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Figure 1: Examples of rigid body simulations with friction, using our approach. (a, b) 1000 chess pieces dropped in a pile, with a large
number of non-convex contacts and stacking. (c) A ball with friction rolling through a loop. On the first pass through the loop the ball stays
on the track. However, by the second pass, the ball’s velocity has dissipated due to friction so that it falls off. (d) A complex mechanism
showing frictional contact, sliding, and jamming. (e) 1000 thin walled helmets (24,308 triangles each), dropped in a pile with stacking.

Abstract

We describe an efficient algorithm for the simulation of large sets
of non-convex rigid bodies. The algorithm finds a simultaneous
solution for a multi-body system that is linear in the total num-
ber of contacts detected in each iteration. We employ a novel con-
tact model that uses mass, location, and velocity information from
all contacts, at the moment of maximum compression, to constrain
rigid body velocities. We also develop a new friction model in the
configuration space of rigid bodies. These models are used to com-
pute the feasible velocity and the frictional response of each body.
Implementation is simple and leads to a fast rigid body simulator
that computes steps on the order of seconds for simulations involv-
ing over one thousand non-convex objects in high contact configu-
rations.

CR Categories:  1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling —Physically based modeling; 1.6.8
[Simulation and Modeling]: Types of Simulation—Animation
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1 Introduction

Rigid body models are widely used in computer games and feature
films when deformation is imperceptible, or when computing and
maintaining a deformation model is viewed to be an unnecessary
expense. Even if the cost is not a problem, in many applications we
simply do not know detailed constitutive properties or the internal
states of the objects we need to simulate. In these situations, rigid
body models can provide a good global description of many small
scale phenomena such as localized deformation and shock propa-
gation.

While rigid body models can provide useful simplifications, they
also present unique challenges. One of the essential difficulties in
the simulation of rigid bodies is the inherent “non-smoothness” of
the dynamics. This is most evident when we consider that rigid-
ity requires a body to instantaneously change its velocity whenever
it collides with another surface. The strict rigid body constraints of
non-interpenetration and negligible deformation make contact reso-
lution difficult and highly sensitive to even minor variations in con-
figuration and position. When multiple points of contact are per-
mitted, this sensitivity can result in wildly varying behavior [Chat-
terjee and Ruina 1998b]. This effect is compounded when we note
that any time-stepping scheme will necessarily limit the accuracy
of our simulation. Time-stepping also forces rigid body methods to
either allow interpenetration or to use intensive collision detection
routines to find the earliest contact on every given interval. The for-
mer approach calls for the robust handling of constraint violations,
while the latter approach can be quite expensive, especially if we
consider the worst case scenario of an infinite sequence of bounces
(consider for example a ping-pong ball coming to rest).

Imposing rigid body constraints in a reasonable manner, at low
cost, while still producing plausible friction, elasticity, and momen-
tum conservation has remained a challenge. In many cases, just de-
termining which contacts actually contribute reaction forces to a set
of bodies is difficult and subject to combinatorial explosion. Even
for the case of a single non-convex rigid body interacting with a sur-
face, a wide range of contact states are possible, making the selec-
tion of an appropriate response difficult. Conversely, because rigid
bodies may be viewed as high level approximations of very stiff ob-
jects, there is no single physically accurate behavior to model. This
allows for a large amount of latitude in choosing solution meth-
ods. Our goal is to develop a set of self-consistent rules governing
rigid body behavior that always produce both realistic and feasible
results at the fastest rates possible.

The rest of the paper is organized as follows. We briefly discuss
the related work in Section 1.1, and our contributions in Section 1.2.
In Section 2 we provide an overview of our approach. Section 3
shows how unilateral constraints and contact forces can be lifted
into the six-dimensional configuration space of a rigid body. In
Section 4 we discuss how the dynamics of a single frictionless rigid
body can cope with multiple contacts. Section 5 extends this ap-
proach to deal with friction, while Section 6 presents a method for



handling a system of multiple moving bodies. In Sections 7 and 8
we discuss some details of the algorithm, and we present results in
Section 9.

1.1 Related Work

Current popular approaches to the multiple contact problem with
friction tend to depend upon collision ordering (propagation meth-
ods) or apply Linear Complementarity Programming (LCP). All
methods however, share the common tasks of handling both the
non-smoothness induced by unilateral constraints and the uncer-
tainty of contact state [Delassus 1923].

Historically, much of the difficulty in resolving contacts has re-
sulted from the uncertainty involved in deciding which contacting
points are actually active (i.e., contributing a reaction force) at any
given moment. This indeterminacy of configuration has tradition-
ally been handled by a combinatorial approach in which all per-
mutations of contact points are attempted until a feasible result is
discovered. More recently, LCP methods have been used for this
[Lotstedt 1984] (see also Baraff [1989]). These methods intelli-
gently search the space of possible reactions for a feasible solu-
tion. They are known to provide reasonable and feasible behaviors
for contact. LCP formulations have also been successfully used to
simulate quasirigid objects that allow local compliance [Song and
Kumar 2003; Pauly et al. 2004].

Although LCP methods are quite popular, they are not necessar-
ily more “correct” than other approaches. In fact the velocity level
LCP solution methods that have been adopted by the community to
handle the solution of multiple frictional contacts have been shown
to often be physically unrealistic [Chatterjee 1999]. Chatterjee and
Ruina state “We know of no reason to prefer the predictions of an
LCP-based law to those of any other law.” [1998a]. We find that
complementarity itself is a useful means by which to analyze con-
tact states. However, LCP based methods are not unique in ensuring
complementarity conditions [Brogliato 1999].

Moreau has proposed a contact rule that simultaneously resolves
frictionless, multi-point rigid body contacts quickly and determin-
istically [1988]. This method decomposes the generalized velocity
of a rigid body upon the tangent and normal cones of contact. It
obtains a collision response that is both feasible and consistent with
Gauss’s principle of least constraint [Moreau 1966]. In the same
work the author also proposes an extension to single point friction
contacts. Redon et al. [2002] have proposed a similar velocity level
treatment of Gauss’s least constraint for frictionless rigid body sim-
ulation.

Consideration of friction is necessary for the realism of any phys-
ical simulation. Unfortunately, the nonlinear behavior of friction
adds to the complexity of the rigid body contact problem. Ini-
tial attempts to apply LCP methods to frictional contact problems
could not guarantee the existence of a solution for all cases [Baraff
1994; Trinkle et al. 1995]. This was later fixed by formulating an
impulse-velocity, rather than a force-acceleration, approach to the
LCP problem [Stewart and Trinkle 1996; Anitescu and Potra 1997].
For single point frictional contacts, reduced coordinate models have
produced fast and realistic simulations of both sliding and rolling
behaviors [Kry and Pai 2003].

