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Figure 1: Numerical stiffening can cause animations on a coarser FEMmesh (sequence (c)) to deviate from corresponding ones on a finer mesh
(sequence (a)). To fix this error, EigenFit adjusts the magnitudes of the leading modes on the coarse mesh using the fine mesh at rest state,
resulting in sequence (b). The meshes are coloured by normalized positional error with respect to the finer mesh. EigenFit often outperforms
current leading alternatives.

ABSTRACT
Elastodynamic system simulation is a key procedure in computer
graphics and robotics applications. To enable these simulations, the
governing differential system is discretized in space (employing
FEM) and then in time. For many simulation-based applications
keeping the spatial resolution of the computational mesh effectively
coarse is crucial for securing acceptable computational efficiency.
However, this can introduce numerical stiffening effects that impede
visual accuracy.

We propose and demonstrate, for both linear and nonlinear force
models, a newmethod called EigenFit that improves the consistency
and accuracy of the lower energy, primary deformation modes, as
the spatial mesh resolution is coarsened. EigenFit applies a partial
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spectral decomposition, solving a generalized eigenvalue problem
in the leading mode subspace and then replacing the first several
eigenvalues of the coarse mesh by those of the fine one at rest.
EigenFit’s performance relies on a novel subspace model reduction
technique which restricts the spectral decomposition to finding
just a few of the leading eigenmodes. We demonstrate its efficacy
on a number of objects with both homogenous and heterogenous
material distributions.
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1 INTRODUCTION
The calibration, capture, animation and design of soft-body dynam-
ics are critical for a wide range of domains spanning from robotics,
automotive design and biomechanics to film, interactive animation
and digital fabrication design. A fundamental computational bottle-
neck in all of these domains is the efficient forward simulation of
elastodynamics. To simulate elastodynamics researchers often first
discretize the governing differential system in space employing a
finite element method (FEM) [Belytschko et al. 2013; Sifakis and
Barbic 2012a], and then in time using a time-stepping method.

For simulation-based applications there are many reasons to
alter the spatial and temporal resolution of the computational mesh.
Critically, coarsening in both space and time is often required in
order to make applications practical. Most notably, runtime costs for
soft-body simulations scale superlinearly in the number of nodes
in the FE mesh. However, both spatial and temporal coarsening
introduce undesirable and often unexpected numerical artifacts that
reduce the controllability, consistency, accuracy and effectiveness of
resulting simulations. While understanding and reducing artifacts
due to temporal coarsening is a long-standing and active area of
investigation, the complementary problem of treating artifacts due
to spatial coarsening has remained much less addressed. Here, we
propose a new method, EigenFit, to mitigate spatial coarsening
artifacts in elastodynamic simulation.

While aggressive spatial coarsening can significantly improve
runtimes it has severe consequences for resulting soft-body simula-
tions. First, as coarsening progresses the computational mesh loses
geometric accuracy. Second, higher frequency modes that can only
be expressed on finer meshes disappear as the mesh is progressively
coarsened. Third, coarsening introduces numerical stiffening. The
latter, in analogy to numerical dissipation, is the change in a simu-
lated material’s effective stiffness directly as consequence of spatial
mesh coarsening.1 This change in observed stiffness becomes more
pronounced, despite material parameters remaining fixed, as we
increase element sizes; see Figure 1.

Numerical stiffening thus remains a fundamental block to con-
sistent and accurate simulations across changing mesh resolutions.
Mesh resolution changes all the time, but, in principle, simulated
physics should not change with it. Towards this goal we propose
and demonstrate a new algorithm, EigenFit, that improves the con-
sistency and accuracy of both linear and nonlinear model elastody-
namic simulations. Specifically, EigenFit corrects the lower energy,
primary deformation modes of spatially coarsened meshes to gain
consistency in elastodynamic simulations across a broader range
of mesh resolutions and motions. In particular we will show that
consistent dynamic behaviour for the same shape and material is
maintained as the spatial mesh resolution is varied in a range that
preserves primary eigenmode shapes.

At its core EigenFit is conceptually direct. We apply partial spec-
tral decomposition, solving a generalized eigenvalue problem to
rescale leading eigenmodes of a coarsened model with initial-state
ratios between fine- and coarse-resolution mesh eigenvalues. For

1 Numerical stiffening is not to be confused with other notions of material stiffness
that are independent of mesh discretization and often result from having very different
scales in the underlying simulated differential system. Here it is the low eigenvalues
that are at play, and numerical stiffness difficulties ebb away as the mesh resolution is
increased.

(a) DAC inconsistent (b) 1st, 3rd, and 6th Modes of the bar mesh

Figure 2: DAC cannot fix some important deformation modes. In
this figure both bars are simulated with Young’s modulus Y = 4kPa
and Poisson’s ratio ν = 0.3. However, the stretching and twisting
motions are inconsistent. DAC only uses the firstmode to adjust the
dynamic behavior of the object. But in this example, the first mode
of the elastic bar is a bendingmode (see (b)). Consequently, the twist-
ing (3rd mode) and stretching (6th mode) motions are inconsistent.
Subfigure (a) also demonstrates that numerical stiffening can still
occur away from locking at low Poisson ratio.

nonlinear models EigenFit then updates this fit as time progresses
with a local re-linearization and decomposition that calculates just
leading modes at each time step. By restricting this per-time step
correction to subspaces formed by just the leading eigenmodes,
EigenFit avoids prohibitively expensive, repeated full decomposi-
tions and so efficiently performs subspace correction followed by
a low-rank update to map the model back to the full deformation
space for time stepping.

EigenFit performs exceptionally well for linear constitutive ma-
terials; see Figure 1 and Section 4.1. Furthermore, unlike some other
methods EigenFit is effectively oblivious to material heterogeneity
and performs without change for heterogeneous materials where
the Young modulus is a distributed parameter function. It naturally
handles relatively stiff objects where motion is generated through
local softer joints, as demonstrated in Section 4 and the supplemen-
tary video.

