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Fig. 1. Severe deformation dynamics simulated with large steps. (a) The Decomposed Optimization Time Integrator (DOT) decomposes spatial domains
to generate high-quality simulations of nonlinear materials undergoing large-deformation dynamics. In (b) we apply DOT to rapidly stretch and pull an
Armadillo backwards. We render in (c) a few frames of the resulting slingshot motion right after release. DOT efficiently solves time steps while achieving
user-specified accuracies — even when stepping at frame-rate size steps; here at 25 ms. In (d) we emphasize the large steps taken by rendering all DOT-simulated

time steps from the Armadillo’s high-speed trajectory for the first few moments after release.

Simulation methods are rapidly advancing the accuracy, consistency and
controllability of elastodynamic modeling and animation. Critical to these
advances, we require efficient time step solvers that reliably solve all implicit
time integration problems for elastica. While available time step solvers suc-
ceed admirably in some regimes, they become impractically slow, inaccurate,
unstable, or even divergent in others — as we show here. Towards address-
ing these needs we present the Decomposed Optimization Time Integrator
(DOT), a new domain-decomposed optimization method for solving the per
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time step, nonlinear problems of implicit numerical time integration. DOT is
especially suitable for large time step simulations of deformable bodies with
nonlinear materials and high-speed dynamics. It is efficient, automated, and
robust at large, fixed-size time steps, thus ensuring stable, continued progress
of high-quality simulation output. Across a broad range of extreme and mild
deformation dynamics, using frame-rate size time steps with widely varying
object shapes and mesh resolutions, we show that DOT always converges
to user-set tolerances, generally well-exceeding and always close to the best
wall-clock times across all previous nonlinear time step solvers, irrespective
of the deformation applied.
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1 INTRODUCTION

Simulation of deformable-body dynamics is a fundamental and crit-
ical task in animation, physical modeling, and design. Algorithms
for computing these simulations have rapidly advanced the accu-
racy, consistency, and controllability of generated elastodynamic
trajectories. Key to these advances are a long-standing range of pow-
erful implicit time stepping models to numerically time-integrate
semi-discretized PDEs [Ascher 2008; Butcher 2016; Hairer et al. 2008;
Hairer and Wanner 1996]. With a few restrictions, incremental poten-
tials [Ortiz and Stainier 1999] can be constructed for these models.
These are energies whose local minimizers give an implicit time
step model’s forward map at each time step [Hairer et al. 2006; Kane
et al. 2000; Kharevych et al. 2006]. Adopting this variational per-
spective has enabled the application and development of powerful
optimization methods to minimize these potentials and efficiently
forward step dynamic simulations [Chao et al. 2010; Liu et al. 2017;
Martin et al. 2011; Overby et al. 2017].

For deformable nonlinear materials, the incremental potential is
the sum of a convex, quadratic discrete kinetic energy and a gener-
ally nonconvex, strongly nonlinear deformation energy weighted by
time step size; see e.g. (3) below. Then, as step size and/or simulated
distortions increase, the influence of this latter deformation energy
term dominates. This, in turn, requires the expensive modeling of
nonlinearities. As we will soon see, too weak an approximation of
nonlinearity leads to large errors, artifacts, and/or instabilities, while
too large or frequent an update makes other methods impractically
slow — reducing progress and imposing significant memory costs.

To address these challenges we propose the Decomposed Opti-
mization Time Integrator (DOT), a new domain-decomposed opti-
mization method for minimizing per time step incremental poten-
tials. DOT builds a novel quadratic matrix penalty decomposition
to couple non-overlapping subdomains with weights constructed
from missing subdomain Hessian information. We use this decom-
position’s Hessian, evaluated once at start of time step, as an inner-
initializer to perform undecomposed L-BFGS time step solves on a
domain mesh with a single copy of the simulation vertices. Advan-
tages of DOT are then:

No vertex mismatch. While the decomposed Hessian is built per
subdomain it is evaluated with a consistent set of vertices taken from
the full, undecomposed mesh. Penalty weights thus add missing
second-order Hessian data to subdomain vertices from neighbors
across decomposition boundaries. This gives an initializer to our
global L-BFGS solve. We use it to perform descent on the full mesh
coordinates. This means vertices on interfaces are never separated,
by construction.

Convergence. DOT adds no penalty forces nor gradients. DOT
penalty terms only supplement our preconditioning matrix. Descent
steps then precondition the undecomposed and unaugmented incre-
mental potential’s gradient and converge directly to the underlying
undecomposed system’s solution.