Formulating rigid body dynamics at the impulse-velocity level
provides a natural way of handling the impulses that are required
to instantaneously change rigid body state. It was commonly held
that impulses should only be applied in cases where there existed
no other means to describe an interaction. In recent years there
has been a general shift towards impulse-velocity approaches [Hahn
1988; Moore and Wilhelms 1988; Baraff 1991; Mirtich and Canny
1995; Guendelman et al. 2003]. Mirtich and Canny [1995] have for-
mulated an impulse based method that treats collisions individually
by backing up to the moment of first contact. Contacts and colli-

sions are both treated as a series of many small collisions, while
static contact is identified by the use of a threshold velocity.

Careful geometric analysis of the feasibility of frictional im-
pulses is important in deriving any friction model [Mason 2001]. By
considering separation rates, energy dissipation, normal impulses,
and other reasonable restrictions, it is possible to define permissi-
ble regions of impulse space. Using this approach, a simple and
effective collision rule has been developed for single point contacts
of three-dimensional rigid bodies [Chatterjee and Ruina 1998a]. It
is also tempting to formulate frictional dynamics in the configura-
tion space of rigid bodies because of the compact representation
this makes possible. Erdmann [1984] has constructed and analyzed
some potential models of generalized friction cones for both the
two- and three-dimensional rigid body configuration spaces.

Moreau [1994] has also formulated a Gauss-Seidel approach for
multi-body simulations with friction. The approach resolves a suc-
cession of single point contacts and has been used to simulate large
granular flow effects such as size-segregation, on sets of spheres as
large as fourteen thousand in several weeks time.

Milenkovic and Schmidl [2001] apply a Quadratic Program (QP)
with non-physically based position constraints to bring their rigid
bodies as close as possible to a natural configuration determined
by a non-contacting forward Euler step. With the aid of a freezing
technique, the authors were able to simulate one thousand cubes
falling down an hour glass in one and a half days [Schmidl and
Milenkovic 2004].

Guendelman et al. [2003] use a novel propagation method that
modifies the traditional ordering of collision and contact resolution.
They apply collision resolution locally by treating each pairwise
penetration independently. The order of processed bodies is cho-
sen randomly, while the deepest penetrating point on each body
is treated first. Contacts are treated similarly. This relaxation ap-
proach is similar to Moreau’s Gauss-Seidel method. Their algo-
rithm handles non-convex mesh based objects. Simulations of drop-
ping one thousand rings averaged seven minutes a frame to com-
pute. Likewise, a more complex simulation of five hundred bones
also took approximately seven minutes a frame.

1.2 Our Contributions

We introduce a new velocity level algorithm for the simulation of
large sets of non-convex rigid bodies. By avoiding repeated pair-
wise comparisons between bodies, we obtain a complexity linear in
the total number of contacts detected in each iteration. We employ
a novel contact model that uses mass, location, and velocity infor-
mation from all contacts, at the moment of maximum compression,
to constrain rigid body velocities. We also develop a new friction
model in the configuration space of rigid bodies. Based on the prin-
ciple of maximal dissipation, it unifies rolling and sliding friction
in a natural manner, while producing expected behaviors. These
models compute the feasible velocity and the frictional response
for all bodies, by using two convex, separable QPs per body. Both
of these QPs are linear in the number of contacts detected for each
body. For further speedup we approximate these QPs using a sim-
ple and effective constraint satisfaction method. Taken together,
these results lead to a fast, efficient rigid body simulator that can
easily be integrated with a variety of broad and narrow phase col-
lision detection systems. We obtain many complex behaviors such
as rolling, sliding, stacking, tumbling, and shock propagation (as
well as the appropriate transitions between them) without varying
our algorithm.

2 Overview

We have started with Moreau’s [1988] work on resolving multiple
frictionless contacts for a single inelastic rigid body system with
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Figure 2: A unilateral constraint in R3 on the left and its corre-
sponding SE(3) constraints on the right.

fixed constraints. One feature of his approach is the treatment of
all interpenetrations, detected in an initial half-step, as contacts to
be resolved during a second half-step. A similar approach to pene-
tration was adopted by Guendelman et al. [2003]. We extend these
results by developing a new generalized friction model for multi-
ple contacts that applies a maximally dissipative frictional impulse.
This model incorporates both rolling and sliding friction. It gives
us realistic behavior for a single non-convex rigid body in contact
with multiple fixed constraints.

For the multi-body setting, we treat each body as an indepen-
dent system in which all other moving bodies impose velocity level
affine constraints. To the best of our knowledge this is a new ap-
proach for handling the multi-body problem. It is effective because
we incorporate first-order contact information for each body, and
so obtain velocities that produce non-penetrating behavior (at least
locally) in the next step. We also impose approximate momentum
conservation for many simultaneous contacts. For this, we compute
an affine constraint for each contact using the velocity of the con-
tact at the moment of maximal compression. Taken together this
gives us a multi-body simulation algorithm that is linear in the total
number of contacts processed for all bodies at each step.

We also introduce several practical optimizations to further im-
prove performance. We reduce the number of contacts treated to
both increase the speed and also to simplify implementation. We
filter out many initially detected contacts by ignoring satisfied con-
straints (i.e., contacts from which a body is moving away at a suffi-
cient velocity). Additionally, we introduce further speed-up in our
algorithm by approximating the two QPs that arise in each step by
the Surrogate Constraint Method [Yang and Murty 1992] (see Sec-
tion 7).

Our development requires some basic concepts from kinemat-
ics and differential geometry. We have included an appendix that
provides some background concepts and notation as well as a ref-
erence for further information. We suggest that the reader skim this
appendix before reading the rest of the paper, and return to it if
some concepts are not clear. In the following we reserve the bold
sans serif font for spatial variables (i.e., six-vectors representing
orientation and position of an object). Scalar values and R3 vectors
are indicated by italicized roman font, while R? vectors will be ad-
ditionally distinguished as bold. For clarity of notation we will not
index inertia matrices (denoted M) unless the usage is unclear. We
use leading superscripts, ‘v, to indicate spatial velocities (called
twists), while leading subscripts, ;v, denote spatial forces (called
wrenches).

3 Unilateral Constraints and Forces

In practical terms, it is difficult for rigid body simulators to strictly
enforce non-interpenetration. This effort may be unwarranted, as it
is unreasonable to expect a “real” body to be entirely rigid all the
time. Strict rigid body constraints may, in some senses, be over-
constraining, since there is no reason to expect realistic behavior if

we do try to enforce them fully.