2 RELATEDWORK AND NUMERICAL
STIFFENING

In this work we focus on constructing coarse spatial-mesh elasto-
dynamic simulations that improve accuracy and consistency of the
primary, lowest energy eigenmodes with respect to a fine-resolution
reference mesh. These leading modes generally exhibit the largest
and most visible deformations in elastica and are thus critical for
visual and functional applications in many domains including vi-
sual effects, e.g., film and animation, as well as functional design,
e.g., robotics and biomechanics [Chen et al. 2017].

A key obstacle to this goal are spatial coarsening artfiacts that
arise in the form of numerical stiffening. In Section 2.1 we look
further into the source of numerical stiffening. First, however, we
briefly review existing remedies for it.

Numerical stiffening in conformal FEM is treated directly by
adapting the spatial mesh for accuracy until error is reduced and
thus the artifact is mitigated [Babuska et al. 2012]. These refine-
ments traditionally increase mesh-resolution (h-refinement) and/or
element order (p-refinement) [Belytschko et al. 2013]. Many re-
finement approaches monitor error on the deformed mesh and so
adapt during simulation [Bargteil and Cohen 2014; Grinspun et al.
2002; Mosler and Ortiz 2007]. Most recently Schneider et al. [2018]
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Figure 3: The lowest non-zero eigenvalue of a squaremeshwith two
triangles under the Discontinuous Galerkin BZ formulation and IP
formulation [Chen et al. 2018b; Kaufmann 2012; Kaufmann et al.
2009]with a reference continuousGalerkin (CG) solution.Apenalty
parameterη can be used to adjust the effective stiffness and alleviate
numerical stiffening somewhat. However, the value of η is purely
empirical.

proposed p-refinement on unstructured meshes based on analy-
sis of the undeformed mesh at rest. This latter approach can be
highly effective when a small number of ill-shaped elements are
ruining accuracy. However, in the spatial coarsening setting we
have a global problem where all elements may be problematically
large. Thus, if we were to adopt a refinement solution to alleviate
numerical stiffening, the entire domain would require refinement,
leading to impractical meshes with high degree of freedom that
one wishes to avoid computing with in the first place [Chen et al.
2017].

Alternatively, numerical homogenization methods [Chen et al.
2015; Kharevych et al. 2009; Nesme et al. 2009; Panetta et al. 2015;
Torres et al. 2016] have also been proposed to better model en-
ergy density at coarse resolution. These methods work well in the
static setting but do not account for inertia and fail to extend in the
dynamic setting [Chen et al. 2017]. Moreover, the primary focus
in these methods is specifically homogenizing static solutions for
heterogenous materials. Here we focus on gaining accuracy for dy-
namics solutions without modifying the given constitutive material
model.

Nonconforming FE methods, especially discontinuous Galerkin
(DG), are another potential avenue for reducing numerical stiffen-
ing. In particular, DG methods can be applied to help reduce the
related problem of numerical locking [Kaufmann 2012; Kaufmann
et al. 2009]. By adding additional degrees of freedom to the system
and weakly enforcing inter-element continuity with penalty terms,
DG methods offer freedom to avoid degree-of-freedom locking.
However, this additional flexibility unfortunately does not provide
dynamical correction for numerical stiffening which occurs in ad-
dition to locking; see Figures 2(a) and 3.

Most recently, Chen et al. [2018b] combined homogenization
and nonconforming FE for coarse static solutions to heterogenous
materials. They also interestingly demonstrated modest improve-
ment on a simple dynamics example, although they note that no
explicit correction in this method is made towards fixing phase
error.

The closest work to ours is that of Chen et al. [2017]. They
observe that rather coarse meshes can accurately capture low-
frequencymode geometry, and hence can capture the primarymode
shapes of a simulated object. To a priori correct this model towards

handling numerical stiffening artifacts, they proposed a dynamics
aware coarsening (DAC) method that precomputes and applies, per
mesh, a one-time numerical rescaling of Young’s modulus to match
the lowest eigenmode frequency of a coarse mesh to an accurate
sample. While this rescaling can be highly effective in many cases
where a single primary mode dominates deformation dynamics,
it is unable in many cases to fix a wide number of nonlocal and
nonlinear errors and inconsistencies caused by numerical stiffening;
see Figure 2. In particular, if deformations involve stretching, twist-
ing and/or bending motions, then more than a single parameter
adjustment will generally be needed. EigenFit iteratively re-fits a
set of leading eigenmodes to achieve these corrections; see Figure
6 and Sections 3 and 4 for detailed discussion and comparisons.
We refer to [Sifakis and Barbic 2012a; Xu and Barbič 2016] for a
discussion of eigenmodes and model reduction. Furthermore, the
inverse problem solved per mesh as part of DAC could become
difficult in some applications, a difficulty that EigenFit avoids by
not solving any inverse problems.

2.1 Motivating Example
To better understand numerical stiffening, let us consider the dis-
cretization of the simplest classical wave equation given by the
partial differential equation (PDE)

ut t = c2∇2u, (1)

where c is the speed of wave. Further, assume that the PDE is in
one space variable and subject to the boundary conditions u(t ,x =
0) = u(t ,x = 1) = 0.

Looking for solutions of the form u(t ,x) = eı
√
λtU (x) leads to

the eigenvalue problem

− c2∇2U = λU , (2)

with eigenvalues
λj = (jcπ )2, j ∈ N. (3)

Here the lowest eigenvalue is λ1 = π 2c2 ≈ 9.86c2, with
√
λ1 the

frequency (in time) of the dominating dynamic mode.

Semi-Discretization. It is common to semi-discretize the PDE
in Eq. (1) in space, and then step the resulting ODE in time to
simulate dynamics. This semi-discretization in space is, of course,
closely related to the eigenvalue problem Eq. (2). However, the
spatial discretization error will pollute the overall time trajectory
(dynamic behaviour) as it alters the analytic eigenvalues given in
Eq. (3).

