitution for the endpoint-constrained
direct method is likewise dependent on time-step size and the relative position of the
particle with respect to the constraint boundary. This is illustrated in Figure 1.3(b),
where we plot the trajectory of the endpoint-constrained direct method over small
changes in initial position. Note that while these three trajectories are all clearly
dissipative, the degree of dissipation continues to vary in an energetically inconsistent
fashion.

1.3.2. Collision integrators. Alternately, collision integration methods have
also been proposed (Stratt, Holmgren, and Chandler (1981); McNeil and Madden
(1982); Heyes (1982); Suh et al. (1990); Houndonougbo, Laird, and Leimkuhler (2000);
Fetecau et al. (2003); Bond and Leimkuhler (2007)) in which unconstrained symplec-
tic schemes interrupt fixed-size steps each time a unique constraint is identified as
becoming active (i.e., about to be violated). For each such event, an impulsive con-
straint force (in the form of a reflection) is computed which conserves (depending
on the scheme) either a continuous (Houndonougbo, Laird, and Leimkuhler (2000)),
discrete (Fetecau et al. (2003)), or numerical Hamiltonian (Bond and Leimkuhler
(2007)). These methods thus all effectively apply adaptive time-step subdivision to
resolve constraints. Given these variable-step modifications, a trajectory-shadowing,
numerical Hamiltonian system can no longer be defined, and thus energy conservation
cannot be expected in the long-term (Hairer, Lubich, and Wanner (2002)).

A novel stabilization scheme, based on the application of two complementary
strategies, was recently proposed to improve the energetic behavior of collision inte-
grators (Bond and Leimkuhler (2007)). Stabilization is primarily obtained by apply-
ing reflections that preserve a second order approximation of the selected integration
scheme’s (generally Störmer–Verlet’s) numerical Hamiltonian. A secondary improve-
ment is then also obtained by stepping toward and away from constraint events using
consistent, higher-order integration schemes. This latter modification, however, is
motivated by applications in which constraint events are infrequent. The cost of
higher-order integration is thus ameliorated by the assumption that the majority of
time-steps are taken constraint free using the base, lower-order method. In our de-
velopment we now consider highly constrained systems where we expect most, if not
all, steps to encounter active inequality constraints. In this context, any potential
stabilization advantage is then given almost exclusively by the higher-order energy
reflection. We will examine this further in section 6.1.1.

While these developments can improve the performance of collision integrators,
they still demand that only a single constraint be active at any time. Moreover, all
collision integrators require expensive root-finding routines to determine each such
constraint event. Many applications (e.g., surgical simulation, structural engineering,
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Fig. 1.4. Pogo-stick example. In these figures we plot the energy for a simple, two-dimensional,
two-point, mass-spring system vertically oriented, subject to gravity, bouncing on a ground plane
constraint. Both methods begin with Störmer–Verlet as the base, unconstrained numerical method.
We set m = 1 for both mass particles. The linear spring stiffness is set to k = 10, spring length is
l = 5, and gravity is g = 9.8213. In (a) we plot the energy for the first 546 seconds of simulation time,
stepping at h = 10−1, for both the standard collision integration method in red and our generalized
discrete variational integrator (GVI) in blue. After this step the energy in the collision integration
blows up. In (b) we continue the GVI energy plot for 100,000 seconds of simulation time.

robotic grasping, granular flow, etc.), however, demand the simultaneous resolution of
potentially large numbers of simultaneously active constraints. Individual treatment
of constraints in these contexts can lead to ordering bias and unacceptable stability
issues, and generally have an especially large detrimental impact on implicit methods.
Even when such ordering issues are acceptable (e.g., small time-step, explicit methods)
the individual time-ordered evaluation of all active constraint events will be, as Cirak
and West (2005) note, computationally intractable for many simulation problems
(consider, for example, Zeno’s paradox).

As a generalization it is reasonable, however, to expect that extensions of collision
integration methods should be possible, even if not practical, which simultaneously
resolve many active constraints. Indeed, one such possible generalization is suggested
in Fetecau et al. (2003). Even in this paradigm, however, the interleaving of fixed-step
symplectic-momentum methods with a variable-step energy method still generates
drift.

To understand the practical implications of these issues in applying collision in-
tegration methods, consider the energy behaviors observed in Figure 1.4(a) as well in
Figures 6.1(a) and 8.2(b) and the related discussion in sections 6.1 and 8.0.1.

2. Variational integration and DELI integrators. Despite the above neg-
ative results, nonsmoothly constrained Hamiltonian systems are invariant preserving
in the usual sense (Kane et al. (1999)). Thus it is still desirable to find geomet-
ric integration methods that do not introduce numerical artifacts into simulations
(dissipative or otherwise). One fruitful direction of research, that we do not pur-
sue here, is the ongoing investigation into extending the discrete energy-momentum
conserving framework to the nonsmooth setting. Instead we pursue the complemen-
tary research program of extending symplectic-momentum preserving schemes to re-
solve inequality-constrained dynamics. In particular, observing the natural variational
structure implied by inequality constraints (Rockafellar and Wets (1998)), we revisit
the application of Discrete Variational Integration (Marsden and West (2001)) to the
inequality-constrained setting.

To date, two approaches toward extending variational integrators to the non-
smooth, inequality-constrained setting have been considered.
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In the first approach, Nonsmooth Variational Integrators are generated (Kane
et al. (1999); Pandolfi et al. (2002)) by extremizing the standard discrete-action ob-
tained directly from the quadrature of the underlying, smooth, unconstrained system.
This obtains a standard Variational Integrator (VI) into which a nonsmooth con-
straint force is then directly substituted. We observe that this approach then obtains
nothing other than a direct-substitution symplectic method and is thus covered by
Theorem B.1 and subject to the same drift and stability issues as discussed above
in section 1.3.1. Moreover, we observe that this approach violates the fundamental
“discretize-first, extremize-second” mantra of discrete variational methodology.

In the second approach, Fetecau et al. (2003) observe that nonsmoothness in the
variational formulation can be avoided altogether by adding an additional degree-of-
freedom that parameterizes time of collision. Composing and extremizing a corre-
sponding discrete variational principle then generates variational collision integrators
which can be shown to be symplectic (Fetecau et al. (2003)). As observed by Bond and
Leimkuhler (2007), however, resulting schemes exactly obtain a standard collision in-
tegrator, as discussed above in section 1.3.2, composed so that each collision preserves
a discrete (rather than the continuous or numerical) energy at each reflection.

With these observations in place we then note that, to our knowledge, a nons-
mooth, discrete variational principle for inequality-constrained systems remains un-
explored. We thus begin our development of nonsmooth geometric methods by devel-
oping these initial steps in the fully “discretize-first” manner. In particular, we apply
variational integration methods (Marsden and West (2001); Hairer, Lubich, and Wan-
ner (2002)) as a prescriptive approach for generating a family of geometric methods
for inequality-constrained dynamics.

2.1. Variational integration methods. Recall that variational integration
methods, mimicking the continuous derivation of the Lagrangian equations of mo-
tion, extremize a discrete action on the time interval t ∈ [0, T ], over all possible
discrete paths of the form {q0, . . . , qk, . . . , qN}, where N = T/h. We begin with the
discrete Lagrangian

Ld(q
k, qk+1) '

∫ k+1

k

L(q, q̇)dt(2.1)

that gives a quadrature of the natural Lagrangian over a finite interval.
The sum of the discrete Lagrangians, over all intervals, then gives the correspond-

ing standard discrete action,

N−1∑
k=0

Ld(q
k, qk+1).(2.2)

Extremizing this associated discrete action then generates a unique, symplectic-mo-
mentum preserving integration scheme (Hairer, Lubich, and Wanner (2002)), with
accuracy specified by the order of the quadrature applied (West (2004)).

2.2. DELI. As a point of simple, novel departure, we now add the nonsmooth
penalty term to the discrete action and formulate a discrete, nonsmooth, constrained
Hamilton’s principle that enforces hard inequality constraints on all endpoints of the
discrete trajectory,

δk

N−1∑
k=0

(
Ld(q

k, qk+1)− IA(qk+1)
)
3 0.(2.3)
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Stationarity then gives us our constrained, Discrete Euler–Lagrange Inclusion (DELI),

D2Ld(q
t−1, qt) +D1Ld(q

t, qt+1)− ∂IA(qt) 3 0,(2.4)

qt+1 ∈ A.(2.5)

Given the last two configurations, qt and qt−1, the DELI integrator advances the state
to a new configuration, qt+1. Here, in this recursive form, we observe that discrete
constraint forces, applied to enforce constraints at the end of time-steps, are generated
by normal cones constructed at the beginning of time-steps.

We can further clarify this relationship by applying a momentum matching argu-
ment (West (2004)) (or, if preferred, a discrete Legendre–Fenchel transform) to obtain
the corresponding discrete momentum variables, pt and pt+1, as well as the discrete
phase-space map composed of a position-map inclusion,

D1Ld(q
t, qt+1) + pt − ∂IA(qt) 3 0,(2.6)

qt+1 ∈ A,(2.7)

and a corresponding momentum-map update equation,

pt+1 = D2Ld(q
t, qt+1).(2.8)

A one-step formulation of the DELI then follows. Given the discrete phase-
space pair, (pt, qt), at time t, we now apparently can solve the forward position map
system, (2.6) and (2.7), for the new constrained configuration qt+1. Then, with the
new configuration in hand, the discrete momentum update follows directly from (2.8).

