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1 GEODESIC DISCUSSION
In this section, we derive the geodesic formula given in the main
text.

1.1 Distance Energy Derivation
We start with the full derivation of the distance-measure energy
term. To study the wrinkle evolution controlled by CWF , we assume
that the underlying base surface and the corresponding rest shape
do not change over time. Therefore

Ûϵ = −
d(ℜ(z))

dt
F −ℜ(z)

dF
dt
, (1)

F := I−1(d argz)T (d argz). (2)

Letting ω = d argz and z = az̃ = a(cosθ + i sinθ ), we have

∥ Ûϵ ∥2SV =
(
( Ûa)2 cos2 θ + (a Ûθ )2 sin2 θ − a Ûa Ûθ sin 2θ

)
∥F ∥2SV

+ a2 cos2 θ ∥ ÛF ∥2SV + 2a cosθ ( Ûa cosθ − a Ûθ sinθ )(F : ÛF ),
(3)

where
∥M ∥2SV =

α

2
Tr2(M) + βTr(M2), (4)

with α and β the Lamé parameters, and

A : B :=
α

2
Tr(A)Tr(B) + βTr(AB) = B : A. (5)

Following the coarse-graining idea of Aharoni et al. [2017], the
trigonometric terms can be eliminated by averaging with the conju-
gate correspondence:

Ûϵ

2SV = (

( Ûa)2 sin2 θ + (a Ûθ )2 cos2 θ + a Ûa Ûθ sin 2θ
)
∥F ∥2SV

+ a2 sin2 θ ∥ ÛF ∥2SV + 2a sinθ ( Ûa sinθ + a Ûθ cosθ )(F : ÛF ).
(6)
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Therefore,∫
M

∥ Ûϵ ∥2SV dA ≈

∫
M

1
2

(
∥ Ûϵ ∥2SV +



Ûϵ

2SV) dA

=

∫
M

( Ûa)2 + a2
��� Û̃z���2

2
∥F ∥2SV +

a2

2
∥ ÛF ∥2SV + a Ûa(F : ÛF ) dA

=
1
2

∫
M

��� Û̃z���2 ∥Fa,ω ∥2SV + ∥ ÛFa,ω ∥2SV dA,

(7)
where we use ��� Û̃z���2 = ��(exp iθ ) Ûθ �� = | Ûθ | (8)

Fa,ω = aI−1ωTω . (9)

Thus the distance on paths γ (t), which connects two endpoints z0
and z1 is given by:

d(γ ) =
1
2

∫ 1

0

∫
M

��� Û̃z���2 ∥Fa,ω ∥2SV + ∥ ÛFa,ω ∥2SV dA dt , (10)

with z = az̃ and d argz = ω, or equivalently (d − iω)z̃ = 0..

1.2 Geodesics Computation
The geodesic γ ∗ between two endpoints z0 and z1 can be found by
solving the following variational problem:

min
z

1
2

∫ 1

0

∫
M

��� Û̃z���2 ∥Fa,ω ∥2SV + ∥ ÛFa,ω ∥2SV dA dt

s.t. (d − iω)z̃ = 0, z = az̃, |z̃ | = 1

z(0) = z0, z(1) = z1.

(11)

To solve Equation (11), we write u =
√
aω, and f = ∥u∥2

I −1 , so
that we have

∥Fa,ω ∥2SV = (
α

2
+ β)f 2

∥ ÛFa,ω ∥2SV = 2(α + β)
(
uI−1 ÛuT

)2
+ 2β f ∥ Ûu∥2

I −1 .
(12)

ϕ

n̂

r̂x

r̂y

v

Consider the tangent vector v
corresponding to the one-formu,
wherev = drI−1uT .This can be
expressed as the rotation of the
unit basis tangent vector r̂x w.r.t
unit base surface normal n̂, with
rotation angleϕ(t), and rescaling
by its norm:

v = ∥v ∥R(n̂,ϕ(t))r̂x =
√
f R(n̂,ϕ(t))r̂x , (13)
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where ∥v ∥2 = vTv = uI−1uT = ∥u∥2
I −1 = f and R(n̂,ϕ(t)) is the

rotation matrix with axis n̂ and angle ϕ. This expression gives us

uI−1 ÛuT =
1
2
Ûf

∥ Ûu∥2
I −1 =

1
4f

Ûf 2 + f Ûϕ2r̂Tx

(
∂R

∂ϕ

)T ∂R
∂ϕ

r̂x .