We adopt Moreau’s strategy of living with interpenetration. In
other words we don’t mind interpenetration in the middle of each
step; we simply wish to minimize it at either end. Unlike Moreau,
we ground this approach by viewing rigid bodies as approxima-
tions of real objects rather than a mathematical ideal. From this
perspective, interpenetrations detected in the middle of a time-step
are simply approximations of the deformed object-object boundary
at some moment during the time-step. It is then reasonable to treat
all of these detected interpenetrations as contacts. This allows us
to use all contact information to get a better approximation of the
state of our very stiff “real world” body.

We use this contact information to generate first-order con-
straints on each body’s configuration (i.e., position and orientation).
Each iteration begins by taking a configuration half-step using the
last known feasible velocity of each body. We then perform colli-
sion detection. The set of detected contacts (this includes interpen-
etrations) are then used to form a set of constraints on the next ve-
locity that each rigid body may take (over the next two half-steps).

In order to simplify our presentation, this section, and the fol-
lowing two, will assume that all constraints we encounter are fixed.
Then, starting with Section 6, and throughout the rest of the paper,
we discuss how to handle potential constraint motion.

3.1 Constraints in R? and SE(3)

Given a rigid body B, we describe it by the set of points it occu-
pies in R3. A unilateral (inequality) constraint acting on B in R is
defined by

g(x) >0, V& e BCR>. (1)

Here g(x) is a real valued function and could, for instance, im-
plicitly represent a surface constraint. We equivalently describe B
in its configuration space, SE(3). In this six-dimensional space of
positions and orientations, we may treat B as a single mass point
without extent. This is a useful perspective that we will employ
throughout the paper. However, we must be careful since SE(3)
is a curved space. Here concepts like convexity and distance are
difficult. Constraints on B in SE(3) are described as

b(q) >0, q € SE(3), )

where q indicates B’s current configuration. We note that each indi-
vidual contact of B with a constraint in R3 is equivalent to a differ-
ent SE(3) constraint (see Figure 2). This, in part, helps to explain
why resolving contact conditions can be so challenging for seem-
ingly simple rigid body objects. Large numbers of contact con-
straints in R3 introduce highly complex constraint hypersurfaces in
SE(3). Defining their curvature, especially at locations of intersect-
ing constraints, would be very difficult.

Instead we prefer to work with the gradients of our constraints in
SE(3). These gradients exist in a linear vector space se*(3), which
is dual to the linear vector space of rigid body velocities, se(3). In
both se(3) and se*(3) concepts like convexity and projection are
easier to formulate. For our purposes, we assume that each con-
straint in SE (3) is the result of a single contact at z;, € R® and can
be described by an inequality, b;(q) > 0. Given a contact at xy,
we obtain the corresponding se*(3) constraint gradient, Vb (q), by
multiplying the R3 constraint gradient, Vg(zy), by the differential
transpose matrix, rkT (see Figure 2):

viu(a) =12 Vetar) = (%) Vet @

Generally, Vg(x) is the R? contact normal of the contacting sur-
face at x;, while “[ ] denotes the matrix of the cross product (see
Appendix). In this form, contact constraints can be used to place
bounds on locally acceptable velocities.



3.2 Constraints and Contact Forces

In this section we discuss the set of potential forces that can be im-
posed on a rigid body by a given contact. These forces are translated
into velocity vectors that indicate the change in velocity that each
force could apply to the body. This allows us to directly compare
contact forces and velocity constraints, and will later be useful for
choosing appropriate contact impulses.

A contact in R3 can impart a normal and tangential force. We
find the span of these forces and convert them into wrenches (i.e.,
spatial forces in se*(3)). Wrenches let us describe forces indepen-
dently of the contact points that generate them. We assume all val-
ues are defined in a body frame i. Normal forces, induced by a con-
tact with the constraint at xy, lie in the direction of the constraint
gradient:
def Ve(xk)

VeIl

while tangential forces along the constraint surface span the con-
straint’s tangent plane at x;. Their directions can be implicitly de-
fined by the set of vectors orthogonal to 1;:

@

n

Sk:{8k€R3 ISankZO}. (&)

The wrenches generated by applying these forces at oy, give us
the normal force direction in se*(3),

i
i = i g = ([ ?"]> ny, (6)
and the set of tangent force directions in se*(3),
i
iSk= i S = ([ ?k]) Sk (M

One of the chief difficulties of non-smooth dynamics is in cor-
relating the forces imparted to rigid bodies with the velocity level
information needed to determine these forces. We see this when
resolving unilateral contact constraints, as well as in the velocity
dependence inherent in friction models. For these cases, it helps us
to embed our wrenches into the velocity space se(3). We do this
by multiplying our wrench by the inverse inertia tensor at q to get a
twist (i.e., a spatial velocity),

F=M(q) "' if. ®)

Using Equations 6, 7 and 8, we obtain the twists ‘nj and ‘s, € Sy.
Unlike their counterparts in R3? (ng and s;), ‘ng and ‘s; are not
generally orthogonal (see Figure 3). This can be seen if we note
that the inner product on se(3) (see Appendix) for these two vectors
is

inTM s = (M ([iwk]nk>)r M (M- ([iwk]Sk)) o

ng Sk

nl (') 7 Tay] +.7 ") 1.

Clearly there is no reason to expect this inner product to preserve
orthogonality from R3. This means that if we want to construct a
friction cone in se(3), we must be careful not to assume orthogo-
nality, as is commonly done for friction cones in R3 .

3.3 Multi-point Contact

Following Moreau, we extend our definition of contact to include
points that actually penetrate our constraints. This requires that our
constraint function, g(), be constructed in such a way that Vg(x)

q-
oT

Figure 3: A single contact normal with its induced tangent cone and
sliding plane in se(3).

is nonzero in the neighborhood of g(x) = 0. For every configura-
tion, g, of a rigid body, our collision detection system finds the set
of contacts:

Cla) = {k e Z: by(q) < 0. (10)
Then for all configurations g, we can define a normal cone of em-
bedded wrenches that spans the entire range of possible contribu-
tions of normal forces from all points of contact,

N@={ ¥ & e 4 >0} (11)

keC(q)

Likewise, we define a sliding cone of embedded wrenches that
spans the entire range of possible contributions of tangential forces
from all points of contact:

S(a)= P ‘s (12)

keC(q)

where @ indicates a direct sum that gives us the span of all iSy.