2.3. The underdetermined forward map. We are now left with an interest-
ing question of causality with respect to constraints. In our above DELI we require
that corrective forces, that appear to be generated by the configuration at the begin-
ning of the time-step (i.e., at qt), enforce constraints on the configuration at the end
of the time-step.

In the direct methods we discussed above in section 1.3.1, constraint forces are
instead generated by configurations defined either somewhere in the middle of the
time-step, i.e., qt + αqt+1, α ∈ (0, 1), or else at the end, i.e., qt+1. When solv-
ing inclusions with these terms, the variational structure of the generalized gradient
then entirely specifies the constraint force. This, in turn, leads to the destruction
of the invariant preserving properties of the underlying unconstrained method. See
Appendix B for further discussion.

To retain the geometric properties of unconstrained methods we thus apparently
require some additional degree(s) of freedom in choosing our constraint forces. Due to
the odd time-causality noted above, the variational structure of our DELI formulation
no longer fully specifies constraint forces and thus provides such latitude for their
selection. To see this, we first observe that the DELI system merely requires constraint
forces to lie in the span of the normal cone generated by the configuration at time
t, i.e., −∂IA(qt). Since this cone is independent of final configuration, (2.6) specifies
only the span of possible constraint force directions but does not, unlike in direct-
substitution methods, pin down a corresponding force magnitude.

Thus, in the inequality-constrained setting, we observe that standard discrete
variational structure is not sufficient, on its own, to define a well-posed integrator. We
find that constraint forces must be applied along the directions positively spanned by
the normal cone and, likewise, all inequalities must be satisfied, but fundamentally,
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nothing further is specified. In particular, an underdetermined system is satisfied
by any number of solutions, most of which will not generate symplectic-momentum
preserving maps. Our proposed DELI formulation thus provides a framework for
numerical integration in addition to which further structure is required to compose a
fully specified integration method.

In the following sections we will propose the first instantiation of a DELI-based
method. We specifically note that the dichotomy between nonsmooth and smooth tra-
jectories is not well-resolved by the discrete variational framework. We will formulate
our DELI-based integrator by first considering both the structure of smooth trajecto-
ries and the corresponding nonsmooth case. We will then show how imposing discrete
analogues of these nonstandard structures on the DELI formulation composes a fully
defined DELI-based integration method and will consider the behavior obtained by
their application.

3. Time-continuous setting. In order to consider how to design such methods,
we first focus on the ways in which the flow of the constrained Hamiltonian system is
transported in the time-continuous setting.

3.1. Tangency and normality. As a first step we introduce a few useful no-
tational conventions and then briefly discuss variational structures that allow us to
generalize notions of tangency and normality for cases involving multiple active con-
straints.

3.1.1. Notation. For convenience, throughout the remaining sections we adopt
a constraint subset notation. Presuming, as above, that the full constraint set is
indexed by i ∈ {0, . . . ,m}, we then define, for each index subset K ⊂ {0, . . . ,m}, the
corresponding constraint subset,

g
K
(q)

def
=
(
g

k0
(q), . . . , g

kl
(q)
)T
, {k0, . . . , kl} ≡ K,(3.1)

constraint subset gradient,

GK(q)
def
=
(
∇g

k0
(q)T , . . . ,∇g

kl
(q)T

)T
, {k0, . . . , kl} ≡ K,(3.2)

and active constraint subset gradient,

(3.3) NK(q)
def
= GAK(q), AK =

{
i : gi(q) = 0, i ∈ K

}
.

Consistent with the notation introduced in section 1.1 for the vector-valued constraint
function, g(q), an absence of subscripting indicates that the entire constraint set is
considered. We then have G(q) = G{0,...,m}(q) and N(q) = N{0,...,m}(q).

3.1.2. Normal and tangent cones. The nonsmooth generalization of a nor-
mal, the inward pointing normal cone (Rockafellar (1970); Clarke (1983); Rockafellar
and Wets (1998)) to A at q can, in our context, be defined directly with respect to
the gradients of the constraint functions, g. It is given, with respect to the full active
constraint gradient, N(q), as {N(q) x : x ≥ 0}. Alternately, we note that for q in
A, the generalized gradient of the indicator function generates the outward pointing
normal cone to the feasible set. Thus, for all configurations we have

∂IA(q) = {−N(q) x : x ≥ 0}.(3.4)
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Fig. 3.1. A simple motivating example of smooth and nonsmooth trajectories for constrained
systems. See sections 3.2 and 3.4 for discussion.

We note that, in particular, the normal cone reduces, on the interior of A, to the single-
ton {0}. Correspondingly, recalling the Euler–Lagrange DI given in (1.5), trajectories
on the interior of the admissible set remain governed by the standard Euler–Lagrange
equations of motion.

Polar to the normal cone, the tangent cone to A at q can also be defined with
respect to the active constraint gradients, N, as

(3.5) T(q)
def
= {y : N(q)T y ≥ 0}.

When the admissible set is locally regular, the tangent cone, T(q), encodes the set of
feasible directions at q, along which infinitesimal motion is locally permissible while,
more generally as we will discuss below, tangent cones generate useful generalizations
of tangent spaces to nonsmooth regions of the boundary.

3.2. Constrained trajectories. In the inequality-constrained setting there is
a critical dichotomy between nonsmooth and smooth motion. Consider the simple
example of a mass-particle constrained to lie in a nonsmooth valley illustrated in
Figure 3.1(a). If the particle lies on the valley floor, then it could have arrived via
some motion that is locally tangent to the valley’s boundaries, such as moving along
the valley floor, e.g., the left arrow in Figure 3.1(a). In this case there exist smooth
trajectories, such as those continuing along the valley floor, that can continue to
satisfy admissibility. Alternately, the particle could have arrived at the valley floor
with a downward pointing velocity, e.g., the right arrow in Figure 3.1(a) and in the
cut-away view in Figure 3.1(b). In this case there are no possible smooth trajectories
that can continue to satisfy admissibility. A nonsmooth jump at the boundary is then
required.

To allow for the possibility of nonsmooth jumps we consider the left and right
limits of velocity,

q̇−(t) = lim
τ↑t

q̇(τ) and q̇+(t) = lim
τ↓t

q̇(τ),(3.6)

where we assume that q̇ has bounded variation on finite time intervals; limits on mo-
mentum follow similarly. We then consider trajectory intervals and events of interest
with respect to the constraint set.

Definition 1 (smooth trajectory intervals and nonsmooth trajectory events).
We identify smooth trajectory intervals as time intervals [a, b] ⊆ R, where q̇(t) =
q̇−(t) = q̇+(t) for all t ∈ [a, b], and nonsmooth trajectory events as times t ∈ R,
where q̇−(t) 6= q̇+(t).
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3.3. Kinematic conditions. Now consider the cut-away view of our point-mass
example again, shown in Figure 3.1(c), where both the tangent and negated tangent
cones are depicted. If the mass-particle lies on the boundary at time t, then it must
have approached the boundary (in the left time limit) with a velocity in the negated
tangent cone, since no other possible trajectory exists that could have reached the
boundary. Likewise, in order to remain an admissible trajectory, the particle must
leave the boundary (in the right time limit) with a velocity that is nonnegative with
respect to all active constraint gradients; thus, the right-limit velocity should lie in
the positive tangent cone.

This intuition is made rigorous by a lemma due to Moreau (1988, Proposition 2.2),
which says that a trajectory lies in the admissible region for all time if and only if left
velocities always lie in the negated tangent cone and right velocities lie in the positive
tangent cone.

Lemma 3.1.

q(t) ∈ A for all t ⇐⇒ q̇−(t) ∈ −T(q) and q̇+(t) ∈ T(q) for all t.(3.7)

For the nonsmooth case, as in the simple example discussed above, we expect
that the left limit will not equal the right, and thus we encounter a nonsmooth event
requiring an instantaneous jump. We will discuss the time-continuous, nonsmooth
case more thoroughly in section 3.5. First, however, we consider the time-continuous,
smooth case in greater detail.

3.4. Smooth trajectories. We note that smooth motion, with respect to in-
equality constraints, corresponds at all times either to (unconstrained) motion on the
interior of the admissible set or to any combination of the following boundary cases:
(1) encountering constraint boundaries tangentially, (2) leaving constraint boundaries,
or (3) tangential motion along constraint boundaries.

More concretely, smooth trajectory intervals are characterized by a tangent sub-
space condition.

Lemma 3.2. If [a, b] is a smooth trajectory interval, then

q̇−(t) = q̇+(t) ∈ −T
(
q(t)

)
∩ T
(
q(t)

)
for all t ∈ [a, b].(3.8)

Proof. The proof follows directly from Lemma 3.1 and Definition 1.

The intersection of the tangent cone and the negated tangent cone thus defines
the tangent subspace at nonsmooth portions of the admissible set boundary (see our
example in Figure 3.1(d)), along which smooth motion is possible and trivially gener-
ates the tangent space to smooth regions of the boundary. Conversely, we note that
if the left velocity lies in the tangent subspace, then, locally, an admissible smooth
trajectory exists.