(14)

Given that ∥n̂∥ = ∥r̂x ∥ = 1, n̂ · r̂x = 0, and n̂ is the rotation axis, it
is easy to check that

r̂Tx

(
∂R

∂ϕ

)T ∂R
∂ϕ

r̂x = 1. (15)

Therefore we have

∥ ÛFa,ω ∥2SV = (
α

2
+ β) Ûf 2 + 2β f 2 Ûϕ2. (16)

The optimization (11) becomes:

argmin
f ,ϕ, z̃,a

1
2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

��� Û̃z���2 + Ûf 2) + 2β f 2 Ûϕ2 dAdt

s.t. ω(t) = u(t)/
√
a(t) =

√
f (t)/a(t)r̂Tx [R(n̂,ϕ(t))]T dr

ϕ(0) = ϕ0, ϕ(1) = ϕ1, z̃(0) = z̃0, z̃(1) = z̃1

f (0) = f 0, f (1) = f 1, a(0) = a0, a(1) = a1

[d − iω(t)] z̃(t) = 0, |z̃(t)| = 1.

(17)

Similarly towhat we discussed in themain text, we replace the last
two constraints by z̃ ∈ Optω , leading to the following well-defined
optimization problem:

argmin
f ,ϕ, z̃,a

1
2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

��� Û̃z���2 + Ûf 2) + 2β f 2 Ûϕ2 dA dt

s.t. z̃ ∈ Optω ,

Optω := argmin
z̃

∫
M

[

(d − iω(t)) z̃


2 + (

|z̃ |2 − 1
)2]

dA,

(18)

with the same boundary conditions.
We solve it by a penalty method as:

argmin
f ,ϕ, z̃,a

1
2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

��� Û̃z���2 + Ûf 2) + 2β f 2 Ûϕ2 dA dt

+c1

∫ 1

0

∫
M



(d − iω) z̃


2 + (

|z̃ |2 − 1
)2

dA dt ,

(19)

with boundary conditions:

ϕ(0) = ϕ0, ϕ(1) = ϕ1, θ (0) = θ0, θ (1) = θ1 (20)

f (0) = f 0, f (1) = f 1, a(0) = a0, a(1) = a1, (21)
(22)

and

ω =
√
f (t)/a(t)r̂Tx [R(n̂,ϕ(t))]T dr . (23)

We further approximate this problem by replacing f 2 by its average
over time:

argmin
f ,ϕ, z̃,a

1
2

∫
M

(
(f 0)2 + (f 1)2

2

∫ 1

0

(α
2
+ β

) ��� Û̃z���2 + 2β Ûϕ2dt
)
dA

+

(
α

4
+

β

2

) ∫
M

∫ 1

0
Ûf 2 dt dA

+ c1

∫
M

∫ 1

0



(d − iω) z̃


2 + (

|z̃ |2 − 1
)2

dt dA.

(24)

This indicates that

f (t) = (1 − t)f 0 + t f 1.

The optimal ϕ should satisfy

β Üϕ = −c1(d − iω)z̃

(
iz̃
dω
dϕ

)
= −c1(d − iω)z̃

(
iz̃ωperp) , (25)

where

ωperp(t) =
√
f (t)/a(t)r̂Tx

[
R
(
n̂,ϕ(t) +

π

2

)]T
dr . (26)

Away from the singularities, z̃ and ω are almost compatible, that is
(d − iω)z̃ ≈ 0. Therefore we have Üϕ = 0, which indicates

ϕ(t) = (1 − t)ϕ0 + tϕ1. (27)

Near the singularities, z̃ is close to zero. In this case, the wrinkles
displacement (= aℜ(z̃)n̂ ≈ 0) is negligible. The value of ϕ does
not matter. Therefore, we can extend Equation (27) for the whole
surface. We further assume that amplitude varies slowly temporally,
so that it can be approximated using the linear relation,

a(t) = (1 − t)a0 + ta1. (28)

We can get the final remaining z̃ by solving the optimization prob-
lem:

argmin
z̃

∫
M

(
дbd

∫ 1

0

��� Û̃z���2 dt ) dA
+ c

∫
M

∫ 1

0



(d − iω(t)) z̃


2 + (

|z̃ |2 − 1
)2

dtdA,
(29)

where

c = c1/

(
α

4
+

β

2

)
, дbd =

(f 0)2 + (f 1)2

2
(30)