Because ‘ny is the gradient of a contact constraint embedded into
the velocity space, it defines a constraint on acceptable velocities.
For a twist, ‘¢, to be a feasible velocity, given a contact at xy, its
projection along ‘n; must not be less than 0. For the inner product
in se(3) we use ‘@7 M(q) ‘ng. This implicitly defines the subspace
of feasible twists, given a contact at xy:

T, = {t€se(3):tT M(q) ‘ng >0}. (13)

This subspace is called a tangent cone and defines a half-space con-
straint through the origin of se(3). The intersection of these half-
spaces defines a composite tangent cone (dual to N(q)) that defines
the subspace of locally feasible velocities in se(3) at g, given the
set of all current contacts, C(q):

T@)= () T (14)
keC(q)

To keep these definitions meaningful for non-contacting cases, if
C(q) =0, we let N(q) =0 and T(q) = se(3).

While T spans a six-dimensional half-space, ‘S;(because it
is parameterized by a tangent plane in R”) is simply a two-
dimensional plane in se(3) (see Figure 3). In general, the com-
posite tangent cone, T(q), is not identical to the sliding cone, S(q).
This means that the space of feasible velocities is not spanned by
the space of embedded tangential wrenches, S, and that in some
cases, portions of S may actually lie outside of this feasible space
[Erdmann 1984]. This is a direct result of the non-orthogonality
described at the end of the previous section and will be important
later, in developing our friction model.

4 Non-smooth Dynamics

In general, in the absence of contacts, the dynamics of a rigid body
i in its own frame are determined by the ODE:

Mg = f+ i (15)



Here ‘¢ € se(3) is the local body frame twist of rigid body i, with
i$ as its time derivative, ;f is the net force due to non-contact phe-
nomena such as gravity, M is the fixed, body-frame inertial tensor,
and ;c is the coriolis term ( ;c = ( ‘¢, )T M 9).

If there are contacts (that is, if C(q) # 0), Equation 15 must be
modified to include a possible reaction force. Leaving considera-
tion of friction aside for the moment, we can temporarily ignore the
possibility of tangential force contributions. Then a reaction force,
induced by the active contact constraints, must come from a cone
defined by the convex combination of wrenches ;n;. This allows
us to describe the system’s dynamics by the differential inclusion:

M'¢p— f— ice {keg(:q)lk Ny A > 0}7 (16)

or, embedding the inclusion in se(3), we equivalently find
o — if — ice N(q). 17

The embedded form of the inclusion is more useful, because it al-
lows us to directly correlate potential contact impulses with the
locally feasible set of spatial velocities given by the tangent cone
T(a).

The non-contacting motion of a free body is continuous. How-
ever, in the event of a contact, with either a fixed or moving con-
straint, there will be a non-smooth transition in state. This motivates
us to formulate our problem in a discrete domain. Using a first order
discretization with a step size h we obtain the equation:

(‘o1 — o)y =h('f+ ‘c)+ 'r, 're N(q) (18)

Note that scalar multiplication does not change a cone. Equiva-
lently we may describe the above implicit relationship using a pre-
resolution velocity defined as

‘o7 E g Ln(f+ o), (19)
and a post-resolution velocity,

def igtl = ig— 4 iy, (20)

i ¢+
These two velocities are essential for our half stepping algorithm.
The pre-resolution twist, ‘¢, is the velocity of our rigid body
before collision detection is applied and ‘¢ is the velocity after all
contacts are processed. Similarly g’ and g’*! are the rigid body’s
configuration at the beginning and end of step ¢, while q~ is its
configuration midway through this step.

4.1 Contact Resolution

The above inclusion (Equation 18), is still somewhat indefinite. It
indicates the subspace of se(3) that the normal reaction, ‘r, must
belong to, but it does not tell us how to actually select ‘r. We
require some sort of selection rule that maps spatial velocities onto
the normal cone. Moreau [1988] defines a discrete, frictionless,
inelastic contact rule, where ‘r is defined as the twist formed by
the minimum spanning vector in se(3) between the pre-resolution
velocity, ‘¢~, and the subspace of feasible velocities, T(q). This
twist can be found by projecting (— ‘¢ ) onto N(q):

r = projy ) (— 97)- @1

Intuitively, ‘r corresponds to the feasible impulse that opposes the
constraint violating component of the pre-resolution velocity. Us-
ing some classical results from convex analysis (see [Moreau 1962;
Rockafellar 1970]), it can be shown that applying this selection rule

=

Figure 4: A complex mechanism demonstrating frictional contact,
sliding, momentum transfer, and jamming.

o

to obtain ‘r is equivalent to directly projecting ¢~ onto the sub-
space of feasible velocities, T(q ™), to obtain ‘¢T:

‘90" = proj(q)('97) € 9T(a)- 22)

Here dT(q) indicates the boundary of the feasible subspace, T(q).
This implies that under Moreau’s rule, post-resolution velocities
will be made feasible by ensuring that ipt always lies in T, even
when ‘¢~ does not. More specifically, this selection rule imposes
the condition that all post-resolution velocities lie on the boundary.
Because of this, ‘r may be considered a completely inelastic em-
bedded impulse — a useful result that will come in handy when we
compose our friction model.

We now can refine our contact set, C(q). Satisfied contact con-
straints from which our body is moving away (i.e., k& such that
’n,{ M f¢~ > 0) are discarded, and a new set of potentially active
contacts can be defined as A(q) = {k € C(q) : n M ‘¢~ <0}. This
reduces the cost of our computations and simplifies later results.

When we obtain ‘¢ directly from the projection in Equation
22, we may assume that it was obtained by an implicit inelastic
reaction, ‘r € N(q), due to the equivalence between Equation 22
and Equations 20 and 21.

5 Friction

We extend Moreau’s selection rule to include a tangential frictional
response. To do this, we have formulated a new generalized fric-
tion model that does not require explicit point information once our
contact wrenches have been generated. This approach encodes R3
contact information into se(3), allowing us to determine the total
contribution of all active contacts, without regard to their origin,
via a single projection operation. Unlike the popular LCP friction
models, the solution of our multi-point friction model reduces to a
small, convex, separable QP.! This gives us a relatively small solu-
tion cost by nonlinear optimization standards — linear in the number
of contacts per rigid body (see Section 7 for more details).

Our generalized friction model is derived from the principle of
maximal dissipation and is motivated by Goyal et al.’s [1991] ap-
proach to resolving frictional planar sliding. It combines both linear
and angular friction into a single unified response. The model pro-
duces the familiar sliding, tumbling, and rolling behaviors produced
by friction (see Figures 1(c,d) and 4) and reduces to the traditional
Coulomb model for a point mass in R3. The single point Coulomb
model of friction states that a frictional impulse should be both in
opposition to the tangential velocity direction, and proportional to
forces applied in the normal direction. Our model maintains this re-
lationship. This requires us to be able to correlate force and velocity
level information. Embedding our wrenches in the linear velocity
space, se(3), allows us to form a direct relation between these two
disparate quantities.