Finite Element Method. Applying conformal FEM, we first con-
vert Eq. (2) to weak form. The eigenvalue problem (2) is then equiv-
alent to requiring that for all appropriate test functions V ,

c2
∫

∇U∇Vdx = λ

∫
VUdx . (4)

We apply simplest Galerkin FEM by choosing piecewise linear “hat
functions” satisfying the boundary conditions as the function space
for U and V . The resulting element stiffness matrix from the left
hand side and mass matrix from the right hand side of Eq. (4) are,
respectively,

Ke,h =
c2

h

[
1 −1
−1 1

]
, Me,h =

λh

6

[
2 1
1 2

]
.
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Figure 4: The lowest eigenvalue of Eq. (5) with c = 1 changes de-
pending on the mesh resolution. This eigenvalue approaches the
true eigenvalue π 2 of Eq. (3)monotonically from above as the mesh
resolution improves.

After assembly and elimination of the boundary variables, we have
converted Eq. (4) to the system

Khu = λMhu, where (5)

Kh = −
c2

h



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


,

Mh =
h

6



4 2
2 4 2
. . .

. . .
. . .

2 4 2
2 4


.

We have discretized Eq. (2) and converted it into a generalized
eigenvalue problem. The lowest eigenvalue at a range of mesh reso-
lutions is plotted in Figure 4. Notice that approximated eigenvalues
using the FEM approach the exact one in Eq. (3) from above as
h → 0. This artifact is numerical stiffening, and here the simulated
object is stiffer than the physical model. Moreover, at each progres-
sively coarser mesh a corresponding simulation will be stiffer when
compared to a finer mesh simulation.

This numerical stiffening is a direct consequence of an old re-
sult [Ciarlet et al. 1968] showing that the Galerkin approximation of
the general eigenvalue problem will always lead to larger eigenval-
ues. In brief we are searching for the minimum of an approximated
Ritz functional in an increasingly less inclusive function space as
we coarsen the mesh in the weak form of a boundary value PDE
problem. Note that this result will not hold in general, if we lump
the mass matrix or use finite differences; although such method
alterations will not improve the numerical stiffening: it is only the
monotonic approach to the limit that would be lost.

3 METHOD
We now describe in detail a new method that mitigates numerical
stiffening by matching primary vibration modes As in [Chen et al.
2017] our setting requires not to coarsen the mesh beyond a point
where the low-energy mode shapes differ between fine and coarse
by more than some small tolerance. The method described below
applies for linear and nonlinear force models.

Discretizing the equations of motion for an elastodynamic sys-
tem using the finite element method (FEM) results in a large system
of ordinary differential equations in time t given by

M Üq(t) = ftot(q,v),

where the unknowns q = q(t) are nodal displacements of the FEM
mesh with corresponding velocities v(t) = Ûq(t). The mass matrix
M is symmetric positive definite. The total force is further written
as

ftot = fels(q) + fdmp(q,v) + fext(q),

with the elastic forces given by

f ≡ fels(q) = −
∂

∂q
W (q(t)),

whereW (q(t)) is the elastic potential of the corresponding hyper-
elasticity model. We further define the tangent stiffness matrix
K = − ∂

∂q fels(q(t)). This matrix is constant and symmetric positive
definite if f is linear, but for nonlinear elastic forces it depends on
the unknown q(t) and may occasionally become indefinite. See, for
instance, [Chen et al. 2017, 2018a; Ciarlet 1988; Sifakis and Barbic
2012b; Teran et al. 2005]. To model internal friction of elastic ob-
jects and to improve stability of the system, we have employed the
Rayleigh damping force

fdmp(q,v) = (αM + βK)v, (6)

with α ≥ 0, β > 0.
Below we first motivate our approach in the linear setting (Sec-

tion 3.2). We then extend our approach to the nonlinear setting
using an iteratively updated subspace correction (Section 3.3). Our
full dimensional method with subspace correction is described in
Section 3.3.3.

With our spatial treatment method now in place, it can be ap-
plied in conjunction with any suitable time-stepping integrator. For
simplicity we use semi-implicit backward Euler (SI) [Baraff and
Witkin 1998].

3.1 Mesh eigenmodes
To introduce our ideas gradually, suppose at first that we perform
an FEM simulation of an elastic object motion under a linear elastic
force at two distinct mesh resolutions. We then have respective
time-independent mass matrices Mc ,Mf and stiffness matrices
Kc ,Kf corresponding to the coarse and fine meshes. We can find
the eigenmodes uc,i and uf ,i (modes of deformation) of the coarse
and fine meshes by carrying out the principal component analysis

Kcuc,i = λc,iMcuc,i , i = 1, . . . ,Nc ,

Kf uf ,i = λf ,iMf uf ,i , i = 1, . . . ,Nf ,

where Nc < Nf . While the eigenmodes uc,i and uf ,i have different
sizes, they correspond to the same ith deformation mode of the
object for low indices i , i = 1, 2, . . . ,m, wherem ≤ Nc . However, as
discussed in Section 2, their corresponding eigenvalues λc,i and λf ,i
will be different due to numerical stiffening. Although their relative
difference is only by O(1), this can change the object deformation
properties significantly; see Figures 1 and 6. In particular, avoiding
mass lumping we have λc,i > λf ,i , and since these eigenvalues
directly relate to the oscillation frequency of the corresponding
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mode, simulating on a coarse mesh has been observed to make the
object look stiffer and oscillate faster.

To enable such an eigenvalue adjustment, the first idea that may
spring to mind is to use the fact that, if the scalar λ and the vector
u are an eigenpair of a matrix A satisfying Au = λu, then for any
integer j , alsoAju = λju. Thus, one could construct an interpolating
polynomial p(A) for A = M−1

c Kc such that P(A)uc,i = λf ,iuc,i for
the first few modes, i = 1, 2, . . . ,m, and replace λc,i by p(λc,i ).
However, this idea does not work out, even for small fittings of
m = 3. This is because the eigenvalue spread is typically wide and
unequal. The resulting, extrapolated values of p(λc,i ) for i > m are
often rather far from the corresponding λf ,i , and the process is
highly ill-conditioned even when using a Lagrange basis for the
polynomial interpolation process. We thus proceed with a direct
strategy for modifying the primary coarse-mesh eigenvalues.