Efficiency. Subdomain Hessians are parallel evaluated and factor-
ized once per time step. We show that they can also be applied (via
small backsolves) in parallel as initializer at each iteration. Results
then simply need to be blended together. This process is inserted
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between first and second efficient, low-rank updates of each quasi-
Newton step. This couples individual, per-domain backsolves to-
gether for a global descent step. Resulting iterations are then more
effective than L-BFGS approaches and yet faster than Newton.

Contributions. In summary, DOT converges at large, fixed-size
time steps, ensuring stable continued progress of high-quality simu-
lation output. DOT is an automated and robust optimization method
especially suited for simulations with nonlinear materials, large de-
formations, and/or high-speed dynamics. By automated we mean
users need not adjust algorithm parameters or tolerances to ob-
tain good results when changing simulation parameters, conditions,
or mesh sizes. By robust we mean a method should solve every
reasonable time step problem to any requested accuracy given com-
mensurate time, and only report success when the accuracy has
been achieved. To achieve these goals we

e construct a quadratic penalty decomposition to couple non-
overlapping subdomains with weights constructed from miss-
ing subdomain Hessian information;

o propose a resulting method using this domain-decomposition
as inner initializer for undecomposed, full mesh, quasi-Newton
time step solves;

o develop a line-search initialization method for reduced evalu-
ations;

o extend Zhu et al’s [2018] characteristic norm for consistent
elastodynamic simulations; and

o perform extensive comparisons of recent performant nonlin-
ear methods for solving large-deformation time stepping.

2 PROBLEM STATEMENT AND PRELIMINARIES

We focus on solving one-step numerical time-integration models
with variational methods. Minimizing an incremental potential, E,
we update state from time step ¢ to ¢ + 1 with a local minimizer
Xt = argmin E(x, x*, v"), (1)
xeRdn

for n vertex locations in d-dimensional space stored in vector x,
with corresponding velocities v. Here E(x,x?,v?) is a combined
local measure of deformation and discrete kinetic energy, and x is
potentially subject to boundary and collision constraints.

The deformation energy, W(x), is (e.g. with linear finite elements)
expressed as a sum over elements e in a triangulation T (triangles
or tetrahedra depending on dimension),

W(x) = > vew(Fe(x)), @
eeT

where ve > 0 is the area or volume of the rest shape of element e, w
is an energy density function taking the deformation gradient as its
argument, and F, computes the deformation gradient for element e.
Concretely, as recent papers on solvers for time stepping in graph-
ics [Bouaziz et al. 2014; Gast et al. 2015; Liu et al. 2013, 2017; Narain
et al. 2016; Overby et al. 2017] have almost exclusively focused
on the implicit Euler time stepping model, our results in the fol-
lowing sections will do so as well in order to provide side-by-side

comparisons. For implicit Euler the incremental potential is

1
E(x, xt, o) = ExTMx —xTMxP + W (x). 3)
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Here xP = x! + ho! + M~ f, f collects external and body forces,
M is the finite element mass matrix, and velocity is updated by
the implicit Euler finite difference stencil v/*! = % In the
next sections we restrict our attention to solving a single time step
and so, unless otherwise indicated, we simplify by specifying the
incremental potential as E(x) = E(x, x¢, v?).

Notation. Throughout we will continue to apply superscripts ¢
to indicate time step, while reserving subscripts incrementing i for
inner solver iteration indices, and correspondingly subscripts with
increments of j for quantities associated with subdomains.

3 RELATED WORK

Domain Decomposition. Domain decomposition strategies have
long been an effective means of efficiently parallelizing large-scale
linear problems [Quarteroni et al. 1999]. Direct connections with the
Schur complement method and block-decomposed iterative solvers
for linear algebra are then easily established for faster solves. These
methods offer exciting opportunities for scalable performance that
have also been applied in graphics [Huang et al. 2006; Kim and
James 2012; Liu et al. 2016; Sellan et al. 2018], but can also suffer
from slower convergence or gapping between imperfectly joined
interfaces [Kim and James 2012]. Domain decompositions, includ-
ing the classic Schwartz methods, have also been extended to the
nonlinear regime [Dolean et al. 2015; Xiao-Chuan and Maksymil-
ian 1994]. Here parallelization is easily obtained; however, meth-
ods generally offer linear convergence rates [Dolean et al. 2015].
While speeds can potentially be further improved by incorporating
ADMM-type strategies [Parikh and Boyd 2012], overall application
is still hampered by ADMM’s underlying first-order convergence
and the overhead of working with additional dual variables [Boyd
et al. 2011]. For DOT, we design a domain decomposition without
dual variables that employs energy-aware coupling penalty terms
in the subdomain Hessian proxy that can be efficiently and eas-
ily parallelized for evaluation. We then integrate this model as an
inner component of a customized limited memory BFGS to gain
higher-order coupling across domains and so regain super-linear
convergence with a small, additional fixed linear overhead.