ISee [Anitescu and Hart 2004] for a discussion of the potential non-
convexity of LCP equivalent QPs.




We first modify Equation 18 so that contacts can generate both
normal and tangential impulses:

o+l — gt — (4 i)+ r+ 18, 'reN(q), ' €S(q). (23)

Here r is still the change in spatial velocity induced by the active
contact constraints at g, while the new quantity, ', is an embedded
frictional impulse that opposes sliding along the constraint tangent
planes in R3.

For all of the following results, we need to further restrict our
sliding twists, sy, to be generated from unit tangent vectors in R3.
This simply means that we normalize our tangent vectors at each
contact, so that ‘s, = M~! ;[T s;, where sing=0,and ||si||=1.

5.1 Frictional Impulse Constraints

For each generated sliding twist, sy, we define a generalized fric-
tional coefficient p. This allows us to produce frictional behavior
that can both be anisotropic and vary with the location of the con-
tact. We also let ‘@7 be the twist computed by our first projection
in Equation 22.

We have already determined (via Moreau’s rule) how to choose
our normal impulse, ‘r. This normal impulse, and the set of fric-
tional coefficients, L, are used to determine our frictional im-
pulse, ‘8. As it is currently constructed, our sliding cone, S, con-
tains all potential frictional reaction directions (embedded into ve-
locity space). It does not, however, place any constraints on the
magnitude of a selected impulse in S. We use a limit surface, a
tool from plasticity theory that has been introduced for friction by
Goyal et al. [1991], to bound the magnitude of our embedded fric-
tional impulse. We will first discuss how to proceed if we know the
normal distribution of our inelastic impulse, and then show how we
obtain frictional behavior without it.

If we know the distribution of ‘r across all active normals, then
at each active contact k, we have available a scalar, oy > 0, that
gives us the magnitude of each normal’s contribution to the total
normal impulse (i.e., 'r = Yyca(q) % 'ni)- For each sliding plane,
Sk this allows us to construct a limit curve, using a set of general-
ized Coulomb inequalities: s;” M 8§ < 0. The area bounded
by this curve in S contains all permissible contributions from con-
tact k. If we take the direct sum of all such areas, we obtain a subset
of S(q) that contains all potential frictional impulses. The bound-
ary of this region describes a limit surface that indicates, for each
direction in S(q), the maximum possible magnitude of a frictional
impulse in this direction, given the known normal distribution.

Because we obtain ‘r implicitly from our projection onto T,
and because there are often redundancies in our constraint normals,
obtaining a normal distribution can be difficult and also costly.
However, each contact point is an approximation of a deforming
contact region and so strict enforcement of Coulomb’s inequal-
ity (an approximation itself) can be overly restrictive. We place
a reasonable bound on the limit surface using the inequalities:
s, T M 1§ < g 'ng"M Tr, for each active contact k. We denote
each such constraint by S(sg, L, ng, ).

We additionally need to constrain our frictional impulse to lie in
a feasible direction. Because of the non-orthogonality described in
Section 3, portions of the sliding cone S(q) can actually lie outside
the feasible cone T. We also know (from Section 4.1) that i(i)T
lies on the boundary of the feasible region of rigid body velocities.
Thus, any embedded impulse applied to ‘@7 that lies outside T,
will generate a new velocity that is also outside of T and therefore
not feasible.

5.2 Maximal Dissipation and Projection

The intersection of our limit surface and the tangent cone T(q), de-
fines a convex subset of se(3), that contains our desired embedded

Figure 5: A many-body simulation of 2016 chess pieces falling
through a hopper and stacking.

frictional impulse, ‘8. As a selection rule for ‘S in S, we choose
a maximally dissipative impulse. This is the impulse (formed by
forces applied along the contact constraints’ tangent planes in R?)
in S that most closely opposes tangential motion (i.e., sliding and
rolling along dT) up to the maximum magnitude permissible in
each direction. Choosing such an impulse, from a limit surface
composed of the direct sum of all local limit curves, gives us the
sum of all maximally dissipative impulses generated at each active
contact. Because 'r is inelastic, we know that ‘@7 is moving along
the local constraint boundary (9 T), and is the tangential motion we
wish to oppose. Since (— ‘¢) would clearly maximally dissipate
this tangential motion, we want to find the twist in S that is closest
to it. It can be found by projecting (— ‘9 %) onto the subset formed
by the intersection of our limit surface and T(q). This projection
can be solved by a separable, convex QP,

i = argmin| |y + 97|
y

subject to: y € S. 24)
i T My <p ‘mIMir, Vis, € 'Sy, Vk e A(q).
T My >0, VkeA(q).

Finally, we obtain our post-resolution velocity by adding our
frictional reaction to the tangential velocity: ‘9" = '8+ '¢". In to-
tal, this amounts to two projections per rigid body: firstly, a projec-
tion onto the feasible space of velocities defined by the composite
tangent cone, and secondly, the application of an oppositional fric-
tional impulse, obtained by a second projection onto S proportional
in magnitude to the first projection’s impulse.

This gives us the essential properties expected from a frictional
law; a purely positive dissipation, sticking, sliding, and a bound
at each contact point that, at least approximately, enforces a rela-
tionship between a maximum frictional contribution and the local
normal impulse.

6 Multiple Rigid Bodies

This section describes our method for handling simulations of large
sets of rigid bodies (see Figure 5). To resolve contacts, each body
is processed a single time per step, while each step is linear in the
total number of contacts. These bounds are maintained by treating
each body as an independent system, carefully using the motion
of all other contacting bodies to generate velocity level constraints.
Because other bodies may be moving, and therefore can impose
moving constraints, Moreau’s solution for fixed constraints (Sec-
tion 4.1) is no longer sufficient for resolving contacts. We address
this by adding an offset to each velocity level contact constraint,
which takes into account the velocity of the contacting body. This
leads to a more general, but still convex, QP for computing the tan-



Figure 6: Body j imposing a moving constraint upon body i. Their
common contact point, x;, with the normal ng, is given a velocity
of ¢, . Body i’s post-resolution velocity must then be greater than
dy, when projected onto ny.

gential velocity. In addition, we show how momentum conservation
and elastic restitution can be obtained within this model.

6.1 Moving Rigid Body Constraints

In Section 4.1 we implicitly assumed that our constraints did not
change over the span of each time step. This allowed us to cen-
ter our velocity constraints at the origin of se(3), since these con-
straints would only affect velocity direction, not magnitude. Now,
to compensate for constraint change over each interval, we offset
each contact constraint by the relative velocity of its generating
contact. Each velocity-level constraint will now define an affine
half-space.