3.2 Direct eigenvalue modification
Continuing our gradual development, in this sectionwe assume that
the stiffness matrix K is constant and symmetric positive definite.
To reduce the numerical stiffening effect we modify the first m
eigenvalues directly within the eigendecomposition, where the
parameterm is not large (typically in our calculations,m < 20). First,
using the shorthand M = Mc , K = Kc , we write the generalized
eigenvalue problem from Section 3.1 above as

KU = MUD, (7)

where D is a diagonal matrix having the eigenvalues on its main
diagonal, andU is the matrix having the eigenvectors as columns:

D = diag [λc,1, λc,2, . . . , λc,Nc ], (8)

U =


| | · · · |

uc,1 uc,2 · · · uc,Nc

| | · · · |

 .
Solving such problem also ensures mass-orthogonality, UTMU = I
andMUUT = I .2

Next, correction of frequency and thus eigenvalues is direct in
the linear setting. We simply replace D in Eq. (8) with

D† = diag [λf ,1, λf ,2, . . . , λf ,m , λc,m+1, . . . , λc,Nc ]. (9)

We select the parameterm using the Hausdorff distance between
the eigenshapes of the coarse and fine meshes, following Chen et
al. [2017]. Now, using mass orthogonality [Barbič and James 2005],
we can approximate the generalized eigenvalue equations (7) by
K†U = MUD†, and obtain our modified stiffness matrix K† directly
from this expression:

K† = MUD†UTM . (10a)

For linear models, we then construct the corresponding modifed
force by

f † = −K†x , (10b)

where x is the deformation.

2Note, however, thatU is not an orthogonal matrix in general.

3.3 Nonlinear Materials
The approach described in Section 3.2 is direct and simple. However,
it is only applicable to linear forcemodels, where the stiffnessmatrix
and the modal analysis remain constant throughout the simulation.

In this section we extend our observations from the linear setting
to nonlinear force models, e.g., neo-Hookean, StVK, and the spline
model of Xu et al. [2015], as well as to co-rotational FEM.

The obvious step to begin with is to consider a local linearization,
i.e., re-initialization, at each time step. However, there are several
obstructions to this approach. One is that the Jacobian matrix that
arises at each given time step depends on the solution there which,
in turn, depends in general on all modes. So there is some mixing
of modes in the nonlinear case that does not happen in the linear
one. Moreover, approximations for the stiffness matrix, for instance
when using neo-Hookean force, might give rise to negative eigen-
values (corresponding possibly to material compression). Finally,
the sheer cost of carrying out an eigendecomposition at each time
step can quickly become prohibitive.

3.3.1 Rescaling a subset of eigenvalues. Rather than a one-time
precomputed rescaling as performed in Chen et al. [2017], we update
our fitting iteratively with a local re-linearization at each time step.
We first designate our set ofm target eigenvalue ratios ri =

λf ,i
λc,i

for i = 1, 2 . . . ,m, either precomputed from the rest shape of the
meshes or else set by hand, e.g., for animation design.

At each time step we then
(1) Build a local tangent stiffness matrix K and perform gen-

eralized eigenvalue decomposition on the coarse mesh as
in Eqs. (7)–(8). Note that, unlike for linear forces, here both
the eigenvectors and eigenvalues depend on the state uc,i =
uc,i (xt ) and λc,i = λc,i (xt ).

(2) Set the ratio matrix

R = diag [r1, . . . , rm , 1, . . . , 1], (11)

and then D† = RD. This adjusts the leading eigenvalues to
their target values.

(3) In the locally linear setting the modified tangent stiffness
matrix is now given by the expression in Eq. (10a). The force
is correspondingly adjusted to match:

f † = M
(
URU −1

)
f = MURUT f . (12)

In the general nonlinear material model setting the eigenvalues
are not always positive [Ciarlet 1988]. This can mix the rescaling
effect on different deformation modes. To mitigate this issue, during
assembly of the tangent stiffness matrix, we project any indefinite
element stiffness matrices to the PD cone, by replacing offending
negative eigenvalues with a small positive value ϵ (we chose ϵ =
1e − 3), in turn guaranteeing positive definiteness of the global
stiffness matrix; see Teran et al. [2005].

Although the generalized eigenvalue decomposition is performed
on the coarse mesh at the beginning of each time step, the corre-
sponding decomposition on the fine mesh is performed only once,
at the beginning. Thus, in (11) we keep the rescaling ratios fixed,
to avoid calculating ratios of the eigenvalues of coarse and fine at
different times. The updated coarse modes, however, are of course
used in Eqs. (12) and (10a).
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3.3.2 Subspace correction. As noted earlier, a fundamental draw-
back of our strategy so far is the computation of the full eigen-
decomposition of the system matrix at every time step. Observe,
however, that our goal is just the re-fitting of the lowestm modes.
Thus, we may focus much of our attention on a subspace of the
eigendecomposition. This is especially important as computation
of a low number of eigenpairs is significantly less expensive (see,
e.g., [Stewart 2002]). Starting with this observation we can instead
perform our rescaling in the reduced space spanned by the lowest
s modes, where s is a small integer in the rangem ≤ s ≤ Nc . Its
value depends on the task complexity and the computational cost.

Concretely, at each time step we compute only the lowest s
eigenpairs. Denote the corresponding reduced-space eigenvalue
and eigenmode matrices Ds and U s . In contrast to standard linear
and nonlinear modal analysis and dimension reduction methods,
here we build a small, local subspace about each time step. In our
setting the relevant eigendecomposition can be efficiently computed
by performing a sequence of inverse power iterations to compute
at each time step the lowest few eigenpairs corresponding to the
dominant motions. Note that in the subspace of dimension s < Nc ,
UT
s MUs = Is , butMUsU

T
s , I .

Within each time step’s local subspace, the corresponding mass
matrix is the s × s identity matrix, while the subspace tangent
stiffness matrix Ks is diagonal. The corresponding reduced stiffness
matrix and force are then

Ks = U
T
s KUs = diag[λc,1, . . . , λc,s ], fs = U

T
s f . (13)

Next, following Section 3.3.1, we build the diagonal subspace rescal-
ing matrix of size s in the reduced space,

Rs = diag [r1, . . . , rs ].