In particular, while the structure of the normal cone implies that the standard
(pointwise) Signorini–Fichera (Kikuchi and Oden (1988)) complementarity2 condition,
g(q) ⊥ λ, holds everywhere, over smooth trajectory intervals, Lemma 3.2 and the
Euler–Lagrange DI in (1.5) imply that a stronger constraint-force continuity condition
also holds per constraint.

2Note that here and in what follows we are using the standard complementarity notation, x ⊥ y,
to indicate that xiyi = 0 holds componentwise for the matching entries of x, y ∈ Rm+1.
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Theorem 3.3. Let gi
(
q(a)

)
= 0 and ∇gi

(
q(a)

)T
q̇−(a) = 0; if λi(t) > 0 holds for

all t ∈ [a, b], then
(a) gi

(
q(t)

)
= 0, and

(b) ∇gi
(
q(t)

)T
q̇+(t) = 0

for all t ∈ [a, b].
Proof. We can equivalently define the inward pointing normal cone with respect

to all constraint gradients as G(q)λ = −∂IA(q) with gi(q) > 0 =⇒ λi = 0 and
λi > 0 =⇒ gi(q) = 0. In turn, this implies that if λi(t) > 0 on an interval, i.e.,
t ∈ [a, b], then we must correspondingly have gi(q(t)) = 0 for all t ∈ [a, b]. The chain

rule then gives ∇gi
(
q(t)

)T
q̇+(q(t)) = 0 on the same interval.

3.5. Nonsmooth motion. With these observations on smooth motion in place,
we now consider nonsmooth motion. As discussed above, when new constraints are
encountered nontangentially, i.e., from a normal direction, a nonsmooth trajectory
event occurs (see Figure 3.1(c)). In the general setting this corresponds to the case
where the left limit velocity lies strictly in the interior of the negated tangent cone
and requires the satisfaction of jump conditions.

Theorem 3.4. If q̇−(t) /∈ T(q), then
(a) q̇+(t) 6= q̇−(t),
(b) p+(t) = p−(t) + dp,
(c) dp ∈ −∂IA(q), and

(d) q̇+(t) ∈ T(q).
Proof. By Lemma 3.1, since q̇−(t) /∈ T(q), q̇−(t) must lie strictly in the interior of

−T(q) and, again by Lemma 3.1, the right feasibility satisfaction of q̇+(t) ∈ T(q) then
requires a nonsmooth trajectory event at time t where q̇+(t) 6= q̇−(t). To satisfy right
feasibility, a jump, dp, in momentum is required to obtain p+(t) = p−(t)+dp ∈ MT(q).
Finally, at t, the Euler–Lagrange DI reduces (Brogliato (1999)) to the measure-valued,
jump inclusion, dp ∈ −∂IA(q), which fully determines the feasible set of possible
jumps.

At nonsmooth trajectory events, however, although the measure-valued Euler–
Lagrange system, dp ∈ −∂IA(q), continues to enforce momentum conservation, it no
longer specifies energy behavior. Conservation of energy is then explicitly invoked by
the side condition

H(q, p+) = H(q, p−).(3.9)

The combined criteria of the jump conditions and energy conservation are satis-
fied by all conservative, nonsmooth jumps at the boundary of the admissible set. In
particular, these jump conditions uniquely define an energy and momentum preserving
reflection whenever a single constraint is considered. In the general, multiconstraint
setting, however, although the jump conditions effectively delimit the space of so-
lutions, an invariant preserving, constraint-enforcing impulse is no longer uniquely
given (Glocker (2004)). In these cases, jumps can effectively be resolved by any of an
infinite set of feasible corrective impulses.

We note, however, that a geometric treatment of inequality-constrained systems
requires a well-posed resolution of jumps with respect to multiple simultaneously
active constraints. Methods that satisfy well-posedness by providing uniquely defined,
physically motivated, multi-impact solutions for the multiconstraint setting are thus
desirable (Chatterjee and Ruina (1998)). In particular, in the following examples, we
employ the generalized reflection operator of Smith et al. (2012). Alternately, the
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multi-impact solutions of Moreau (1988) or Chatterjee and Ruina (1998) can also be
applied.

4. Discrete setting. Given the above analysis, we observe that nonsmoothly
constrained Hamiltonian systems correspond to smooth Hamiltonian systems almost
everywhere. At instants of transition, where new constraints are encountered or left
behind, either a smooth trajectory is maintained across the transition or a jump pro-
vides a nonsmooth mapping between two consistent smooth trajectories. For smooth
transitions, motion is given by the Euler–Lagrange DI while, for nonsmooth tran-
sitions, jumps instantaneously reflect to a new, energetically consistent, symmetry
preserving, smooth Hamiltonian flow. As discussed in sections 3.4 and 3.5, the condi-
tions specifying the mode of each such transition are entirely given by the relationship
between the left limit velocity and the tangent cone.

To carry these observations into the discrete setting, we will thus first consider
compatible, discrete-predicates for distinguishing between smooth and nonsmooth
transition modes at each time-step. With these predicates in place, we will then gen-
erate compatible discrete analogues of the time-continuous, smooth, and nonsmooth
maps.

As a prescriptive guide for constructing these maps, we next observe that if we
require our discrete maps to reduce to symplectic steps in the unconstrained case,
any obtained unconstrained step ending on the constraint boundary is always triv-
ially shadowed by an unconstrained numerical Hamiltonian system (Hairer, Lubich,
and Wanner (2002)). If the successive constrained time-step is discrete-smooth, then
we require the corresponding discrete-smooth map to be symplectic, so that it is
likewise consistently shadowed. Similarly, if a successive constrained time-step is
discrete-nonsmooth, then the corresponding discrete-nonsmooth jump-map should be
constructed so that it transitions to a new, uniquely defined, invariant preserving
numerical Hamiltonian system that is similarly consistent. Following this guide,
we conjecture that a piecewise-smooth, numerical Hamiltonian system, for the full
inequality-constrained system, can then be constructed by gluing together the cor-
responding smooth numerical Hamiltonians over successive smooth and nonsmooth
transitions.

Below we will employ the preceding time-continuous analysis to show one way
in which such discrete maps can be generated. The resulting integrator will, by
construction, attempt to preserve correspondence to such a composite, shadowing
Hamiltonian system. We note that one fundamental requirement of maintaining such
a correspondence is that all new constraint boundaries be considered, in the discrete
setting, only at the end (and/or beginning) of each time-step. Indeed, it is specifically
the explicit violation of this particular criterion that causes collision integrators to
perform so poorly in the nonsmooth case.3 With these observations in place we now
begin the development of our proposed DELI-based, nonsmooth geometric methods.

5. Discrete-smooth setting. In the discrete setting, smooth trajectory inter-
vals are determined by considering whether the discrete-analogue of the tangent sub-
space condition in (3.8) is satisfied at interval endpoints along the discrete path such
that

M−1pt ∈ −T(qt) ∩ T(qt).(5.1)

3Of course, by construction, collision integrators are explicitly designed only for the nonsmooth
case.
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We then identify each DELI forward map with a discrete-smooth interval on the
discrete path. Making all constraint functions and their gradients explicit in (5.1), we
find that the discrete left limit

gi(q
t) = 0⇐⇒ ∇gi(qt)TM−1pt = 0(5.2)

and discrete right limit

gi(q
t+1) = 0⇐⇒ ∇gi(qt+1)TM−1pt+1 = 0(5.3)

subspace tangency conditions simply require momentum to lie in the cotangent spaces
of all active constraints at the beginning and end of all smooth intervals.

The discrete analogue of the constraint-force continuity condition in Theorem 3.3
is then similarly given by

λi > 0 =⇒ gi(q
t+1) = 0.(5.4)

5.1. Discrete-Smooth Integrator. Reconsidering our derived DELI in (2.6)
we first make explicit constraint functions and their corresponding gradients to obtain
the equivalent forward map system,

D1Ld(q
t, qt+1) + pt + N(qt)λ = 0, λ ≥ 0,

g(qt+1) ≥ 0,

pt+1 = D2Ld(q
t, qt+1).

(5.5)

We then augment DELI with discrete left-limit tangency as a precondition, dis-
crete right-limit tangency as a postcondition, and discrete constraint-force continuity
over each smooth interval to obtain a DELI-based, Discrete-Smooth Integrator :

D1Ld(q
t, qt+1) + pt + N(qt)λ = 0,(5.6)

0 ≤ λ ⊥ g(qt+1) ≥ 0,(5.7)

pt+1 = D2Ld(q
t, qt+1) + N(qt+1) µ,(5.8)

N(qt+1)TM−1pt+1 = 0.(5.9)

An update step for the Discrete-Smooth Integrator is then generated by first solving
the position update equations, (5.6) and (5.7), for qt+1 and λ. A momentum update
then follows from solving (5.8) and (5.9) for pt+1 and µ.

We then observe the following.
Theorem 5.1. The Discrete-Smooth Integrator given in (5.6)–(5.9) is symplectic-

momentum conserving.
Proof. See Appendix C.
By construction, the method likewise preserves the subspace tangency of discrete-

smooth trajectories when moving along, leaving, and approaching constraint bound-
aries. Likewise, the integrator trivially reduces to the unconstrained symplectic
method, given by the discrete Lagrangian, on the interior of the admissible set.