To sum up, in the smooth case, the approximated geodesic can
be computed as follows:

a(t) = (1 − t)a0 + ta1 (31)

f (t) = (1 − t)f 0 + t f 1 = (1 − t)a0∥ω0∥2
I −1 + ta

1∥ω1∥2
I −1 (32)

ϕ(t) = (1 − t)ϕ0 + tϕ1 (33)

ω(t) =
√
f (t)/a(t)r̂Tx [R(n̂,ϕ(t))]T dr , (34)

and z̃ is the optimal solution for Equation (29) with constant penalty
coefficient c . For the regions with singularities, where a0 |P = 0, or
a1 |P = 0, ϕ(t) is not well defined. In that case, we simply linearly
interpolate ω(t) as (1 − t)ω0 + tω1.
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1.3 Discrete Geodesics
In the previous section, we provide the formula to compute the
smooth geodesic between two complex fields z0 and z1. In this sec-
tion, we provide the corresponding discretization w.r.t. two CWFs:
(ω0,a0, z̃0) and (ω1,a1, z̃1), whereω0,1 are the edge-discretized one-
forms, while a0,1 and z̃0,1 are defined per-vertex.
We start with some notation. Let Nj be the set of all triangle

faces incident to vertex Vj , and Njk the faces incident to edge Ejk .
Notice that Equation (31) can be directly discretized for per-vertex
amplitude as

atj = (1 − t)a0j + ta
1
j . (35)

What remains is to discuss the discretization of Equation (34) for ω,
and the corresponding optimization (29) for z̃.

ϕjkℓ,m

n̂jkℓ

r̂x

vjkℓ,m

Discrete f . Wefirst discuss the
discretization of f . From Equa-
tion (13), we know that in the
smooth setting, f represents the
squared magnitude of the tan-
gential vector v =

√
adrI−1ω.

We discretize it as a scalar per
face-vertex; that is, for each face
Fjkℓ and each vertex Vm ,m ∈

{j,k, ℓ}, we assign an fjkℓ,m . More specifically, for each vertex
Vm ,m ∈ {j,k, ℓ}, we discretizev as follows:

vjkℓ,m =
√
amujkℓ,m (36)

where ujkℓ,m can be computed according to Equation (51) in § 3.
Then we set

fjkℓ,m = ∥vjkℓ,m ∥2 = am


ujkℓ,m

2 . (37)

Since a0m , a1, , u0jkℓ,m , and u1jkℓ,m are given by the boundary condi-
tions, we conclude that

f tjkℓ,m = (1 − t)a0m




u0jkℓ,m


2 + ta1m 


u1jkℓ,m


2 , (38)

and that for each vertex Vj ,

(дbd)j =

(
(f 0)2 + (f 1)2

2

)
j

(39)

=
1

2|Nj |

∑
Fjkℓ ∈Nj

(
a0j




u0jkℓ, j


2)2 + (
a1j




u1jkℓ, j


2)2 . (40)

Discrete ω formula. Our next step is to discretize Equation (34).
Consider an edge Ejk . Consider one of its incident faces Fjkℓ and
one of its endpoints Vm ,m ∈ {j,k}. We can get the corresponding
atm and f tjkℓ,m according to Equations (35) and (38) respectively. We
choose

rx = ejk := Vk −Vj (41)
r̂x = rx /∥rx ∥, (42)

and ϕ jkℓ,m is the corresponding angle between r̂x andvjkℓ,m , we
have

ϕtjkℓ,m = (1 − t)ϕ0jkℓ,m + tϕ
1
jkℓ,m . (43)

The one-form contribution from vertex Vm on face Fjkℓ , is then
computed as

ωt
jkℓ,m =

√
f tjkℓ,m/atm êTjk

[
R(n̂jkℓ ,ϕ

t
jkℓ,m )

]T
ejk (44)

= ∥ejk ∥
√
f tjkℓ,m/atm cos

(
ϕtjkℓ,m

)
. (45)

Therefore

ωt
jk =

∥Vk −Vj ∥

2|Njk |

∑
Fjkℓ ∈Njk

∑
m∈{j,k }

√
f tjkℓ,m/atm cos

(
ϕtjkℓ,m

)
.

(46)

Discrete z̃ formula. The final step is to discretize Equation (29).
In the main text, we have already provided the discretization of
|(d − iω)z̃ | and

(
|z̃ |2 − 1

)2. Additionally, Equation (40) offers the
discretization of дbd. The only remaining part of Equation (29) is Û̃z,
which can be directly discretized using standard finite difference:

Û̃ztj =
z̃t+δtj − z̃tj

δt
. (47)

Optimizing Equation (29) with respect to
{
z̃n ·δtj = xn ·δtj + iyn ·δt j

}n
j

yields the final optimal z̃.