The corresponding modified subspace tangent stiffness matrix and
forces, rescaled by r i , are then

K†
s = RsUs

TKUs = Rsdiag[λc,1, . . . , λc,s ], (14a)

f †s = RsUs
T f . (14b)

3.3.3 The EigenFit method. Finally, our local subspace corrections
to the primary dynamic modes must be added back to the full
system for simulation of complete dynamics.

To move our subspace correction into the full system we start
by observing that, for an arbitrary diagonal scaling matrix As , the
matrix AsUT

s rescales and projects down to the s-mode basis, as in
Eqs. (14) above. In turn,MUT

s As lifts the projected quantity back
to the full space of the FEM system. To jointly remove the current,
uncorrected force contributions spanning the subspace, and to add
their corrected counterparts back in, we then use (Rs −Is ). Thus, the
full-space tangent stiffness matrix, with our subspace correction, is

K‡ = K +MUs (Rs − Is )U
T
s KUsU

T
s M, (15a)

= K +MUs (Rs − Is )diag[λc,1, . . . , λc,s ]UT
s M, (15b)

and the corrected force is

f ‡ = f +MUs (Rs − Is )U
T
s f . (15c)

Note that with the above model we have regained the target
correction sought in Section 3.3.1, while only incurring the cost of
the small s-mode eigendecomposition.

3.4 Implementing an EigenFit integration step
The matrix K‡ in Eq. (15b) consists of the (relatively) large but
sparse positive definite Nc ×Nc matrix K plus an added full (dense)
matrix of size Nc × Nc and rank s . This may make computations
using any of our time integration methods expensive if one is not
careful.

Let us define

Y = MUs (Rs − Is ), ZT = diag[λc,1, . . . , λc,s ]UT
s M . (16a)

Then Y and Z are both Nc × s (i.e., “long and skinny”: s ≪ Nc ), and

K‡ = K + YZT . (16b)

For the SI time discretization method we have to solve a system
of the form

(M + h2K‡)v+ = z

for the velocities v+ at the next time level (where h is the step
size). Here z is a known right hand side. If we use a preconditioned
conjugate gradient method for this, then an oracle for an efficient
matrix-vector product can be readily constructed, taking into ac-
count the thinness of Y and Z .

For some other cases, however, when Nc is not extremely large
and the physical system is stiff, i.e., in the presence of large Young
modulus values, we may well wish to solve the SI linear system
(or any other such algebraic system arising from an implicit time
difference method) by a direct method based somehow on Gauss-
ian elimination. For this purpose we invoke the famous Sherman-
Morrison-Woodbury formula [Nocedal and Wright 2006],

(A + YZT )−1 = A−1 −A−1Y (I + ZTA−1Y )−1ZTA−1. (17)

In our case we have Y and Z defined as above in Eq. (16a) and
A = h−2M + K . The formula is then applied to the right hand
side h−2z, requiring one Cholesky decomposition of the sparse A
followed by s + 1 forward-backward solves. (Note that the matrix
I + ZTA−1Y is only s × s , and its inversion is thus assumed cheap.)
In our context, the resulting direct inversion method is typically
significantly more efficient, even when using SI, than iterative
methods such as conjugate gradient.

For linear force models, we note that while Section 3.2 is there
for didactical purposes, there is no reason to perform a full eigen-
decomposition even in the linear case. In practice we thus apply
EigenFit as is also for linear forces, noting that the low rank correc-
tion matrices Y and ZT are calculated just once.

3.5 Practical considerations
In many of the experiments, video clips and figures of this paper
we naturally compare our method’s performance on a coarse mesh
to similar results on a fine mesh. But in practice there will be no
detailed fine mesh calculations, or else the purpose of using the
coarse mesh in the first place would be nullified. We therefore must
be able to predict, to a reasonable degree of assurance, if applying
EigenFit on a particular coarse mesh would lead to reasonable
approximations for a similar simulation on the finer mesh.
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Figure 5: Eigenvalues corresponding to the first three leadingmodes
of a bar with a neo-Hookean force. In the top subfigure (correspond-
ing to a softer body Y=1.e4Pa) there is a mode crossing. No such un-
fortunate behaviour is observed for the stiffer object with Y=1.e5Pa.
in the bottom figure.

The essential reason why there is hope is the general observa-
tion, shared by both the mechanical engineering and the computer
graphics communities, that the first s modes, s ≤ 20, already essen-
tially determine the visual result. This allows for the development
of a model reduction technique such as we have just presented.
It allows us to always obtain rather acceptable results for linear
forces, as demonstrated throughout this paper and especially in the
next section.

At the other end there is always an inherent restriction when
applying at each time step a technique that is essentially a lineariza-
tion of a nonlinear problem, especially when the time step is large
and there is a lot of deformation action across it. This is what our
work as well as all leading others are often doing. A key to our
success is to keep the leading modes from tangling up: if a mode on
the coarse mesh no longer corresponds to the one on the fine mesh,
then of course the ratio of the corresponding eigenvalues becomes
meaningless. See Figure 5.

Following extensive experimentation, we have arrived at the fol-
lowing criterion. Our algorithm verifies that at least half of the cur-
rent eigenvectors match to the rest-state eigenvectors. The match-
ing process simply uses the mass orthogonality from Eqs. (7) and
(8). This is a functional distance measurement between two meshes.
Since true orthogonality is not achievable from this matching pro-
cess, we use a loss tol = 0.4 throughout the simulation. Practically,
we compute UT

s MUs,r , where Us ,Us,r are the s current and rest
state eigenvecotrs, and verify that at least half of the columns con-
tain an entry larger than 0.6. At the first frame, a similar calculation
is performed to verify that the resolution of the coarse mesh is ca-
pable of simulating the dominating motion of the fine mesh. That is,
we calculate UT

s,r,cBMf Us,r,f , where Us,r,c ,Us,r,f are the coarse
and fine rest state eigenvectors, Mf is the mass matrix from the
fine mesh, and B is a mapping matrix from the coarse mesh to the
fine mesh through barycentric coordinates. Again, we verify that
at least half of the columns contain an entry larger than 0.6. The