For body i, we denote the spatial velocity of the body with which
it shares contact k by '¢@. For convenience, we assume that this
velocity has been transformed into body i’s frame. Then the mag-
nitude of the contact’s velocity along the contact constraint normal
is given by

dp = ng Migy. (25)

We then generate an affine velocity constraint on body i, by requir-
ing that its velocity not only be in the feasible direction, but also
have a sufficiently large component along the contact normal (see
Figure 6):

ing Mio—d >0. (26)

Each such constraint, computed from a contact k, defines a feasible
affine half-space, T(ng,dy). As before, the intersection of all such
half-spaces generates T(q), the subspace of feasible velocities for
contact set C(q). While this subspace does not always form a cone,
it will remain convex (this is important from an optimization per-
spective). We then compose a direct projection of ‘¢~ onto T(q),
that obtains a tangential velocity, ‘¢, along the boundary, dT(q).
We can compute this projection as a separable, convex QP:

'9° = argmin||y — ¢~ |
y 27)
subject to: inkTI\/I y >dy, VkeC(q).

Using a simple convexity argument (similar to the one mentioned
in Section 4.1), we find that this projection implicitly defines an
inelastic impulse, 'r, that belongs to the normal cone, N(q) and so
satisfies Equation 18.

For added efficiency we note that we can compute d;, locally in
IR3, at the point of contact a. This is because

de="n Mgy = (M~ T ng) "M gy 28)
= TL]Z- ’Tk i¢k = n,{vk.

Then, since n;, is still the R? contact normal, and v, is the relative
velocity of the contact point, n,{vk can be computed in the contact
frame, saving the expense of transformations into frame i.

6.2 Approximate Momentum Conservation

Consider the inelastic contact between bodies i and j from i’s per-
spective. Because we treat j as imposing a moving constraint, if we
pick (])]7 as the velocity for a contact at xy, then i will behave as if j
is a juggernaut with infinite inertia. Body i will be swept along with
Jj’s normal velocity without any regard for their respective masses.
For objects of finite mass, in order to conserve momentum, it is
better to consider the contact velocity at the instant when the two
bodies are at rest relative to each other. This corresponds to the
time of maximum compression in the Poisson model of restitution.
We do not need to actually determine this instant in time. Simply
knowing that this instant exists in our step interval is enough.
Momentum conservation allows us to obtain the velocity of a
contact point along the contact normal, at the time of maximum
compression, independent of the time of occurrence. First, we com-
pute the effective mass of a body i with inertia M;, as seen by a force
acting along a contact normal n, at a contact point x. This is:
mki = (TLZ ’I'k Mv_l ,-I'kT nk)_] . (29)

1

Now, if we let v, be the velocity along the contact normal ny,
we have myvy as the corresponding momentum. Then, at the time
of maximum compression between bodies i and j, momentum con-
servation implies that there exists a velocity along the normal, vy, ,
such that (my, + mk,-)vkmf = my, vy, +my;vy;. We compute this ve-
locity by:

v, (my,vi, +mijk,-). 30)

(my, +my,)

Here, vy, and vy, are body i and ;’s velocities at the point of contact
projected along 7. This new velocity, v, , is the average of these
two velocities weighted by their respective masses in the contact
frame. Because v, is our contact point’s velocity at the instant of
maximum compression along ny, we find that d;, = in,{ M i¢kmc =
Vi, and so use v to generate our affine contact constraint.

me?

6.3 Restitution and Friction

Using the above affine QP (Equation 27), we directly obtain the
tangential velocity ‘¢%. Although this step is implicit, we may
still retrieve the effective imparted impulse, ‘r, from the difference
between ‘@7 and ‘¢~. Because ’r is inelastic and computed at
the moment of maximum compression, we may treat it as the nor-
mal component of the impulse computed over a compression phase.
Then, by again applying Poisson’s model, we may add a restitution
phase contribution of € ’r to our rigid body. We let £ € [0, 1], with
€ = 0 corresponding to fully inelastic behavior.

Similarly, because ‘r combines the appropriately weighted con-
tributions of all contacts, our friction model can also be integrated
into the final contact resolution. Friction is handled using a second
projection (Equation 24) just as in the single body case.

7 Surrogate Constraint Method

Convex QPs with linear constraints (like our own) have a worst-
case complexity polynomial in both dimension and the number of
constraints applied [Kozlov et al. 1979]. If we additionally note that
the dimension of our problem is fixed and that our QP is separable,
we obtain a bound linear in the number of constraints (in our case
contacts) [Megiddo and Tamir 1993]. However, the coefficient in
the linear bound is still too high. We approximately solve our QP
using the Surrogate Constraint Method (SCM) [Yang and Murty
1992] for constraint satisfaction. SCM moves towards our feasible
tangent space by a projection onto a surrogate hyperplane that ap-
proximates our set of affine constraints. It produces a conservative
step that is guaranteed to converge to a feasible solution.



8 Algorithm

We adopt a staggered Verlet [Verlet 1967] scheme for integration.
During non-contacting periods this gives us second order, symplec-
tic behavior for the same cost as a traditional explicit Euler step.
During periods of contact, the same half-steps dovetail neatly with
our pre- and post-resolution velocity steps. Taken together, this
leads to a simple integration scheme in which we take second or-
der explicit steps during free motion and semi-implicit non-smooth
steps during contact.

8.1 Pseudocode

Let & denote the indexed set of rigid bodies. Performing a collision
check on & produces, for all i € A, a set of detected contacts C;.
For each k € C; we have an index j € Z of the other body involved
in contact k, and the coordinates, x;, of this contact. At time ¢
we start a step, with our configurations, g%, and the post-resolution
twists obtained in the middle of the previous step, q);r. If t=0, we
use our initial velocities, q)?, instead. We then proceed, following
the steps in Figure 7.

8.2 Algorithm Details

We step through this algorithm using a fixed step size h. For each
body i € # we pre-compute the principal body frame. This allows
us to generate a fixed diagonal inertia matrix M (in the body frame),
using Mirtich’s algorithm [Mirtich 1996]. We also compute each
body frame’s configuration relative to the world frame, q;, in matrix

form as E (see Equation 32). Our velocity half-step is then

1

velocity half-step(¢;,q;)
g =M1 f M9, )M g,
iq)?ew : i¢i+ %h i¢i-
return ‘¢

Here the wrench ;f is the sum of all non-contacting forces, includ-
ing gravity. For our position half-step we use the exponential map
as an se(3) explicit Euler,

position half-step(¢;,q;)
lWEnew = IWE exp([ I(Pi}

return lWE”"’W

h).