5.2. Spring and sphere example. As an initial consideration of the Discrete-
Smooth Integrator and in comparison to the direct-substitution schemes discussed
in section 1.3.1, we examine the behavior of a simple, smooth trajectory system.
We consider the simple example of a four degrees of freedom, mass-spring system.
Configuration is given by the positions of two mass-particles, q = (q1, q2) ∈ R4,
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Fig. 5.1. As illustrated in (a), we consider a smooth trajectory of a constrained system com-
posed of a simple, four-dimensional, two-point, mass-spring system subject to a circle inequality
constraint and an outward-pulling, radial potential. We initialize both particles to a rotational tra-
jectory, initially tangent to the boundary, and note that all constraints and potentials are rotationally
invariant, and thus angular momentum should be preserved. Both methods investigated here begin
with implicit midpoint as the base, unconstrained numerical method and are stepped at h = 5×10−1.
In (b) we plot the energy (top line) and the angular momentum (bottom line) of the direct, endpoint-
constrained method for the first 100 units of simulation time. We note the decay in both angular
momentum and energy. In (c) we similarly plot the (approximate) preservation of energy (bottom
line) and (exact) conservation of angular momentum (top line) obtained by our Discrete-Smooth
Integrator to 1000 units of simulation time. See section 5.2 for further discussion.

connected by a spring. The system is subject to a standard spring potential between
particles and an outward pulling, radial potential, i.e., V (q) =

∑2
i=1 50/(qTi qi) + 1

2 (‖
q1 − q2 ‖ −l)2, with l = 2

√
2. In addition, we apply inequality constraints that

require the particles to lie in a sphere, gi(qi) = − ‖ qi ‖ +r ≥ 0, of radius r = 5. See
Figure 5.1(a). Note that all constraints and potentials in this example are rotationally
invariant, and thus angular momentum should be preserved by the system.

We initialize the example system to a smooth, rotational trajectory: both particles
start, at time t = 0, on the sphere boundary, q1(0) = (4,−3), q2(0) = (3,−4), with
corresponding unit length momenta that point counterclockwise and tangent to the
boundary. This initiates an on-boundary, counterclockwise rotation of the particles,
as well as an oscillatory motion between them. Both methods investigated here begin
with implicit midpoint as the base, unconstrained numerical method and are stepped
at h = 5× 10−1.

In Figure 5.1(b) we plot the energy (top line) and the angular momentum (bottom
line) of the direct, endpoint-constrained method for the first 100 units of simulation
time. We note that the decay in both angular momentum and energy for the direct
method corresponds to the destruction of both the rotational, and oscillatory modes
of the system.

In Figure 5.1(c) we similarly plot the (approximate) preservation of energy (bot-
tom line) and the (exact) conservation of angular momentum (top line) obtained by
our Discrete-Smooth Integrator out to 1000 units of simulation time. Throughout
this simulation both particles maintain the smooth, on-boundary, rotational, and os-
cillatory modes of the system.

Finally, we note that collision integrators are not suitable for application in such
examples since they are, as discussed above, formulated to resolve only nonsmooth
boundary interactions. Nevertheless if we do apply a collision integration scheme in
this smooth setting (effectively applying a microcollision model (Brogliato (1999))),
we observe that while energy behavior is not compelling (see section 6.1.1 for a similar
example), the trajectory is also qualitatively wrong; the nonsmooth reflections applied
by the collision integrator introduce an artificial, nonsmooth, normal, bouncing mode
(off the sphere boundary) that increases over time and eventually drives the system
to instability.
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6. Discrete-nonsmooth setting. If the discrete left smoothness predicate is
not satisfied at time t, the left-limit velocity must lie strictly in the negated tangent
cone such that M−1pt /∈ T(qt). A nonsmooth jump is then required to satisfy admis-
sibility. Following our discussion in section 3.5, we apply discrete, generalized, energy
preserving reflections to resolve these cases. Later, in section 6.3 we will focus on
how we derive such discrete generalized reflection operators. First, however, we will
consider the critical issue of when such reflections should be applied.

6.1. Extended reflections. In this section we temporarily ignore smooth mo-
tion and presume that all encounters with the admissible set boundary are nonsmooth
and are always resolved by the application of some energy preserving, generalized re-
flection (to be defined in section 6.3). Presuming that we apply an integrator that
reduces to a symplectic method in the unconstrained case, standard backwards error
analysis (Hairer, Lubich, and Wanner (2002)) guarantees that, away from boundaries,
there always exists a trajectory shadowing numerical Hamiltonian. In an ideal set-
ting, each such unconstrained, symplectic time-step would end either in the interior
or exactly on the boundary of the admissible set.

Correspondence to the conjectured piecewise-smooth, numerical Hamiltonian, dis-
cussed in section 4, then follows. Of course, such nice behavior cannot be expected in
our generally unsynchronized universe. Instead, we are faced with the likelihood that
most, if not all, new constraint boundaries will be encountered midstep.

The standard approach of existing collision integration schemes (see section 1.3.2)
is to take unconstrained symplectic steps until the admissible boundary is crossed.
When a boundary is crossed, collision integrators return to the beginning of the time-
step and then repeat the forward step using just the time-step fraction that lands
configuration exactly on the active boundary. An energy preserving reflection is then
performed using current state, and, finally, the integrator completes the remaining
portion of the full time-step.

A simple alternate approach that, to the best of our knowledge, we introduce for
the first time here, is to always take full time-steps, using augmented or extended re-
flections to incorporate otherwise missed constraint events. More concretely, we apply
smooth symplectic steps whenever the admissible boundary is not encountered from
a normal approach. Anytime current configuration, qt, indicates that a constraint is
active and/or a predictor configuration, qp, indicates that a constraint violation is
imminent or alternately, depending on the choice of predictor, has already occurred,
we perform a generalized reflection at the beginning (equivalently, end) of the time-
step, with respect to both active constraints and predicted active constraints. Once
the reflection is applied we then take the full smooth, symplectic step. This ensures
correspondence to the composite numerical Hamiltonian (as discussed in section 4)
at the cost of inducing errors in the representation of the local constraint boundary
geometry.

6.1.1. Pogo-stick example. To illustrate our new approach and to compare it
with collision integration schemes, we consider the simple example of a two degrees of
freedom, mass-spring system, subject to a single ground constraint. See Figure 6.1(b).
We apply Störmer–Verlet as the base, unconstrained numerical method. Configura-
tion is given by the positions of two mass-particles, vertically oriented, such that the
positions of the top and bottom mass-particles are given by q = (q1, q2)T ∈ R2. The
system is then subject to gravity and a ground-plane constraint on the bottom parti-
cle, g(q) = q2 ≥ 0. We set m = 1 for both mass-particles. The linear spring stiffness
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Fig. 6.1. In (a) we plot the energy for the same simple, two-dimensional, two-point, mass-spring
system, shown in (b) and discussed in Figure 1.4 and in section 6.1.1. Here we use exactly the same
physical parameters and algorithms as in the original example, with the exception that reflections for
both the collision integrator and our extended reflection method are formulated to conserve Verlet’s
second-order numerical Hamiltonian, rather than the standard continuous Hamiltonian. In (a) we
plot the energy for the first 1000 units of simulation time for both the collision integrator (top),
and our extended reflection scheme (bottom). Note that, after t = 713, the energy in the collision
integration system blows up.

is set to k = 10, spring length is l = 5, gravity is g = 9.8, and the base, unconstrained
step-size is h = 10−1.

In Figure 1.4(a) we plotted the energy of the standard collision integration ap-
proach and the energy of our new extended reflection approach using a simple forward
time-step predictor. In this first example both methods apply reflections that con-
serve the continuous Hamiltonian. The collision integration method, however, applies
reflections at times of contact with the floor, while, in this simple example, our ex-
tended reflection method reduces to simply applying reflections at the beginning of all
time-steps that would otherwise result in the bottom mass-particle passing through
the ground plane.

In the first time-period, shown in Figure 1.4(a), energy remains fully bounded
for the extended reflection method proposed here and, in particular, varies in the
expected manner of standard symplectic methods. Over the same period, the hybrid
solution experiences energy growth. After t = 546, energy in the collision integrator
enters a highly oscillatory regime, causing the solution to blow up. In Figure 1.4(b)
we continue the energy plot of our extended reflection approach to 100,000 units of
simulation time.

Of course we are not limited to continuous Hamiltonian conserving reflections.
We may, for instance, expect an improvement in behavior by applying reflections that
more closely conserve the shadowing numerical Hamiltonian. In Figure 6.1(a) we plot
the energy of exactly the same two simulations discussed above except, in this example,
we apply reflections that preserve Störmer–Verlet’s second-order numerical Hamilto-
nian (Bond and Leimkuhler (2007)). We observe a small improvement in the bounds
of the energy envelope for our extended reflection method. Similarly, we note that,
although the collision integration scheme still experiences energy growth, the obtained
solution does not blow up until later, at t = 713. Note that we could also consider
applying higher-order symplectic Gauss methods for unconstrained steps leading to
collisions (Bond and Leimkuhler (2007)). Given the persistence of constraint events,
however, this is effectively the same as simply switching to a higher-order, base, un-
constrained integrator for both methods.