Optimization-based time integrators in graphics. Position-based
dynamics methods have become an increasingly attractive option
in animation, being fast and efficient, but not controllable nor con-
sistent [Miiller et al. 2007]. Both Projective Dynamics (PD) [Bouaziz
et al. 2014] and extended position-based dynamics [Macklin et al.
2016] observe that with small but critical modifications, iterated
local and global solves can be brought more closely into alignment
with implicit Euler time stepping, although various limitations in
terms of consistency, controllability, and/or materials remain. Liu
and colleagues [2017] observe that, in the specific case of the ARAP
energy density function, PD is exactly a Sobolev-preconditioning, or
in other words, an inverse-Laplacian-processed gradient descent of
the incremental potential for implicit Euler. Note that beyond ARAP
this analogy breaks down. Following on this observation they pro-
pose extending PD’s Sobolev-preconditioning of the implicit Euler
potential for models with a range of hyperelastic materials and thus
varying distortion energies. They further improve convergence of
this implicit-Euler solver by wrapping the Sobolev-preconditioner
as an initializer for the limited-memory BFGS algorithm (L-BFGS)

to minimize the incremental potential. In the following we refer to
this algorithm as LBFGS-PD.

Concurrently, Overby et al. [2016; 2017] observe that PD can
alternately be interpreted as a particular variant of ADMM with
local variables formulated in terms of the deformation gradient.
Overby and colleagues then show that an algorithm constructed in
this way can likewise be extended to minimize the implicit Euler
potential over a range of hyperelastic materials. In the following
we will refer to this algorithm as ADMM-PD. Both ADMM-PD and
LBFGS-PD improve upon PD both in extending to a wide range of
hyperelastic materials and to increasing efficiency for ARAP-based
deformation [Liu et al. 2017; Overby et al. 2017].

Optimization-based time integration. In brief, albeit by a circuitous
path, time stepping solvers in computer graphics, starting from
position-based methods, come full circle back to minimizing the
standard incremental potential for fully nonlinear materials. In this
setting, traditional time stepping in computational mechanics gen-
erally focuses on preconditioned gradient-descent methods, often
augmented with line-search [Ascher 2008; Deuflhard 2011]. These
methods find local descent directions p;, at each iterate i, by precon-
ditioning the incremental potential’s gradient with a Hessian proxy
H;, sothatp; = —Hl._1VE(x,~). For example, Sobolev-preconditioning
[Neuberger 1985] for implicit Euler gives a fixed efficient precondi-
tioner built with the Laplacian L so that H; = M + h%L for all time
steps [Liu et al. 2017].

Newton-type methods. Preconditioning with the Hessian H; =
V2E(x;), gives Newton-stepping. To gain descent for large-time step-
ping this generally requires both line search and a positive-definite
fix of the stiffness matrix which otherwise can make the total Hes-
sian indefinite [Nocedal and Wright 2006]. Many closely related
positive-definite corrections are suggested [Nocedal and Wright
2006; Shtengel et al. 2017; Teran et al. 2005]. Here, following Liu
and colleagues, we employ Teran et al’s per-element projection and
refer to this method as Projected Newton (PN). Newton-type meth-
ods like these have rapid convergence but solution of the Hessian,
either directly or via Newton-Krylov variations, are generally re-
ported as too costly per-iteration to be competitive with less-costly
preconditioners and scale poorly [Brown and Brune 2013; Liu et al.
2017; Overby et al. 2017]. We revisit and analyze this assumption
in §5 with a suite of well-optimized solvers. We observe that in
some ranges PN with a direct solve is actually competitive and can
even outperform LBFGS-PD and ADMM-PD, while in others the
situation is indeed often reversed. In order to retain Newton’s super-
linear convergence with improved efficiency, lagged updates of the
Hessian preconditioner every few time steps have long been pro-
posed [Deuflhard 2011; Hecht et al. 2012; Shamanskii 1967]. While
in some cases this can be quite effective, the necessary frequency
of these updates can not be pre-determined as it depends on local
simulation state, e.g., transitions, collisions, etc, and so generally
leads to unsightly artifacts and inaccuracies, including ghost forces
and instabilities [Brown and Brune 2013; Liu et al. 2017].