)=

As each contact constraint is computed, we can immediately dis-
card those which are strictly satisfied (see line 18 in Figure 7). Be-
cause these constraints are generated early in our pipeline, this is
an efficient way to reduce the cost of each step. We proceed for
each contact k € C by first computing our generalized normals, ‘ny
(line 12), and our affine distances, dj (lines 13-17). All ing for
which ’n,{M ‘¢~ —dy > 0 are thrown away (since we will not need

them to compute S, iy, and i§ ), while all other k are saved in a new
active contact set, A (line 19), for further computations.

These details reflect the built-in velocity-level complementarity
of our approach. Contact constraints that a body is moving away
from are satisfied, and so will not contribute normal and tangen-
tial impulses, while all other constraints are potentially active, and
so will contribute impulses proportional to the degree of their con-
straint violation. )

If A # 0 then for each k € A, we use each 'm; to uniformly
sample a finite set of the tangent plane at contact k (lines 21-25).
These samples are used to approximate the set of all possible tan-
gential impulses at k. The projections in lines 28 (Equation 27) and
33 (Equation 24) both use the SCM algorithm [Yang and Murty
1992] to approximate their respective QPs.

1. foric #
2. q; := position half-step(¢;", q")
3. ¢ := velocity half-step(¢;", q’)
4. collision check (%)
5. foric #
6. C := get contacts for body i
7. A:=0
8. T :=se(3)
9. S:=0
10. for k€ C
11. Jj :=index of other body in contact k
12. ng = Mrl ,‘rkT ink
13. mi:=( in[ ’Tk M;l iFkT ink)_].
14. vii="nl [19;] 'z
15. ij:(jnZ jrk M;lijT jnk)_l.
16. vji=Jnl [f(l)]_} Tay
17. dy = (m,-—Q—mj)*l(m,-vi—l-mjvj)
18. if (nf M¢;)—dy <0
19. A:=AU{k}
20. T:= TﬂT(nk,dk)
21. for m := 1 to sample size
22. s, :=m'" sample L to 'ny
23. My, := get u for sy,
24, Sk, ‘= M;l iFkTskm
25. S:=SPs,
26. ifA#£0
27. ¢F :=proj(¢;")
28. rii=¢f—¢;
29. forkc A
30. S:=SNT(ng,0)
31. for m := 1 to sample size
32. S :=SNS(sg,,, Uk, Nk, i)
33. 6; := projg(—o7)
34. o =8i+eri+¢f
35. else
36. ;" := velocity half-step(¢; ,q;")
37. qi™! := position half-step(¢;",q;")
Figure 7: Pseudocode for our algorithm.
9 Results

In this section, our goal is to analyze the performance of our imple-
mentation in a manner that will facilitate the comparison of our al-
gorithm with existing and future methods. We first present a break-
down of the computational complexity of a single step in our it-
eration, with respect to the pertinent variables. We then present
detailed performance figures for a sample simulation. Finally, we
discuss the factors that affect the runtime performance of our simu-
lation.

For the purposes of complexity analysis, each step of our imple-
mentation can be broken down into four phases: the preliminary
half-step, contact detection, contact resolution, and the final half-
step. In both the preliminary and the final half-step phases, each
body is visited once, and a fixed amount of work is performed, so
the complexity for both these phases is O(n), where n is the number
of bodies being treated by the simulator.
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Figure 8: Performance results for a simulated drop of 1000 chess
pieces onto a board (see Figure 1(a,b) and our accompanying video)
showing the number of colliding bodies, number of detected con-
tacts, and wall-time taken for each phase of each step of the simu-
lation. When rendered into an animation the simulation is played at
210 simulation steps per second.

The contact detection phase is responsible for finding all the
points of contact occurring between any pairs of bodies in the simu-
lation. The problem of efficient collision detection for rigid bodies
is widely studied (see [Lin and Gottschalk 1998]), but is not a fo-
cus of this work. For our contact detection, we implemented a ba-
sic broad-phase collision detector and made use of an off-the-shelf
mesh-mesh contact detector, PQP [Gottschalk et al. 1996], for pair-
wise contact detection. The complexity of our broad-phase colli-
sion detector depends on the number of bodies that are colliding or
nearly colliding; it is O(n) best case, and O(n*) worst case (in the
physically implausible event that all n bodies are sufficiently close
to each other). The complexities given above include calling the
narrow-phase detector for each pair of possibly colliding bodies.
For the purposes of this analysis, we will treat PQP as a constant-
time operation in quantities such as number of triangles, but note
that it is output-bound to be ®(m,), where m, is the number of
contact points detected between a given pair of bodies. Thus, the
complexity of our contact detection as a whole is O(n® +m), where
m is the total number of contacts found on all the bodies. Here it
should be noted both that this is a very conservative bound, and that
a more efficient collision detector could be seamlessly swapped into
the implementation.

Each of the contacts reported by the contact detection phase must
then be processed to resolve the new body velocities. As described
in Section 8, each contact on a body is either determined to be inac-
tive, and discarded, or marked as active and used to generate contact
constraints. For each body that receives at least one active contact,
two projections are performed; the cost of each of these projection
computations is linear in the number of active contacts. The com-
plexity of the contact resolution phase is thus O(n, + m), where
ng is the number of bodies with active contacts (in the worst case,
ng = n).

The key result of the above analysis is that excepting the collision
detection phase (where optimization and careful analysis is likely to
reduce the average-case complexity), our implementation is linear
in the number of bodies being simulated, and linear in the total
number of contact points detected at each step. Below, we will
provide an indication of the relative coefficients of the complexities
described here, by presenting the performance results of an example
simulation.

We inserted wall-time recording code into our Java™ implemen-
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Figure 9: Performance results for the same simulation as in Fig-
ure 8 showing the wall-time spent in constraint computation and
projection, as a function of the total number of contacts in a step.

tation, and ran a simulation of a 10 x 10 x 10 grid of chess pieces
free-falling onto a chess board (see Figure 1(a,b) and our accom-
panying video). Four different chess pieces were modeled with
meshes sizes ranging from 1916 to 5814 triangles. The grid con-
tained approximately 250 of each type. We ran the simulation using
Sun’s JDK 1.5 on a 3.6 GHz Pentium 4 machine with 1 GB RAM
running Windows XP. In Figure 8, we show the progression over
the course of the simulation of the number of colliding bodies and
detected contacts, as well as the time taken by each of the algorithm
phases. With the exception of outliers (caused by the use of wall-
time as the performance measure), both half-step phases display
the expected constant-time performance (since the number of sim-
ulated bodies is constant). Of note here is the continued increase in
the number of contacts after the number of colliding bodies has sat-
urated (during the time when settling objects are packing together).
This underlines the importance of analyzing the cost per contact.