6.2. Discrete limit momenta. We next observe that applying the constraint
force N(qt)λ in (5.5) with respect to the next time increment, t + 1, is indistin-
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guishable from directly modifying the discrete momentum, pt, at time t. We thus
decompose the constraint multipliers λ into right components, λ+ = λt

+

, given by
a previous nonsmooth reflection, and left components, λ− = λ(t+1)− , given by the
current discrete-smooth step. Applying an energy conserving, generalized reflection
operator at the end of time-step t, we then correspondingly obtain discrete analogues
of the left- and right-limit momenta,

pt
−

= pt,(6.1)

pt
+

= pt + N(qt)λ+.(6.2)

Here N(qt)λ+ gives the impulse generated by the reflection of pt
−

. Consistent with
our discussion in section 6.1, the above partition of λ requires generalized reflections
to be applied exclusively at the beginning (or equivalently, end) of each time-step.
Given our above analysis, we then include the extended reflection in our definition of
left and right discrete momenta.

At the beginning of each time-step, we augment the active set with the set of all
constraints that would be activated or violated by a predicted configuration. More
concretely, we predefine a consistent predictor configuration, qp, and then define an
extended active set,

(6.3)

A(qt, qp)
def
=
{
i : gi(q

p) ≤ 0, i ∈ {0, . . . ,m}
}
∪
{
j : gj(q

t) = 0, j ∈ {0, . . . ,m}
}
.

The corresponding extended discrete left and right momenta are then given by

pt
−

= pt,(6.4)

pt
+

= pt + GA(qt)λ+.(6.5)

6.3. Discrete generalized reflections. To compute the discrete reflection term
given in (6.5), we require a discrete generalized reflection operator, R, of the form

p+ = p− + GK(q)λ = R(q, p−,K, E),(6.6)

that defines a unique reflection with respect to an active constraint set K. We require
that any such reflection operator satisfy the discrete analogues of the jump conditions
from section 3.5, given by the discrete kinematic feasibility condition,

GK(q)TM−1
(
p− + GK(q)λ

)
≥ 0,(6.7)

the DELI condition,

p+ − p− = GK(q)λ, λ ≥ 0,(6.8)

and conservation of a specified energy function, E (e.g., the discrete, numerical, or
continuous Hamiltonian) such that

E(q, p+) = E(q, p−).(6.9)

As in the time-continuous case, whenever multiple active constraints are con-
sidered, i.e., |K| > 1, this problem is underdetermined. From the infinitely many
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possible solutions, we select the one obtained by applying a discrete adaptation of the
generalized reflection operator of Smith et al. (2012). This operator simultaneously
guarantees uniqueness, determinism, and spatial-symmetry-preservation and satisfies
all jump conditions when multiple constraints are active. It is not, however, reversible,
and thus, even when employed with a symmetric integrator, breaks time-reversibility.
In Appendix A we briefly derive this discrete extension and provide pseudocode for
the implementation we employ.

7. Generalized discrete setting. Returning to the full setting where both
discrete-smooth and discrete-nonsmooth modes are possible, we finally consider a
fully general DELI-based system. Starting with the DELI system given by (2.6), (2.7),
and (2.8), recall that in section 5 we presumed, a priori, the precondition of the left
discrete-smoothness criteria to obtain the Discrete-Smooth Integrator given by (5.6)–
(5.9). In the general setting, however, at any time a subset of the active constraints
may be discrete-smooth, while their complement may be discrete-nonsmooth. In such
cases we can expect that momentum will be negative with respect to some constraint
gradients, and thus nonsmooth modes will be present.

To partition out constraint subsets that satisfy the discrete-smooth precondition
at time t, we define the smooth constraint set as the set of discrete-smooth constraints,
with respect to the discrete-right time-limit at t,

S(qt, pt
+

)
def
=
{
i : ∇gi(qt)TM−1pt

+

= 0 and gi(q
t) = 0, i ∈ {0, . . . ,m}

}
.(7.1)

Then, adding the discrete left and right jump terms given by (6.4) and (6.5), we include
reflections and obtain a full, discrete, generalized extension of DELI for inequality-
constrained systems,

pt
+

= pt + GA(qt)λ+,(7.2)

D1Ld(q
t, qt+1) + pt

+

+ NS(qt)λ− = 0,(7.3)

0 ≤ λ− ⊥ gS(qt+1) ≥ 0,(7.4)

pt+1 = D2Ld(q
t, qt+1) + NS(qt+1) µ,(7.5)

NS(qt+1)TM−1pt+1 = 0.(7.6)

7.1. Algorithm. With the above developments in place, our proposed discrete,
Generalized Variational Integrator (GVI) for fully generalized inequality-constrained
systems is then given by the pseudocode below in Algorithm 1. A GVI takes as input
the current state, the selected energy function, and the position predictor. It then
computes the GVI step and outputs the next state.

Algorithm 1 GVI(q, p, E, qp) // input: qt, pt, energy function, position predictor

1: qold ← q // cache current position

2: A←
{
i : gi(q

p) ≤ 0, i ∈ {0, . . . ,m}
}
∪

{
j : gj(q) = 0, j ∈ {0, . . . ,m}

}
// compute active set

3: p← R(q, p,A, E) // apply generalized reflection

4: S←
{
i : ∇gi(q)TM−1p = 0 and gi(q) = 0, i ∈ {0, . . . ,m}

}
. // compute smooth set

5: q←
{
x : D1Ld(q, x) + p + NS(q)λ = 0, 0 ≤ λ ⊥ gS(x) ≥ 0

}
// apply position update

6: p←
{
y : y = D2Ld(qold, q) + NS(q) µ, NS(q)TM−1y = 0

}
// apply momentum update

7: return q, p // output: qt+1, pt+1
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For entirely smooth trajectories, the accuracy of the above GVI method is given
by the order of the quadrature employed in the corresponding discrete Lagrangian.
However, when the full splitting method is employed, e.g., due to encountered impacts,
the GVI then reduces to first order. Indeed, given that we choose to reflect velocity
instantaneously at the beginning of each time-step, without time adaptation to localize
instants of collision, higher order cannot be expected.

7.2. Bilateral constraints. Finally, we now further presume that, in addition
to the set of inequality constraints, we also wish to enforce a set of equality con-
straints, as given by (1.1). When we consider equality constraints, we observe that
the admissible set is now given by a projection of the inequality constraints onto the
manifold defined by the additional equality constraints. In turn, this implies that
normal cones are now given by the negative span of the active inequality constraint
gradients, projected down to the cotangent spaces of the equality constraint manifold.

It then remains to note that, in the generalized constraint setting, we treat equal-
ity constraints as active at all times. We then can add the equality constraints, f,
and their corresponding gradients, which we will denote by F, to our discrete-smooth
formulation during all time-steps.

For our GVI methods, this requires three basic changes. First, for arbitrary
inequality constraint subsets, K, the corresponding active inequality gradient subset
must be projected onto the local manifold’s cotangent space at q. Thus, when equality
constraints are applied, we project4 the active constraint gradient and redefine as

NK(q)
def
=
(
I −

(
F(q)TM−1F(q)

)+
F(q) F(q)TM−1

)
GAK(q),

AK =
{
i : gi(q) = 0, i ∈ K

}
.

(7.7)

Next, we simply modify the two constrained updates in pseudocode, given in Al-
gorithm 1, to include the equality constraints. We then obtain a new generalized
equality-inequality position update step (to replace line 5 in the pseudocode):

q←
{
x : D1Ld(q, x) + p + NS(q)λ+ F(q)ν = 0, 0 ≤ λ ⊥ gS(x) ≥ 0, f(x) = 0

}(7.8)

and a corresponding momentum update step (to replace line 6 in the pseudocode):

p←
{
y : y = D2Ld(q

old, q) + NS(q)µ+ F(q)ξ, NS(q)TM−1y = 0, F(q)TM−1y = 0
}
.

(7.9)

Otherwise, the remaining pseudocode and all other previous discussions, derivations,
and guarantees (smooth-interval symplecticity, momentum conservation, etc.) con-
tinue to hold.

8. Further numerical examples. To understand and examine the behavior
of the algorithms proposed here, we investigate implementations of the GVI over a
range of additional numerical examples. Although a wide variety of predictors can be
employed, in the following examples we exclusively apply the simple, unconstrained,
forward predictor,

qp = {x : D1Ld(q
t, x) + pt = 0},(8.1)

4Here ·+ indicates the standard matrix pseudoinverse.
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and reserve an investigation of alternate predictors for future research. We implement
implicit midpoint and Störmer–Verlet based GVI schemes using the implicit midpoint
quadrature,

Ld(q
k, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
,(8.2)

and the Verlet quadrature,

Ld(q
k, qk+1) =

h

2

(
L

(
qk,

qk+1 − qk

h

)
+ L

(
qk+1,

qk+1 − qk

h

) )
,(8.3)

respectively.

8.0.1. Nonlinear oscillator. To examine a nonintegrable system and momen-
tum conservation properties, we next consider the example of a nonlinear oscillator in
R2. We start with two spheres in the plane, with respective positions q1 and q2 in R2

and radii r1 and r2. The full configuration is then q = (q1, q2)T with a corresponding
nonlinear potential for the oscillator

V (q) =

2∑
i=1

‖ qi ‖2 (‖ qi ‖2 −1)2.(8.4)

See Figure 8.1. We then impose the hard-sphere, nonoverlap constraint between the
two spheres using the nonlinear, inequality constraint

g(q) =‖ q1 − q2 ‖ −r1 − r2 ≥ 0.(8.5)

Note that both the potential and constraint in this example are invariant with respect
to rotations, and thus angular momentum should be conserved.