Table 1: List of Meshes

Mesh ID #DOF (3× #Vertices) #Tetrahedrons
Arm fine 15,372 19,378

Arm coarse 7,800 8,948
Armadillo fine 40,539 54,233

Armadillo coarse 4,425 4,902
Bar fine 42,069 72,989

Bar coarse 3,846 5,020
Fert fine 36,324 47,813

Fert coarse 5,385 6,020
Rampant fine 59,382 78,686

Rampant coarse 2,820 3,070
Skater fine 32,169 42,161

Skater coarse 8,394 9,584

present simulation is deemed acceptable only if it passes both tests.
In short, we use the criterion above to make sure the nonlinearity is
not out of hand. Note that there are many types of nonlinearity that
can appear in different applications, and different security measures
can be used accordingly. For example the alignment process in [Xu
and Barbič 2016] finds a set of transformation angles by solving an
orthogonal Procrustes problem, and this set of angles can also be
used as a measurement for nonlinearity.

4 RESULTS
In this section we demonstrate the efficacy of EigenFit on homo-
geneous and heterogeneous material deformable objects of vari-
ous shapes simulated under both linear and nonlinear forces. For
simplicity, for all examples in this section, we use time step size
h = 1e − 2. In the comparisons below, we always use a fine spatial
mesh simulated using plain FEM as the ground truth. We compare
this fine mesh trajectory against various coarse mesh trajectories
simulated by plain FEM, EigenFit or DAC. In this section we use a
number of meshes for the reported simulations. Table 1 summarizes
the mesh information used, while Table 2 summarizes our simula-
tion times for each of the coarse mesh, fine mesh, and the EigenFit
simulations. We found that for coarse mesh nonlinear material, 20%
of the time increase comes from eigendecomposition, while the rest
comes from the low rank update. Due to the nature of dynamic
simulation, some results are easier to visualize and understand in
animated form. For this we refer readers to our supplementary
video. In all of the figures, the color code is calibrated using the
maximum error from each simulation. We rendered an embedded
fine mesh together with a wireframe from the simulated coarse
mesh. Note further that many of the examples in this section and
the supplementary video involve positional constraints.

In this project, we use nested cages [Sacht et al. 2015] and TetWild
[Hu et al. 2018] to generate meshes for our simulation inputs. We
implemented our algorithm in C++ with GAUSS library, and use
Spectra for eigenvalue/eigenvector computation. We will make our
code available with the published paper.
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4.1 Linear hyperelastic constitutive models
While nonlinear models are commonplace in animation tasks nowa-
days, engineering and fabrication often rely on linear dynamical
analysis. Furthermore, many animation techniques rely on underly-
ing linear models which are modified via warping to yield visually
acceptable results. Linear force models remain popular due to their
simplicity and rapid execution, and have been used in some interest-
ing and varied applications such as acoustic transfer [Li et al. 2015].
In our specific context this section is a good place to demonstrate
how EigenFit leverages the underlying principle behind numerical
coarsening. We can also clearly see how EigenFit differs from DAC
and improves upon it.

Under the setting of linear elasticity, the eigensystem is con-
stant. We can perform the full eigendecomposition as described in
Section 3.1. However, since the high energy modes rarely have ob-
servable amplitude, we only carry out a partial eigendecomposition
to adjust the first few eigenvalues and eigenvectors, as described in
Section 3.2. Notice that we only need to perform this decomposition
and store Y ,Z in Eq. (16a) once for the entire simulation.

4.1.1 Bar. In this example, we simulate a twisted bar using linear
material with constant Young’s modulus Y = 1e5Pa, Poisson’s ratio
ν = 0.45, and IM with α = 0, β = 0.01 in Eq. (6). In this case, the
fine mesh has Nf = 14, 023 and the coarse mesh has Nc = 1, 282
free vertices. In the EigenFit algorithm, we pickm = s = 10 modes
to match from coarse mesh to the fine mesh. We track a corner
point of the bar and plot the trajectories and errors in Figure 6. We
also show the simulation results at t = 2.9sec with different view
angles to provide comparison with other methods.

Note that the Euclidean error of EigenFit at the corner point is
consistently lower than those of the plain FEM and DAC. Inter-
estingly, if we only look at the y trajectory of the corner point in
Figure 6(c), DAC does a good job at matching the ground truth. By
looking at the first few eigen-deformations in Figure 7, we can see
why this is the case. The first eigen-deformation is a bending mode
that affects the y coordinate only; see Figure 7(a). Since DAC uses
the first eigenvalue ratio to adjust the Young modulus, it fixes the
stiffening effect in this motion. However, since we are simulating a
twisted bar, there are other deformation modes that could not be
captured by such eigen-deformation alone. In our EigenFit algo-
rithm, the 3rd eigenvalue ratio is used to compensate the stiffening
effect in the rotational motion; see Figure 7(c). This suggests that
EigenFit can be viewed as a high-order improvement to DAC.

4.1.2 Armadillo. Our algorithm can of course handlemore complex
geometries than a rectangular bar. In this example we simulate an
armadillo using Armadillo meshes described in Table 1. Figure 1
demonstrates that EigenFit can match the corresponding modes to
the correct frequency in the fine mesh. This results in a consistent
simulation trajectory across different resolutions.

Summary for linear forces: We have carried out dozens of additional
simulations for many different deformable objects under linear
force. For all examples tried EigenFit performs very well indeed.
For DAC, the observations above also hold consistently: it performs
well (i.e., comaparble to EigenFit) if there is one dominating mode,
but when several different dominating modes are present DAC falls
behind.

4.2 Mildly nonlinear elastodynamics models
To further demonstrate the capacity of EigenFit, we have applied it
for nonlinear material force models, including as rigid as possible
(ARAP) [Chao et al. 2010] and Neo-Hookean.