Quasi-Newton methods. Alternately, quasi-Newton BFGS meth-
ods have long been applied for simulating large-deformation elas-
todynamics [Deuflhard 2011]. L-BFGS can be highly effective for

ACM Trans. Graph., Vol. 38, No. 4, Article 70. Publication date: July 2019.



70:4 « Li,M.etal

rest shape stretch and squash

— 4

twist and stretch and squash

e 1 Ryl

Fig. 2. Uniform deformation examples.

minimizing potentials. However, an especially good choice of initial-
izer is required and makes an enormous difference in convergence
and efficiency [Nocedal and Wright 2006]; e.g., Liu et al’s [2017]
Sobolev-initializer. Directly applying the Hessian is of course clearly
an ideal initializer for L-BFGS; unfortunately, it is generally a too
costly option. Lazy updates of the Hessian, for example at start of
time step, have also been considered [Brown and Brune 2013; Liu
et al. 2017]; but again have been discarded as too costly and limiting
in terms of scalability [Liu et al. 2017]. In the following we will
refer to this latter method as LBFGS-H. Our development of DOT
leverages these start of time step Hessians at the beginning of each
incremental potential solve, applying a new, inner domain decom-
position strategy to build an efficient, per-time step re-initialized
method that outperforms or closely matches best-per-example prior
methods across all tested cases.

Trade-offs across time-integration solvers. As both LBFGS-PD and
ADMM-PD appeared concurrently and, to our knowledge, have not
previously been analyzed side-by-side, we do so here for the first
time along with PN and LBFGS-H, across a range of examples. We
show how all these methods alternately excel or fall-short in varying
criteria and examples; see §5. ADMM-PD has fast initial convergence
that rapidly trails off, characteristic of ADMM methods, and thus
is generally slowest, often failing to meet even moderate accuracy
tolerances. LBFGS-PD on the other hand performs admirably when
a global, uniform deformation is applied on a uniform mesh such
as in bar stress-tests, see e.g., Fig. 2. For these cases the Laplacian
preconditioner effectively smoothes global error generating rapidly
converging simulations [Zhu et al. 2018]. However, for everyday
non-uniform deformations on unstructured meshes common in
many application, LBFGS-PD will rapidly lose efficiency. Often, as
deformation magnitude grows, LBFGS-PD becomes slower than a
direct application of PN and LBFGS-H, despite LBFGS-PD’s per-
iteration efficiency; see §5.

Based on our analysis of where these prior methods face difficul-
ties we propose DOT which efficiently, robustly, and automatically
converges to user-designated accuracy tolerances with timings that
outperform or closely match these previous methods across a wide
range of practical stress-test deformation scenes on unstructured
meshes. DOT combines the advantages of per-time step updates of
second-order information with an efficient quasi-Newton update of
per-iteration curvature information. The two are integrated together
by a novel domain-decomposition we construct that avoids slow
coupling convergence challenges faced by traditional domain de-
composition methods. Together in DOT these components form the
basis for a scalable, highly effective, domain-decomposed, limited
memory quasi-Newton minimizer of large time step incremental
potentials with super-linear convergence; see §5.

ACM Trans. Graph., Vol. 38, No. 4, Article 70. Publication date: July 2019.

4 METHOD

We solve each time step by iterated descent of the incremental
potential. At each inner iteration i, we calculate a descent direction
pi and a line search step, «; € R;. We then update our current
estimate of position at time ¢ + 1 by x/1 — x/*! + ap;.

4.1 Limited memory quasi-Newton updates

We begin with a quasi-Newton update. At each iterate i, the stan-
dard BFGS approach [Nocedal and Wright 2006] exploits the se-
cant approximation from the difference in successive gradients,
yi = VE(xj+1) — VE(x;), compared to the difference in positions
si = xij+1 —x;. This approximation is applied as low-rank updates to
an inverse proxy matrix D; = Hl._1 (roughly approximating V2E™1)
so that Djy1y; = s;. Limited memory BFGS (L-BFGS) then stores
for each iteration i just an initial, starting matrix, D; and the last
m {s,y} vector pairs (we use m = 5). Joint update and application
of Dj1 is then applied implicitly with just a few, efficient vector
dot-products and updates, with the application of the matrix D
sandwiched in between the first and second low-rank updates of
each step.