For this example all methods considered begin with implicit midpoint as the base,
unconstrained numerical method. We then set the step-size to h = 10−1, and mass
and sphere radii are set to m = 1 and r = 1, respectively, for

p1(0)

p2(0)

Fig. 8.1.

both particles. The starting configuration is given such that the
particles are initially separated at the nonequilibrium position,
q1(0) = (0,−r − 4 × 10−1)T , q2(0) = (0, r + 4 × 10−1)T , while
the initial momentum initiates a counterclockwise rotation with
p1(0) = (1, 0)T and p2(0) = (−1, 0)T . The system should then,
as illustrated in Figure 8.1, enter into a relative equilibrium com-
posed of periodic bouncing between the particles combined with
a global rotation of the full system about the origin.

We compare the results of the endpoint-constrained direct
method. In Figure 8.2(a), as might be expected, the endpoint-constrained direct
method quickly dissipates all normal modes of oscillation between the two spheres.
After this initial dissipation, the spheres enter a relative equilibrium in which they
orbit, in constant contact, with a purely smooth motion. This latter mode corresponds
exactly to an endpoint-constrained direct method applied to a smooth system. As
discussed in section 3.1, direct methods applied to smooth motion are likewise not
symplectic and thus are still not guaranteed to preserve energy. This is reflected in
Figure 8.2(a), where the system continues to generate correspondingly poor energy
behavior. In particular, for this latter phase, we see slow but continual energy growth.
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Fig. 8.2. Nonlinear oscillator example. In these figures we examine the behavior of various
algorithms on the nonlinear oscillator example in two dimensions. All methods shown begin with
implicit midpoint as the base, unconstrained numerical method. See Figure 6.1(c) and section 8.0.1
for further details. Top and bottom plot energy and angular momentum, respectively. Note that both
energy and angular momentum should be preserved in this example. In (a) we plot the endpoint-
constrained direct method. In (b) we plot the standard hybrid method. In (c) we plot the GVI,
where energy and angular momentum are both preserved long-term. Finally, in (d), to highlight
the importance of enforcing nonlinear constraints appropriately, we plot the GVI using linearized
constraints. Note that, for this last example, the GVI method continues to preserve energy; how-
ever, linearized constraints will no longer preserve rotational symmetry, and thus, correspondingly,
angular momentum is no longer preserved.

In Figure 8.2(b) the standard collision integration method likewise displays poor
energy behavior. As discussed in section 1.3.2, energy drift (in the form of dissipation
in this case) is generated, in collision integrators, by the interleaving of reflections with
variable step-size, unconstrained integration steps. The reflection impulses, however,
are applied along constraint gradients evaluated at the time of constraint activation,
and thus, despite the poor energetic behavior, momentum is conserved due to the
rotational invariance of the constraint function.

In Figures 8.2(c) and (d) we plot GVI using the true nonlinear constraints and
linearized variants, respectively. Our GVI method, plotted in Figure 8.2(c), enforces
the true nonlinear constraints and correspondingly we note that both approximate
energy and exact angular momentum are conserved long-term, while the combined
nonsmooth, rotational, and oscillatory modes are all preserved. Finally, we note that,
when applied to linearized constraints, as in Figures 8.2(d), GVI continues to preserve
energy, but, due to constraint linearization, rotational invariance no longer holds, and
thus angular momentum is no longer conserved. This highlights the cost of linearizing
constraints when applying geometric methods.

8.1. Smooth and nonsmooth; spring and sphere. As a first consideration
of an example with combined smooth and nonsmooth boundary modes, we reconsider
our spring and sphere example from section 5.2. In this example we leave all physical
and time-step parameters unchanged from section 5.2 except that we now initialize
the example system to a combined smooth and nonsmooth, rotational trajectory.
We initialize the first particle to an off sphere boundary position at q1(0) = (4,−1).
We then set the second particle to an on-boundary position, q2(0) = (3,−4). See
Figure 8.3(a). As in section 5.2 both particles are initialized with corresponding
unit length momenta that point counterclockwise and tangent to the boundary. This
initiates a counterclockwise rotation for both particles with an oscillatory motion
between them via forces applied by the spring. The first particle, however, should
now begin a nonsmooth oscillatory bouncing off the surface, while the trajectory of the
second particle should remain smooth and on-boundary throughout the simulation.
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Fig. 8.3. We consider the combined smooth and nonsmooth trajectory of a constrained system
composed of the same simple constrained mass-spring system considered in section 5.2 and Fig-
ure 5.1. Unlike the previous example, however, we now initialize the first particle to an off sphere
boundary position and set the second particle to an on-boundary position as illustrated in (a). As in
section 5.2 both particles are initialized with corresponding unit length momenta that point counter-
clockwise and tangent to the boundary. This initiates a counterclockwise rotation for both particles
with an oscillatory motion between them via forces applied by the spring. The first particle, however,
should now begin a nonsmooth oscillatory bouncing off the surface, while the trajectory of the sec-
ond particle should remain smooth and on-boundary throughout the simulation. Otherwise all other
physical parameters remain unchanged from the last example. In (b) we plot the energy (top line)
and the angular momentum (bottom line) of the direct substitution, endpoint-constrained, method
for the first 100 units of simulation time. We note the dissipation in both angular momentum and
energy. This includes a rapid decay of all nonsmooth bouncing modes. In (c) we similarly plot the
(approximate) preservation of energy (bottom line) and (exact) conservation of angular momen-
tum (top line) obtained by GVI out to 1000 units of simulation time. See section 8.1 for further
discussion.

In Figure 8.3(b) we plot the energy and the angular momentum of the direct,
endpoint-constrained method for the first 100 units of simulation time. We note that
decay in both angular momentum and energy for the direct method corresponds to
the destruction of both the nonsmooth and smooth modes of the particles, as well
as the rotational and oscillatory modes of the system. In Figure 8.3(c) we similarly
plot the (approximate) preservation of energy and the (exact) conservation of angu-
lar momentum obtained by our GVI method out to 1000 units of simulation time.
Throughout this simulation, GVI maintains the nonsmooth bouncing mode of the first
particle, the smooth, on-boundary mode of the second particle, and the rotational and
oscillatory modes of the full system.

8.1.1. Newton’s cradle. Next we examine an example with combined smooth
and nonsmooth boundary modes and the simultaneous enforcement of both equality
and inequality constraints. We consider the classic, pendulum-based, Newton’s cradle
system composed of n initially touching spheres subject to gravity. Each sphere
i ∈ [1, n] is constrained by a corresponding equality constraint,

fi(q) = ‖ qi − pi ‖ − l = 0,(8.6)

to remain at constant length l from its hanging attachment point pi. Neighboring
pairs i, j of spheres are then further constrained by nonoverlap constraints

gi,j(q) = ‖ qi − qj ‖ −ri − rj ≥ 0.(8.7)

Thus, for an n-sphere cradle we enforce n bilateral and n − 1 unilateral constraints
and obtain a combination of smooth motion along the constraint boundary interfaces
between neighboring spheres in moving and resting clusters, holonomic motion along
the manifolds given by the pendulum constraints, and nonsmooth motion at each
sphere impact.
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Fig. 8.4. Newton’s cradle example. In (a) we compare the results of our implicit midpoint based
GVI method applied to a Newton’s cradle system over a range of decreasing step-sizes, h = 3×10−2

(green), 2 × 10−2 (blue), 10−2 (red), and 5 × 10−3 (black). We note that in the passage from
h = 3 × 10−2 to h = 10−2, we obtain the classic transition to stable energy behavior that is
characteristic of symplectic methods. In (b) we illustrate the behavior of the integrator with a
series of snapshots from the simulation.

For this example we begin with implicit midpoint as the base, unconstrained
numerical method. We then set the masses, sphere radii, and pendulum lengths to
m = 1, r = 0.25 and l = 1, respectively, for all spheres. We examine a five-ball
cradle. The starting configuration is given such that all but the two leftmost spheres
are at rest and in contact. The two leftmost spheres are initially pulled back into
a nonequilibrium, contacting position, at an angle of −π/5 from rest. The system
should then enter into the characteristic Newton’s cradle behavior as illustrated by
the simulation snapshots shown in Figure 8.4(b).

We compare the results of GVI over a range of decreasing step-sizes. In Fig-
ure 8.4(a) we plot the obtained energy for h = 3×10−2, 2×10−2, 10−2, and 5×10−3.
We note that in the passage from h = 3 × 10−2 to h = 10−2 we obtain the clas-
sic transition to stable energy behavior that is characteristic of symplectic methods.
Furthermore, as step-size decreases, the cradle preserves the correct cyclical behavior,
expected from Newton’s cradle, for increasingly longer periods.