2 LOOP SUBDIVISION RULES FOR 1-FORMS
Wemodified the Loop scheme provided in [de Goes et al. 2016; Wang
et al. 2006], such that the corresponding mask for the one-form is
still consistent with the boundary fixed Loop scheme. We listed the
changes to the boundary rules in Figure 1. For the interior rules, we
refer the reader to the supplementary material provided by de Goes
et al. [2016].

×1/321

3 6 7

-5

×1/4

1 1

-1

Odd Boundary Adjacent Rules

1/2

Even Boundary Rules

-5/3 26/3 5/3

17/3 17/3
n = 2

-1/3

-4/3 3 10 5/3

4/3 17/3
n = 3

-4/3 -1/3

4/3 3 10 5/3

17/3
n ≥ 4

-1 1

-1 1

4
10

4

11

n = 4

-1
-1

1

14
104

1
1

n ≥ 5

1 1
4 4

10-1 1

-1 1

n ≥ 6
Even Boundary Adjacent Rules all ×1/32

Fig. 1. Loop subdivision rules for boundary 1-forms

3 CONTANGENT VECTOR COMPUTATION
In this section, we provide the formula of acting the cotangent vector
ω at a point P (in the tangent space) on a tangent direction d . Setting
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P = P0 and d = P∗1 − P0 will give us the corresponding formual
mentioned in the main text.

To begin with, consider a face F with vertices V0,V1 and V2, and
edge 1-forms ω01, ω12, and ω20. The barycentric coordinates of P is
(α0, α1, α2):

P = α0V0 + α1V1 + α2V2 (48)

For any tangent direction d ,

ω(P)(d) = vtan(P) · d ≈

2∑
i=0

αi (vi · d) (49)

wherevtan is the corresponding tangent gradient of ω. Here we ap-
proximatevtan by linearly blending from the corresponding values
at triangle corners (denoted asvi ).

The tangential gradientv0 of vertex V0 should satisfy
v0 · (V1 −V0) = ω01

v0 · (V2 −V0) = −ω20
(50)

Expressingv0 in the tangential plane basis gives us:
v0 = x(V1 −V0) + y(V2 −V0), (51)

where[
x
y

]
=

[
∥V1 −V0∥2 (V1 −V0) · (V2 −V0)

(V1 −V0) · (V2 −V0) ∥V2 −V0∥2

]−1 [
ω01
−ω20

]
(52)

v1 andv2 can be computed in a similar manner.

4 TIMING
We report the timing of our interpolation approach in Table 1. We
ran our experiments on a desktop with a 8-core Intel Core i9-9900K
CPU, clocked at 3.6 GHz and 64 GB of memory. We use 50 frames
in total and linear interpolants inbetween to get a final set of 200
frames used for animation generation. To get optimized results, we
let the Newton solver run until the gradient L2-norm is smaller than
10−6.

5 ADDITIONAL EDITING EXAMPLES
We used our wrinkle editing tools to create several additional ex-
amples of smooth interpolation of wrinkles on complex surfaces.
Please see the supplemental video for animations of these examples.
Figure 2 shows the result of locally rotating a small user-specified
patch of the circular wave on the cylinder by ninety degrees. Fig-
ure 3 shows interpolation between two wrinkle patterns on a hand,
where the second keyframe was created from the first by rotating
the left red patch 45 degrees and halving the wrinkle frequency
and doubling the amplitude in the right red patch. In Figure 4, we
generate the target frame by rotating the wrinkles on the cheek (the
left red patch) by 90 degrees, increasing the wrinkle frequency by
1.5 times in the middle red patch beneath the mouth, and doubling
the frequency on the bottom red patch. Figure 5 shows an inter-
polation of two user-designed waves on Spot, where different red
patches have different rotation angles. Figure 6 shows the possibility
to design and interpolate wrinkles on cloth. All of these examples
show complicated wrinkle shapes with many singularities (the blue
dots in the amplitude figures). We successfully get local smooth
wrinkle evolution on all of these user-designed examples.