We have used ARAP energy, a popular nonlinear energy model
in computer graphics, to simulate the Armadillo and Skater meshes
with stiffness parameter 1e6Pa, simulated with the SI integrator. We
fixed and shook the feet of both objects for 30 frames and observed
the resulting oscillation afterwards. For EigenFit, we used 10 modes
and applied the 10 calculated ratios at every frame, as described in
Section 3.3. Although the result is not as impressively perfect as
in the linear case, EigenFit still tracks the fine mesh motion much
better than the regular coarse FEM simulation; see Figure 8 and
Figure 10, respectively. In particular, notice that the position error
and velocity are oscillatory and out of phase in the coarse FEM
simulation (yellow line in the error plots), which means that its
dominating motion has the wrong frequency. EigenFit (green line
in the error plots) matches the frequency of this motion, and thus
has a much lower error.

In the armadillo mesh, we also compared to DAC. Notice that
EigenFit also performs better than DAC in this case, and it is not
hard to see why by looking at the first 3 dominating modes. From
our EigenFit calculation we found the dominating three modes have
eigenvalue ratios r1 = 0.536, r2 = 0.711, and r3 = 0.675, and the
corresponding motions are forward bending (Fig. 8(c)), side shifting
(Fig. 8(d)), and slight twisting about the z-axis (Fig. 8(e)). Effectively,
DAC applied one single ratio, 0.536, to all of these motions, whereas
EigenFit correctly matched their corresponding ratios.

4.2.1 Dynamic constraint. EigenFit also works when a constraint
changes during the simulation. In Figure 9, we simulated a shaken
armadillo, and released one leg during the simulation. The EigenFit
ratios are recalculated when the boundary conditions are change.
The plots show that using EigenFit reduced the error significantly.

Summary for mildly nonlinear scenarios: The results in Figures 8–10,
as well as those in Figures 11–13, all indicate that when the nonlin-
ear effect is sufficiently moderate so that a quasi-linearization at
the beginning of each time step captures the essence of what hap-
pens throughout it, the conclusions drawn before for linear forces
can be extended, albeit in an imperfect sense. We do observe mild
mismatches, but both EigenFit and DAC are expected to perform
better than regular FEM, and situations where DAC is worse than
EigenFit arise here as well.

4.3 Large deformation for nonlinear numerical
material

For more general nonlinear scenarios it is important to understand
that there is not a panacea. The methods proposed in the literature
all rely on some localization that may not always hold, and none
of them performs satisfactorily in the large context. Figure 14 is
a case in point, where both EigenFit and DAC give poorer results
than the regular coarse mesh FEM.

In practice, of course the utility of any method of the sort con-
sidered here depends on not having to simulate the “ground truth”
fine mesh trajectory. If the ultimate fine mesh is much finer than
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(a) Reference simulation

(b) EigenFit simulation

(c) DAC simulation

(d) Coarse FEM simulation

(e) x component (f) y component (g) z component

Figure 6: Animation shots for a twisted bar under a linear force, progressing in time from left to right. The fine mesh animation (top row) is
faithfully reproduced by Eigenfit on the coarse mesh (2nd row), displaying robustness to irregular meshes. On the other hand, DAC (3rd row)
and the raw FEM coarse mesh simulations (bottom row) produce significant, visible disagreements with the fine mesh.

the coarse mesh (hence directly simulating on it could be prohibi-
tively expensive), then the simplest cure may be to make the coarse
mesh finer but still not as fine as the finest mesh. This is a com-
mon practice in scientific computing; see, e.g., [Trottenberg et al.
2000]. The condition devised in Section 3.5 goes towards ensuring
that EigenFit is not applied where its chances to perform well are
deemed too low.

Remaining still with homogeneous objects for simplicity sake,
we also observe that for the same forces applied to the same object
except that the Young modulus varies, the error is smaller the stiffer

the object gets; see Table 3. It’s for rather soft bodies exhibiting large
deformation where a finer coarse mesh is particularly desirable.

4.4 Heterogeneous deformable objects
Thus far in this narration we have restricted our attention to homo-
geneous objects in order to concentrate on the many other aspects
of the numerical stiffness problem and to enable direct comparison
to DAC. However, of course there are many deformable objects in
practice, both natural and designed, where the Young modulus is a
non-constant function over the object’s domain; see Figure 15.
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(a) Bar 1st mode (b) Bar 2nd mode (c) Bar 3rd mode

Figure 7: The first three modes of the bar example in Figure 6.

(a) EigenFit Frame 125

(b) Coarse Frame 125

(c) Armadillo 1st mode (d) Armadillo 2nd mode (e) Armadillo 3rd mode

Figure 8: ARAP armadillo with homogeneous material. The SI inte-
grator was used to simulate 200 frames. Grey silhouette shows the
reference simulation from a finemesh. The two plots aremaximum
position error and velocity error.

(a) EigenFit Frame 375

(b) Coarse Frame 375

Figure 9: ARAP Armadillo mesh with changing constraints. Color
bar was calibrated to fit the max error. The two plots are max posi-
tion error and velocity error.

(a) EigenFit Frame 175

(b) Coarse Frame 175

Figure 10: ARAP skater with homogeneous material. The SI inte-
grator was used to simulate 200 frames. Grey silhouette shows the
reference simulation from a finemesh. The two plots aremaximum
position error and velocity error.

(a) EigenFit Frame 40

(b) Coarse Frame 40

Figure 11: Neo-Hookean arm with heterogeneous material. Color
scheme is calibrated to fit themax error. EigenFit and regular coarse
FEM are displayed. The error plots are for max position and max
velocity error.

(a) EigenFit Frame 75

(b) Coarse Frame 75

Figure 12: ARAP Rampant mesh with heterogeneous material.
Color scheme is calibrated to fit the max error, and EigenFit is com-
pared to regular coarse FEM. The two plots are for max position
error and max velocity error.
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(a) EigenFit Frame 225

(b) Coarse Frame 225

Figure 13: Neo-Hookean Fert mesh with heterogeneous material.
Color bar calibrated to fit the max error. The two plots are max po-
sition error and velocity error.