8.1.2. Interacting constrained particles under Lennard–Jones. Finally,
motivated by potential applications in molecular dynamics (Frenkel and Smit (2001)),
we consider the example of six spheres in R3, i.e., q = (qT1 , . . . , q

T
6 )T ∈ R18, connected

sequentially by bilateral rod constraints,

fi,j(q) = ‖ qi − qj ‖ − l = 0.(8.8)

Sphere-pairs are constrained by nonoverlap conditions,

gi,j(q) = ‖ qi − qj ‖ −2r ≥ 0,(8.9)

interact in a Lennard–Jones potential,

V (q) =
∑
i,j

4ε
[( σ

‖ qi − qj ‖
)12

−
( σ

‖ qi − qj ‖
)6]

,(8.10)

and are further constrained to lie in the interior of a bounding sphere of radius rB so
that, additionally,

gi,b(q) = − ‖ qi ‖ −r + rb ≥ 0.(8.11)
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Fig. 8.5. Lennard–Jones example. In these figures we examine the behavior of Störmer–Verlet
based GVI on a system of six spheres in R3 connected sequentially by rods and interacting in a
Lennard–Jones potential. In (a) we take a snapshot of the system configuration, (b) traces the
entire trajectory of all sphere centers over 2000 units of simulation time, stepped at h = 10−2, while
(c) plots the change in energy over the same trajectory.

In our simulation we employ reduced time units, (mσ2/ε)1/2, with the mass of all
particles set to unity, σ/2 = r = 0.3, rb = 5, and l = 1. Figure 8.5(a) shows a snapshot
of the system configuration. Figure 8.5(b) traces the entire trajectory computed by
Störmer–Verlet based GVI of all particle centers over 2000 units of simulation time,
stepped at h = 10−2, while Figure 8.5(c) plots the change in energy over the same
trajectory.

9. Discussion, limitations, and future work. We have introduced a fully
nonsmooth, discrete Hamilton’s principle and an associated DELI integration formu-
lation that enables the generation of VI-based, geometric methods for the numerical
integration of generalized inequality-/equality-constrained, nonsmooth Hamiltonian
systems. Adding additional structure to this framework, we have obtained the first
family of DELI-based integration methods: GVIs. By construction, the GVI methods
proposed here preserve momentum and equality constraints. They enforce simultane-
ous inequality constraints, obtain smooth unilateral motion along constraint bound-
aries, and allow for both nonsmooth and smooth boundary approach and exit trajec-
tories. Finally, we have shown that the proposed GVIs are symplectic over smooth
trajectory intervals and are observed to have good energy behavior throughout.

We have validated these properties in our numerical experiments and compared
them against corresponding direct substitution and collision integration schemes in
the literature. We have shown that our proposed methods resolve systems subject
to multiple persistent, frequent, and/or simultaneously active constraints. We have
further tested these methods on difficult scenarios, where both smooth and nonsmooth
active constraint modes occur simultaneously with high frequency, generally, in many
of the examples presented above, during the majority of time-steps.

As we discuss in section 6.1, the GVI methods cannot guarantee admissibility. By
construction our extended reflections approach will allow some constraint violation
whenever a constraint boundary is approached in the normal direction. It remains
a very interesting open problem as to whether a method can be constructed, either
using the DELI framework or otherwise, that simultaneously guarantees admissibility,
long-term energy behavior, and momentum preservation. One step toward this inves-
tigation is the utilization of more complex predictors in extended reflections. In this
work, as discussed in section 8, we have applied only the simplest possible predictor
(8.1) in all of our examples. Consideration of alternate predictors remains for future
work.
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We have observed that improved energy behavior is obtained by resolving non-
smooth modes at fixed time intervals. However, leveraging this observation in our
GVIs comes at the cost of reduced order (section 7.1). This leaves open yet an-
other interesting question of how to best compose higher-order nonsmooth methods
that both preserve structure and better localize the time and location of boundary
collisions.

In many of the above examples, potentially difficult, nonlinear, numerical op-
timization problems were solved. In particular, we note that the complementarity
conditions in our Discrete-Smooth Integrator are, unlike more standard KKT-type
complementarity conditions, asymmetric with respect to constraint and constraint
gradient evaluations. As such, (5.6)–(5.9) do not correspond to the optimality con-
ditions of standard nonlinear optimization problems (Bertsekas (1999)) but instead
require customized numerical solution strategies. In this work we have focused on
investigating the challenges of inequality-constrained, numerical integration and on
developing and validating our proposed methods. In future work we will explore
efficient computational techniques for the scalable solution of these DELI-derived op-
timization problems. In practice, however, for the numerical experiments discussed
here, we have found that relatively simple customized approaches were possible that
allowed for efficient solutions, while preliminary experiments investigating the possi-
bility of extending these approaches to larger-scale problems are promising.

Further, we look forward to examining the potential trade-offs between energy
behavior and various degrees of constraint enforcement guarantees. Finally, we note
that GVI methods are the first of many possible instantiations of DELI methods.
The geometric integration of inequality-constrained systems clearly remains a highly
challenging area of investigation. Our hope is that the DELI framework will lead to
further explorations and new developments in the field.

Appendix A. The discrete generalized reflection operator. For an arbi-
trary choice of energy function, E(q, p), we invoke the variational model from Smith
et al. (2012), in which a generalized reflection operator is interpreted as a sequence of
energy preserving, constraint satisfying projections. Following their time-continuous
case derivation, we then generate the corresponding discrete generalized reflection
analogue as the discrete, energy preserving, constraint satisfying projection sequence
defined in Algorithm 2 below.

Theorem A.1. At termination, Algorithm 2 satisfies all discrete jump condi-
tions.

Proof. By construction, each iteration satisfies conditions (6.8) and (6.9). Termi-
nation guarantees condition (6.7).

When the energy function is given by the separable continuous Hamiltonian, e.g.,
E = H, the discrete generalized reflection operator is identical to the time-continuous
case considered in Smith et al. (2012). In this case each solve of line 9 in Algorithm 2
is obtained by the nonnegative, least-squares solution

argmin
y

{
‖GV(q)y + 2p‖2

M−1 : y ≥ 0
}
.(A.1)

More generally, whenever the energy function is quadratic in p, e.g., as in the Störmer–
Verlet second-order numerical Hamiltonian (Bond and Leimkuhler (2007)), the solu-
tion to line 9 is likewise given by a nonnegative, linear least-squares system. For
energy functions containing higher-order polynomials in p, more complex, variational
treatments are required.
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Algorithm 2 Discrete Generalized Reflection(q, p,K, E)

1: while true do
2: V← ∅
3: for k in K do
4: if ∇g

k
(q)TM−1p < 0 then

5: V← k
6: end if
7: end for
8: if V 6= ∅ then

9: λ←
{
y : E(q, p+GV(q)y) = E(q, p), GV(q)TM−1

(
p+GV(q)y

)
≥ 0, y ≥ 0

}
10: p← p + GV(q)λ
11: else
12: return p
13: end if
14: end while

Finally, we note that, as discussed above, GVI is agnostic to the choice of reflection
model as long as a well-posed solution exists that satisfies the discrete jump conditions
(6.7)–(6.9). As in the case of the generalized reflection operator, alternate existing
multi-impact models can be similarly discretized to do so. As a particularly compact
example, Moreau’s elastic multi-impact solution (Moreau (1988)) can be discretized
to obtain the energy preserving discrete reflection given in Algorithm 3 below.

Algorithm 3 Discrete Moreau Reflection(q, p,K, E)

1: λ←
{
y : E(q, p + GK(q)y) = E(q, p), GK(q)TM−1

(
p + GK(q)y

)
≥ 0, y ≥ 0

}
2: p← p + GK(q)λ
3: return p

Appendix B. Direct substitution schemes. As discussed above, an extended
value potential for inequality-constrained systems can be composed by concatenating
the unconstrained Hamiltonian system’s potential with the extended value indicator
function. Following this observation, the direct substitution approach in symplectic
methods (Kane et al. (1999); Stewart (2000); Pandolfi et al. (2002); Deuflhard, Krause,
and Ertel (2008)) is to compose direct extensions by treating the nonsmooth constraint
force, −∂IA(q), as simply an additional force to be handled by each numerical method
in the usual manner.

B.1. Direct integration examples. To illustrate this approach, in the follow-
ing we will present examples using two popular integration approaches: the implicit
midpoint method and the Newmark family of integration algorithms.