Editing Simulation Results. Our tools can be used to edit wrinkles
originally computed via physical simulation.We show two examples:
Chen et al. [2021]’s dress and pants. For the dress (Figure 7), we set
the second keyframe by uniformly enlarging the wrinkle frequency
and at the same time halving the wrinkle amplitude to mimic a
change in cloth thickness. For the pants (Figure 8), we change the
frequency on the two legs differently, by enlarging the frequency
in the middle of the left leg and shrinking the frequency in the
middle of the right leg. Again we changed the amplitude to keep
∥a · ω∥ constant. We find that our approach mimic wrinkle motion
reasonably well.

6 EXTRA COMPARISON EXAMPLES
Figures 9 and 10 show extra comparisons between our approach
and alternative keyframe interpolation methods.

7 ABLATION STUDY
In this section we study different choices for the number of guide
frames N ′ (with N = 200 fixed), and solver penalty c .

7.1 Number of Guide Frames
In this section, we show the results of different choices of number
of guide frames N ′, where we fix the penalty coefficient to 103дave.
In Figures 11, 12, 13, we show the results of wrinkles, amplitude and
phase patterns respectively for different number of frames, where
N ′ = 1 implies that we directly linearly interpolate keyframes. We
find that as we increase the number of frames, the final interpolated
results turn to converge. In particular, the differences between N ′ =

25, 50, 100 and 200 are subtle, especially for the last three. (You can
see subtle differences between N ′ = 25 and the others at t = 0.5
and t = 0.875.)

7.2 Penalty Coefficient
As we discussed in the main text, when actually solving for the geo-
desic between two CWFs, we use a penalty c = 103дave to control
the balance between temporal coherence and compatibility, where
the later affects the semantic meaning of the final upsampled wrin-
kled surface. In Figures 14, 15, we show different choices of c with
50 frames. If c is too small, for example c = 10дave, the kinetic term
dominates the optimization, and the end result has bad compatibility.
The corresponding final wrinkled surface has lots of unexpected
singularities, with undesired aliased visual artifacts. On the other
hand, if c is too large, for example c = 105дave, the compatibility
term and unit term dominate the optimization, and temporal in-
coherence will not be penalized. This leads to spatially appealing,
but temporally incoherent, wrinkle sequences. For the values in be-
tween, the smaller the c , the more “local” patches of rotating regions
we will have. At the same time, Ecompat is a quadratic convex term,
while Eunit is a quartic, non-convex term. Increasing c will increase
the impact of these two terms. We found that it will slow down the
optimization, then speed it up (see the first column in Figure 14).
How to find the best choice for c for each example to achieve the
best trade-off between animation quality (spatial and temporal) and
solving speed needs further exploration, and we treat this as future
work.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Table 1. The time and convergence information for all the examples shown in the main paper (marked as ∗) and this supplementary document. |V| and |F| are
the number of vertices and faces of the base coarse mesh, and |V′| and |F′| are the corresponding values of the upsampled wrinkled mesh, where 4 or 5 levels of
upsampling are used. The major part of time (∼90%) is costed by the CHOLMOD linear solve within the Newton’s method. Note that the efficiency can be
improved by fine-tuning the number of frames we use. See § 7.1 for more discussion.

Models Figures |V| |F| |V′| |F′| #iterations CHOLMOD time (s) total time(s)
torus global rotation 10 400 800 400K 800K 243 123.30 127.13
cylinder local rotation 2 639 1222 246K 491K 129 30.61 31.92
bunny global rotation 10∗ 502 1000 512K 1.0M 381 254.53 263.09
bunny local rotation 7∗ 502 1000 512K 1.0M 127 89.36 92.31
fertility global enlargement 5∗ 494 1000 511K 1.0M 298 178.91 185.74
fertility local enlargement 6∗ 494 1000 511K 1.0M 94 63.52 65.69
phantasma global rotation 1∗ 850 1696 868K 1.7M 320 414.51 426.39
phantasma local enlargement 9 850 1696 868K 1.7M 109 172.01 176.05
spot composite editing 18∗ 502 1000 512K 1.0M 154 82.19 85.65
spot user designed editing 5 502 1000 512K 1.0M 212 123.21 127.92
user designed face 4 1026 1999 1.0M 2.0M 151 334.46 341.79
user designed hand 3 1012 2000 1.0M 2.0M 94 173.12 177.69
user designed dress 6 1333 2586 1.5M 3.0M 144 324.59 333.65
pants 8 1677 3304 1.6M 3.3M 262 710.14 728.63
dress 7 1525 2950 1.5M 3.0M 96 303.08 310.65
Average - 820 1617 802K 1.6M 188 225.17 231.62
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Rotate 90 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 2. Local rotation of an axial wrinkle pattern on a cylinder. The two keyframes are given in the left/right side; the wrinkle frequency has been rotated
by ninety degrees in the red region of the second keyframe. The corresponding wrinkle animation is given in the Interpolation Results video in the
supplementary materials near 00:20-00:37.
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0.5 × frequency, 2 × amplitude