Given iterate i’s implicitly stored proxy Dj;, and the initial proxy,
Dy, we set Q; : RémXdn y gdn _, pdn 14 apply the limited-memory
quasi-Newton update and application of D;.1. Then

pi = Qi(D1,xi) = =Dit1VE(x;). 4

L-BFGS’s performance depends greatly on choice of initializer Dy
[Nocedal and Wright 2006]. Setting D; to a weighted diagonal, for
example, offers some improvement, as do various inverses of block
diagonals taken from the Hessian. Similarly we can, as discussed
above, apply Liu et al’s [2017] inverse Laplacian or even, as proposed
by Brown and Bune [2013], could use lagged updates of the Hessian
inverse itself — just once every few time steps so as to not perform
too many expensive updates and solves.

4.2 Initalizing L-BFGS

To consider the relative merits of potential initializers for time step-
ping we adopt a simple perspective. We observe that each of the
above initializers corresponds to the application of a single iteration
of a different, nonlinear method as an inner step in the L-BFGS loop
[Zhu et al. 2018]. The better the convergence of the inner method
generally the better performance of the outer L-BFGS method. From
this perspective Liu et al. [2017], for example, can be seen to apply
an inner iterate of inverse-Laplacian preconditioned descent and so
gain the well-appreciated smoothing of the parent Sobolev Gradient
Descent method [Neuberger 1985]. Or alternately we could consider
applying the start of time step inverse Hessian D; = V2E(x?)~L.
The resulting optimization applies an iteration of the inexact New-
ton method within L-BFGS that could potentially augment quasi-
Newton curvature with second-order information via the tangent
stiffness matrix.

While this latter strategy could be highly effective to improve
convergence [Liu et al. 2017], it is expensive both to factorize at
every time step and to backsolve at every iteration. Moreover, we
observe that initializing with the full Hessian inverse may be an
unnecessarily global approach. In many cases large deformations
are concentrated locally and their effects are only communicated
across the entire material domain over multiple time steps. Likewise,
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initializing with the full inverse Hessian limits scalability as we must
work with its factors in every quasi-Newton iterate; see §5.

Motivated by these observations we instead design a method to
update L-BFGS with Hessian information using a decomposition
that allows us to efficiently store and apply local second-order infor-
mation at each iterate. To do so we first construct a simple quadratic
penalty decomposition that connects non-overlapping subdomains
with automatically determined stiffness weights. Our decomposed
optimization time integrator is then formed by applying a single
inexact-Newton descent iterate of this method as an inner initializer
of an undecomposed, full mesh L-BFGS step. The resulting method,
as we see §5, then obtains well-improved, scalable convergence for
large time step, large deformation simulations.

4.3 Decomposition

An illustration of our decomposition is in Fig. 3. We decompose our
full domain Q into s non-overlapping subdomains {Q1, ..., Qs } parti-
tioned by interfaces I = {y1, ..., yr|} along element boundaries with
duplicate copies of each interface vertex assigned to each subdomain
participating at that interface. We construct decompositions that
both approximately minimize number of edges along interfaces (and
so cross-subdomain communication) and balance numbers of nodes
per subdomain [Karypis and Kumar 1998]. For each subdomain j
we then likewise store its interfaces in Ij C T

Each subdomain j then has n; vertices stored in vector x; =
(ij, ij) € R formed by the concatenation of a copy of its in-
terface vertices zj, and its remaining subdomain vertices, y;. Con-
catenation of all subdomain vertices x = (xlT yeees xST)T € R9% then
includes unshared interior vertices and duplicated interface vertices
so that i > n. We then collect interface vertices from the fully con-
nected mesh as xp C x. Note that xr are then distinct from their
duplicated interface copies in the decomposition and can serve as
consensus variables for subdomain boundaries. Finally, per subdo-
main j, we construct interface restriction matrices Rr, that extract
vertices from xr participating in that subdomain’s interfaces Ij.