B.1.1. Implicit midpoint method. The implicit midpoint method is given by
the discrete, momentum, phase-space pair

qt+1 = qt +
h

2
M−1(pt+1 + pt),(B.1)

pt+1 = pt − h∇V
(
qt+1 + qt

2

)
.(B.2)
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A direct-substitution, nonsmooth-constrained extension to the midpoint rule is
generated by adding the extended value indicator to the unconstrained system’s po-
tential. Applying a generalized gradient, this gives

qt+1 = qt +
h

2
M−1(pt+1 + pt),(B.3)

pt+1 ∈ pt − h∇V
(
qt+1 + qt

2

)
− h∂IA

(
qt+1 + qt

2

)
.(B.4)

An alternate, endpoint-constrained variant of implicit midpoint can be obtained
by simply evaluating constraint forces at the end of the time-step (Stewart (2000)).
This leads to the modified midpoint method momentum update

pt+1 ∈ pt − h∇V
(
qt+1 + qt

2

)
− h∂IA(qt+1).(B.5)

B.1.2. Newmark methods. The Newmark family of integration schemes is
given by the discrete, velocity, phase-space pair

qt+1 = qt + hq̇t − h2

2

[(
1− 2β

)
M−1∇V (qt) + 2β M−1∇V (qt+1)

]
,(B.6)

q̇t+1 = q̇t − h
[(

1− γ
)
M−1∇V (qt) + γ M−1∇V (qt+1)

]
.(B.7)

Recall that Newmark methods vary β ∈ [0, 1
2 ] and γ ∈ [0, 1]. Newmark is second-order

accurate if and only if γ = 1
2 ; otherwise it is only consistent. Implicit Newmark with

β = 1
4 and γ = 1

2 gives the implicit trapezoidal method, while β = 0 and γ = 1
2 give

explicit Newmark.
A direct-substitution, nonsmooth-constrained extension of the Newmark family

is generated by adding the extended value indicator to the unconstrained system’s
potential. Applying a generalized gradient, this gives

qt+1 ∈ qt + hq̇t − h2

2

[(
1− 2β

)
M−1

(
∇V (qt) + ∂IA(qt)

)
(B.8)

+ 2β M−1
(
∇V (qt+1) + ∂IA(qt+1)

)]
,

q̇t+1 ∈ q̇t − h
[(

1− γ
)
M−1

(
∇V (qt) + ∂IA(qt)

)
(B.9)

+ γ M−1
(
∇V (qt+1) + ∂IA(qt+1)

)]
.

An implicit/explicit (IMEX) variant of this extension was developed by Kane et al.
(1999) in which both β and γ are enforced as fully implicit values (i.e., β = 1

2 , γ = 1)
for just the nonsmooth portion of the composite potential. This generates a family of
nonsmooth IMEX Newmark integrators given by

qt+1 ∈ qt + hq̇t − h2

2

[(
1− 2β

)
M−1∇V (qt) + 2β M−1∇V (qt+1)

]
(B.10)

− h2

2
M−1∂IA(qt+1),

q̇t+1 ∈ q̇t − h
[(

1− γ
)
M−1∇V (qt) + γ M−1∇V (qt+1)

]
−hM−1∂IA(qt+1).(B.11)
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B.2. Variational interpretation of direct nonsmooth integrators: Opti-
mization forms. Given the explicitly variational definition of the generalized gra-
dient (Rockafellar and Wets (1998)), direct, nonsmooth constrained extensions of
symplectic methods, as described above, generally reduce to constrained, nonlinear
minimizations of the form

qt+1 = argmin
q

{
e(qt, q, h) : f(qt, q, h) ∈ A

}
.(B.12)

Interpreted in this equivalent form, symplectic methods, applied to Hamiltonian
systems, generate an objective function, e, generally polynomial in q, and a vector-
valued, constrained configuration function, f, linear in q.

B.2.1. Implicit midpoint example. As an example, consider the nonsmooth
midpoint rule. We substitute (B.4) into (B.3) to obtain the DI

qt+1 ∈ qt + hM−1pt − h2

2
M−1∇V

(
qt + qt+1

2

)
− h2

2
M−1∂IA

(
qt + qt+1

2

)
.(B.13)

Applying the definition of the generalized gradient, we then obtain an equivalent local,
nonlinear minimization that corresponds to the template given by (B.12),

qt+1 = argmin
q

{
1

2
qTM q− qT

(
qt + hM−1pt

)
+ h2V

(
qt + q

2

)
:

(
qt + q

2

)
∈ A

}
.

(B.14)

Rearranging (B.3) the corresponding midpoint method’s, momentum update is then
given by

pt+1 =
2

h
M(qt+1 − qt)− pt.(B.15)

Newmark and other direct methods follow similarly.

B.3. Direct method behavior. Unfortunately, many of the characteristic ad-
vantages of symplectic methods are lost in the above direct nonsmooth treatment.
The chief observation is that, in the smooth setting, the good behavior of symplectic
methods is ascribed, via backwards error analysis, to the existence of trajectory shad-
owing numerical Hamiltonians (Hairer, Lubich, and Wanner (2002)). More specifi-
cally, the flow of fixed-step, symplectic methods follows, up to truncation, a numerical
Hamiltonian system that is constructed via a series expansion. Because the numerical
Hamiltonian is obtained under a smoothness assumption that does not hold in the
nonsmooth case, standard backwards error analysis guarantees no longer hold for the
inequality-constrained systems (Stewart (2000); Bond and Leimkuhler (2007)).

Despite these issues, during free motion (i.e., when constraints are inactive), these
nonsmooth-constrained symplectic methods trivially reduce to their corresponding un-
constrained method and are thus still guaranteed to shadow numerical Hamiltonians.
At each constraint boundary event, however, this guarantee is lost, and the solution
obtained no longer matches the shadow trajectory.

In practice, it is exactly at these boundary events that such direct methods ob-
tain a wide variety of incorrect and undesirable behaviors. Constraint enforcement
generates dissipative trajectories for some direct methods, energy growth in others,
and in many cases produces effectively nondeterministic restitution behavior both
when varying time-step sizes across simulations and within a single fixed step-size
simulation (Stewart (2000)).
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B.4. No energy conservation. Considering (B.12), we note that, perhaps sur-
prisingly, a large reason for these difficulties stems directly from the underlying vari-
ational structure of these methods.

Theorem B.1. All direct, one-step, nonsmooth symplectic methods that can be
posed in the form of (B.12), cannot, in general, preserve, either approximately or
exactly, the energy of the underlying unconstrained symplectic method.

Proof. For all such methods, (B.12) can be rewritten, with respect to the con-
straint functions, as

qt+1 = argmin
q

{
e(qt, q, h) : g

(
(1− α)qt + αq

)
≥ 0

}
(B.16)

for some fixed α ∈ (0, 1].
We then note that we retrieve the solution of the underlying, unconstrained sym-

plectic method by solving for q in

∇qe(q
t, q, h) = 0.(B.17)

The constrained variant will return this solution for any step in which the uncon-
strained solution returns a nonviolating configuration. More generally, formulating
the KKT first-order optimality conditions (Bertsekas (1999)), for the above mini-
mization, we obtain, for optimal qt+1 = q,

∇qe(q
t, q, h)− α∇g

(
(1− α)qt + αq

)
λ = 0,(B.18)

0 ≤ λ ⊥ g
(

(1− α)qt + αq
)
≥ 0.(B.19)

We then consider any time-step in which an unconstrained solution violates con-
straints. The above KKT system implies that constraint forces are applied along
constraint gradients and, more specifically, are of the form α∇ g λ, λ ≥ 0.

The complementarity term of the above KKT system then additionally requires,
componentwise, that a constraint force magnitude, applied along the gradient ∇gi,
can be nonzero (and thus can enforce the corresponding constraint, gi) if and only if

gi

(
(1− α)qt + αqt+1

)
= 0.(B.20)

Thus constraining forces can only be applied along constraint gradients (to enforce
feasibility) if the position at which the constraint force is evaluated, (1 − α)qt +
αqt+1, lies exactly on the corresponding constraint’s boundary. Since these methods
demand constraint enforcement by construction, they implicitly enforce this additional
condition as a secondary constraint. In turn, this implicit constraint overrides the
underlying symplectic structure of the base, unconstrained method. In particular,
the magnitude of the corresponding constraint force, that achieves this secondary
constraint, scales independently of time-step size and energy. Instead, these constraint
force magnitudes scale with constraint geometry and state, so that an arbitrarily large
perturbation may be applied to the discrete system’s energy and momentum in order
to place the configuration at which constraint forces are evaluated, (1−α)qt +αqt+1,
on the admissible set boundary.

Appendix C. The Discrete-Smooth Integrator. We now show symplec-
ticity and momentum conservation for the Discrete-Smooth Integrator by proving
Theorem 5.1.
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Proof of Theorem 5.1. As a preliminary, starting at time t+, we first define an
oracle set composed of constraint indices that will be active at the end of the current

time-step, O(qt+1)
def
= {i : gi(q

t+1) = 0}. The intersection of the oracle set with the

smooth set, S(qt, pt
+

), defined in (6.1), gives I def
= O(qt+1) ∩ S(qt, pt

+

).
Now consider the optimal λ− and µ that obtain (qt+1, pt+1) in (6.3)–(6.6). We

then observe that by setting γ = λ− and δ = µ we also satisfy the following equality-
constrained integration system:

D1Ld(q
t, qt+1) + pt + GI(q

t)γ = 0,(C.1)

gI(q
t+1) = 0,(C.2)

pt+1 = D2Ld(q
t, qt+1) + GI(q

t+1) δ,(C.3)

GI(q
t+1)TM−1pt+1 = 0.(C.4)

In particular, plugging γ = λ− and δ = µ into the above system gives exactly the
same (qt+1, pt+1) solution as the Discrete-Smooth Integrator system.

Next we observe that (5.6)–(5.9) give the position-momentum form of the equality
constrained discrete Hamiltonian map of Marsden and West (2001, (3.5.2a)–(3.5.2d)).
Symplecticity and momentum conservation then follow directly by noting that restrict-
ing Discrete-Smooth Integrator steps to constraints indexed in S(qt, pt

+

) guarantees
initial position and momentum feasibility (Marsden and West 2001, (3.5.1)) for the
corresponding equality-constrained discrete Hamiltonian maps at all steps.
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