In Figure 9, we show the contact resolution time as a function
of the total number of detected contacts. Here, we consider sepa-
rately the two parts of the contact resolution phase: the constraint
computation section, wherein each contact is either discarded as in-
active or deemed active and then used to generate constraints, and
the projection part, wherein two convex projections are performed
for each active body. Note that while the former is linear in the total
number of contacts, the latter evinces a saturation curve due to the
correlation between the total number of contacts and the number of
active bodies.

We have shown that the cost-per-step of our contact resolution is
linear in both the number of simulated bodies and the total number
of contact points. However, to meaningfully compare our perfor-
mance with other methods, we must consider the computation of
the contact points, and the simulation step size. Up to this point we
have not mentioned number-of-triangles in our cost analysis, but
our implementation’s cost depends to a certain extent on the size
of our meshes. Our choice of PQP as our final collision detection
tool dictates that our contacts be at points of triangle-triangle inter-
section between colliding meshes. Therefore, the degree of mesh
tessellation affects the number of contact points reported, and can
also affect the quality (i.e. accuracy) of the contacts (and thus the
quality of the simulation). This qualitative difference restricts our
ability to analyze our implementation in the abstract, and makes
us reliant on reporting the number of contacts processed in a given
simulation. Similarly, the quality of the simulation improves as step
size becomes sufficiently small, with “sufficient” depending on the
speed of the bodies relative to their spatial frequency.



10 Summary

We have introduced a non-smooth, contact based approach to dy-
namics that results in a consistent theory and a robust linear time
simulator. We have carefully formulated our approach in a geomet-
ric setting which has allowed us to handle multiple contacts with
non-linear friction in a local manner. This, in turn, has allowed us
to obtain large scale plausible simulations of non-convex geome-
tries using an easily implemented rigid body simulator.
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A Background

In this section we collect some notations used in this paper. We also
describe some basic background concepts from kinematics and dif-
ferential geometry. Murray et al. [1994] is a good resource for
further information. We follow the font and index conventions de-
scribed at the end of Section 2.



The configuration space of a rigid body, that is, the space of pos-
sible orientations and positions, is called SE(3), the Special Euclid-
ean group in three dimensions. Given a rigid body B with configu-
ration q € SE(3) and a point x; € IR3 belonging to B, there exists a
mapping between B’s configuration and point @ ’s position in R3:

W, :qeSEB3) -z, € R, (31)

We represent the homogeneous coordinates of a three dimen-
sional vector x in a frame i as ‘x. The homogeneous coordinates of
this vector in frame j are obtained by left multiplying by the matrix:

j ‘e
jiE:(’o zlp> (32)

such that . o
Jp—=JE!
x="E'x. (33)
Here © is a 3 x 3 rotation matrix and p is a 3 x 1 displacement.
Then, if we define q as the configuration of a body-fixed frame B
with respect to a world frame W, and if the coordinates of the points
x;, are designated in the body’s frame as P, we can represent Wq
in a matrix form using X;VE. That is,

Y@ (q) = JEPmy. (34)

From the above coordinate transform we obtain the time deriv-
ative for the change of coordinates from frame i to frame j in the
coordinates of frame j,

Ja _ JEi
T =E'x. (35)

We define the bracket operator on R3, which constructs the skew-
symmetric matrix:

def 0 —o o
W (o 0 -l (36)
— wy 0

Multiplying by this matrix gives us the cross product. Then,

icjie_ (070 OTp) _ (lw] v
fE?E*( 0 0)*(0 0 (37

gives us the change of frame i with respect to frame j in coordinates
of frame i. This is an element of the tangent space to SE(3), which
is denoted se(3). This quantity determines the spatial velocity vec-
tor, called a twist, defined in coordinates of frame i. We extract this
twist using a linear operator 4(, so that

0(j.i) ' (w,0) = u(ELE). (38)

We denote 4U’s inverse by the bracket operator on twists so that, for
the above spatial velocity we have

[9(j.0)] = (%’] '6) : (39)

{¢(j,i) describes the relative motion of frame i with respect to
frame j, in coordinates of frame i. Here w is the angular velocity
and v is the linear velocity of a point at the origin of frame i. When
j is the world frame we will sometimes abbreviate ¢ (j,i) using
i¢;, or, when the context is clear ‘¢ or ¢;. The 4 x 4 matrix in
Equation 37 gives us the velocity of any point, 'z, relative to
frame j in coordinates of frame i:

iy = ([‘6’] 8) 2. (40)

We dehomogenize these velocities by simply discarding the fourth
component. Using Equation 40, we derive a frame specific differ-
ential mapping of spatial velocities (elements of se(3)) to the veloc-
ities of points in R3. These velocities, &, live in the tangent space
at ¢y, denoted by T k]R3. The mapping,

i

Moo i — idy. (41)
is performed by multiplying a twist by the 3 x 6 matrix
Te=(—['zy] 1). 42)

A change in coordinate frames induces a change in spatial velocity
coordinates. Here the adjoint matrix,

; ® 0
§Ad:([p]® ®)7 43)

is used. Since twists are contravariant quantities, they are trans-
formed by left multiplying,

Tp=IAd 9. (44)
We equip SE(3) with the kinetic metric so that

a.b:aTM(q)b:aT (g /(/)l) b, Va,b € se(3), 45)

where M(q) is the frame appropriate inertial matrix at q. An explicit
Euler step of length / can be defined for se(3) using the exponential
map. Given a configuration, ]iEO, and a twist, ‘¢, the explicit Euler
step is:
jgh _ Jg0 i
;E'=E exp(['9]h). (46)
Spatial forces, called wrenches, are linear operators on tangent
vectors in se(3). They belong to the dual (cotangent) space se*(3).
They are represented as f = (f,, f;)7 where f, is the torque com-
ponent and f; is the translational force. Since they are covariant
quantities, wrenches transform by left multiplying with the inverse
transpose adjoint, _
= Ad" £ (47

This is analogous to the way in which surface normals are trans-
formed by the inverse transpose of a transformation matrix in the
rendering pipeline. A force derived from a contact at x; will lie
within the cotangent force space denoted, Ta*;kR3. Because T%kR3

is isomorphic to R3 (asis Ty kRS), we do not distinguish between
them in this paper, in order to simplify notation. The transpose of

lrk’ A
T = <[ ’”fk]) , (48)

maps a force f € T;kﬂ@ into se*(3) by left multiplying:
if= N f. (49)

The Newton-Euler equation for a rigid body B in its own frame is

sf =M —(P9.)"M P9, (50)
with s
B¢>< déf <[[ B:j]] [Bow]) . (51)

Computing all dynamics in body coordinates allows us to use a
fixed inertial tensor M, which can be computed in a principal axis
aligned, diagonalized form.