(a) EigenFit Frame 125 (a) DAC Frame 125 (b) Coarse Frame 125

Figure 14: Under large deformation both EigenFit and DAC may
perform poorly. Here both methods fail to improve on the original
coarse FEM simulation. This is due to the fact that the underlying
frequency matching (for DAC) and mode matching (for EigenFit)
conditions fail to hold.

Table 2: Relative Simulation Time. A set of coarse and fine meshes
were simulated. We report the CPU time, with the relative simula-
tion time given in brackets, using the fine mesh simulation time as
the reference.

Coarse EigenFit Fine
Arm (ARAP) 219 (0.26) 444 (0.53) 839

Armadillo (Linear) 224 (0.16) 300 (0.22) 1,387
Armadillo (ARAP) 198 (0.08) 546 (0.23) 2,399

Bar (Linear) 335 (0.20) 386(0.22) 1,683
Fert (Neo-Hookean) 633(0.15) 1,914(0.44) 4,331
Rampant (ARAP) 279(0.06) 634 (0.14) 4,496
Skater (ARAP) 298 (0.23) 865 (0.65) 1,311

Table 3: Error and Stiffness

Stiffness Parameter (Pa) 1e4 1e5 5e5 1e6 1e7

Arm (ARAP) 0.91 1.39 0.615 0.611 0.438
Armadillo (ARAP) 0.838 0.755 0.622 0.307 0.192
Bar (Neo-Hookean) 1.431 0.7281 0.22 0.247 0.292

Hand (ARAP) 1.35 1.04 0.991 0.977 1.09
Skater (ARAP) 0.92 0.594 0.316 0.273 0.182

(a) Fert (b) Rampant

(c) Arm

Figure 15: Examples of heterogeneous objects: lighter colour corre-
sponds to lower Young modulus.

To find the distributed parameter function that is Young’s modu-
lus in such a case, especially for a natural object, can become signif-
icantly more difficult [Wang et al. 2015]. However, the application
of EigenFit is independent of finding this function for different
meshes. Thus, assuming the availability of Young’s modulus and
an adequate coarse spatial mesh, EigenFit applies to heterogeneous
objects as readily as to homogeneous ones!

Furthermore, EigenFit naturally handles relatively stiff objects
where motion is generated through local softer joints, as demon-
strated to various degrees in Figure 15. In such cases the leading
modes corresponding to the softer joints can be captured well, and
larger deformations in the stiffer part of the object can be success-
fully followed on the coarse mesh.

In Figures 11–13 we used heterogeneous material on the Arm,
Rampant, and Fert meshes. Color coding in Figure 15 shows how
the stiffness parameter varies spatially in the examples we used;
darker color means stiffer, and lighter color is softer. For the Arm
mesh, the peak stiffness is 1e8, and 2e4 at the minimum. For the
Rampant mesh, the peak stiffness is 1e8, and 2e6 for the minimum.
For the Fert mesh the peak stiffness is 1e9 and 1e5 at the minimum.
Observe from these figures and the supplementary video that with
nonlinear heterogeneous constitutive material, EigenFit improves
the simulation results for non-mild deformations from the coarse
FEM mesh.
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5 CONCLUSIONS, LIMITATIONS AND
FUTURE

Mitigating numerical stiffening for coarsened meshes will open the
door for elastodynamic simulation in many domains not previously
possible. Automated fabrication design requires outer optimization
loops that can call expensive FE simulations hundreds of times
about each design sample. Simply decreasing the resolution needed
for sufficient accuracy would open the door to much faster optimiza-
tion. Furthermore, as geometric design parameters change so does
the computational mesh. If changes in the meshing are allowed to
change the effective material stiffness of the simulations, then the
entire, exceedingly expensive design optimization is invalidated.
Current optimization design tools, e.g., in the automotive industry,
apply mesh-warping techniques in these settings that deform the
rest mesh in attempt to maintain mesh consistency over changing
design parameters. However, large changes in the design-space nec-
essarily require large and often abrupt changes in mesh resolution,
again forcing tools to conservatively apply high-resolution meshes.

In this work we have assumed that the material constitutive
model is given and have not attempted to change it, e.g., through
homogenization techniques. When changing the spatial mesh res-
olution the apparent physical behaviour of the simulated motion
of a flexible object may change. We have presented, analyzed and
demonstrated a method that significantly reduces this unwanted
mesh dependence, making the simulation consistent across mesh
resolutions. The method involves matching the leading eigenval-
ues of a given coarse mesh with those of a fine reference mesh at
rest. This necessitates a partial spectral decomposition, which for
nonlinear constitutive laws must be carried out at each time step.
For this we have proposed and implemented a model reduction
method, EigenFit, where the essential work is carried out in a small
subspace of the eigenmodes. We demonstrated EigenFit in action
on a range of different meshes for both homogeneous and hetero-
geneous material objects. In addition to the figures in this paper
we refer the reader to the supplementary video, where the gained
motion consistency is clearly demonstrated.

We have applied EigenFit to a class of heterogeneous and nonlin-
ear materials. To our knowledge, the dynamic aspect of numerical
stiffening and numerical homogenization has not been discussed
in detail in the literature, and our assumption that the coarse mesh
is given and is “sufficiently fine” is not out of place in many hetero-
geneous simulation applications (e.g., for animating a teddy bear
or a plant).

Notice that “large deformation” in the present context is the
amount of deformation that would modify the ordering of the eigen-
modes significantly. It is possible for certain mesh configurations
to have visually small deformation that still leads to a significant
degree of mode crossing. This is indeed the case with the Hand
mesh listed in Table 3, where a cluster of eigenvalues/eigenmodes
corresponding to the motion of each finger can easily exhibit mode
crossing, making the EigenFit mode matching effort ineffective.

For general nonlinear forces with large deformations applied to
heterogeneous material an effort is required, extending [Chen et al.
2017], to decide which coarse mesh is “sufficiently fine” to enable
a reasonable treatment of the numerical stiffening phenomenon.
To that end a practical direction is to start with a coarse mesh as

in [Chen et al. 2017] and gradually refine it for a representative
scenario until it is deemed fine enough in the present context. Then
use the obtained mesh as the new “coarse mesh” to which EigenFit
can be applied.
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