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 3. CWF interpolation of two wrinkle patterns on the hand. Please check the Interpolation Results video in the supplementary materials for more details
(timestamp 03:13-03:29).
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Rotate 90 degrees

1.5 × frequency, 2 × amplitude

2 × frequency

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 4. CWF interpolation of two wrinkle patterns on the face. Please check the Interpolation Results video in the supplementary materials for more details
(timestamp 02:56–03:12).
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rotate 30 degrees

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 5. CWF interpolation of two wrinkle patterns on Spot the cow. Please refer to the Interpolation Results video in the supplementary materials for the
corresponding wrinkle animation (timestamp 02:38-02:55).
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2 × frequency

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 6. CWF interpolation of two wrinkle patterns on the dress. One can easily see how the wrinkles and the singularities move in the Interpolation Results
video of the supplementary materials (timestamp 03:30-03:46)

.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75s t=0.875 t=1

Fig. 7. We uniformly double the wrinkle frequency and halve the amplitude on the dress examples from Chen et al. [2021], emulating replacing the cloth with
a thinner material. Please check the Interpolation Results video in the supplementary materials at 03:47-04:03 for the corresponding wrinkle animation.
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2 × frequency, 0.5 × amplitude

0.5 × frequency, 2 × amplitude

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 8. CWF interpolation of two wrinkle patterns on the pants, where the initial frames are generated using the code provided by Chen et al. [2021]. Please
check the Interpolation Results video in supplementary materials at 04:04-04:21 for the corresponding wrinkle animation.
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5 × frequency

Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 9. The results of enlarging a local patch of the phantasma model (see the first row for details). You can see clear amplitude artifacts when using direct
linear interpolation, and strange phase patterns when using the method proposed by Chen et al. [2021]. Although the method of Knöppel et al. [2015] produces
beautiful static phase patterns, it suffers from temporal incoherence. Similar temporal incoherence can be seen in Chen et al. [2021]. These coherence issues
can be better visualize in themain supplementary video (at 04:05-04:27) and in the Comparisons supplementary video (at 01:57-02:58).
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Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 10. The results of rotating wrinkles on a torus by ninety degrees. You can see clear amplitude artifacts when using direct linear interpolation. Although in
this example Chen et al. [2021] and Knöppel et al. [2015] produce beautiful static phase patterns with no singularities, the corresponding results suffer from
temporal incoherence. These coherence issues can be seen in the main supplementary video at 02:50-03:44 and in the Comparisons supplementary video at
00:05-00:59.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Fig. 11. Interpolation of rotating wrinkle patterns on the phantasmamodel by ninety degrees, where [•, •] are the number of guide frames, and the computation
time (in seconds), respectively. Notice that the differences between N ′ = 25, 50, 100 and 200 are subtle. You can refer to the Ablation Experiments video in
the supplementary materials (00:14-00:31) for details.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Fig. 12. The corresponding amplitude patterns of the example in Figure 11. Again, please refer to the Ablation Experiments video in the supplementary
materials (00:14-00:31) for details.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Fig. 13. The corresponding phase patterns of the example in Figure 11. Again, please refer to the Ablation Experiments video in the supplementary materials
(00:14-00:31) for details.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:18 • Zhen Chen, Danny M. Kaufman, Mélina Skouras, and Etienne Vouga

5 × frequency

[c/дave,Tcost]

[10, 15.74 s]

[102, 83.39 s]

[103, 92.31 s]

[104, 176.22 s]

[105, 130.99 s]

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 14. CWF interpolation of two wrinkle patterns on the Stanford bunny model, where the target wrinkles are from locally rotating the corresponding patch
of the first keyframe by ninety degrees. Tcost is the time cost of the interpolation solve. Please refer to the Ablation Experiments video in the supplementary
materials at timestamp 00:44-01:07 for details.
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[c/дave,Tcost]

[10, 15.74 s]

[102, 83.39 s]

[103, 92.31 s]

[104, 176.22 s]

[105, 130.99 s]

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 15. The corresponding amplitude (odd rows) and phase (even rows) patterns of the example in Figure 14. Please refer to the Ablation Experiments video
in the supplementary materials at timestamp 00:44-01:07 for details.
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