4.4 Penalty Potential

Building time stepping incremental potentials on this decomposed
system we get a nicely separable sum },¢(q ] Ej(x;), where Ej =
Elq, is the restriction of the incremental potential to subdomain j.
This separable potential could be efficiently optimized as it allows
us to minimize each subdomain independently. Doing so, however,
would erroneously decouple subdomains.

One possibility for reconnecting subdomains would be to add
explicit coupling constraints. However, this would also require dual
variables in the form of Lagrange-multipliers. As we are designing

Q, x={e, A} QO f Q, v, Q3
7 A 'y
N .
decompose H . (m}
¢ z={m
4 A 2=
Rz % =(o,m)
N
1 /,
s
y={e} xr={a} L=} L={urd L={r}

Fig.3. DOT’s decomposition. Layout and notation for a mesh (left) which
is decomposed into three subdomains (right).

NN

Rest Shape Frame 200 Frame 282 Frame 291 Frame 335
Rest Shape
Frame 52
Frame 106
Frame 76
Frame 162 Frame 239

Fig. 4. Deformation stress-tests. DOT simulation sequences of hollow
cat (top) and monkey (bottom) large-deformation, high-speed, stress-tests.

our decomposition for insertion within a quasi-Newton loop, ad-
ditional dual variables are undesirable. Instead, we adopt a simple
quadratic penalty for each interface in T to pull subdomains together,
with consensus variables xr as the bridge. Augmenting the above
separable potential with this penalty gives

M= Y (B + sl - Rl ) )
Jjelt,s]

Here each K; is a penalty stiffness matrix that pulls subdomain
Jj’s interface vertices towards globally shared consensus positions
stored in xr. By driving |Kj| towards co as we optimize L we could
hypothetically remove interface mismatch. However, finding practi-
cal values for K that sufficiently pull interface edges together, while
avoiding ill-conditioning, is generally challenging. For example, if
we choose a penalty that is too stiff it would pull interface domains
together too tightly at the expense of overwhelming elasticity and
inertia terms in the potential. On the other hand, if we choose a
penalty that is too soft, subdomain potentials dominate and interface
consensus would be underestimated.

4.5 Interface Hessians

We instead seek a penalty that automatically balances out the miss-
ing elastic and inertial information along interfaces. In our setting
we observe that this missing information is directly available and
forms a natural, automated weighting function for the augmented
potential in (5) above. Consider that each subdomain’s penalty term
is effectively just a proxy for the missing energies from neighboring
subdomains. Specifically, the Hessian for subdomain Q; is

2 62Ej(xj’) BzEj(xj)
0°L - Zayj2 , 0y;9z; (6)
ax.2 6 Ej(Xj) (9 E](xj) i

J 0z;0y; 621.2 + K]'

ACM Trans. Graph., Vol. 38, No. 4, Article 70. Publication date: July 2019.



70:6 « Li,M.etal

Here, the upper and off-diagonal (symmetric) terms nicely match
the unrestricted Hessian on the full domain Q,

OEj(x) _ 0%E(x) . 9Ei(xj) _ PEx) "
dy;? dy;* dyjozj  dy;0(Reyxr)’
However, our lower diagonal does not as
9°Ej(x;) O2%E(x) "

9z d(Rr,xr)*’

irrespective of whether or not we have agreement on subdomain
interface vertex locations. This is due to the absence of element sten-
cils connecting interface nodes to neighboring subdomains. While
this missing information is not currently present in 4%L/ 6xj2, it
gives us a natural definition for penalty weights. We assign weights
Kj so that they generate the missing interfacial Hessian information
from adjacent elements bridging across neighboring subdomains:

PEx) B o
d(Rpxr)® 0z
Our quadratic penalty then recovers otherwise missing components

of kinetic and elastic energy stencils across interface boundaries.
Note that, as in PN, we project all computed Hessian stencils.

Kj(x) =

4.6 Discussion

To minimize (5) we could apply alternating iterations solving first
for optimal % and then for xr. Indeed, when we add a constraint
Lagrangian term, 3’ e[y, o] AJ.T(ZJ- = Rr;xr) to (5), this alternating pro-
cess generates a custom ADMM [Boyd et al. 2011] algorithm. We
initially considered this approach and find that it significantly out-
performs classic ADMM. We observe that automatic weighting with
(9) nicely smooths error at boundaries; see e.g. Fig. 8. However, we
also find that this strategy is still not competitive with undecom-
posed methods like PN, as too much effort is exerted to close gaps
between subdomains. Instead, we apply a single iteration of our
penalty decomposition as an efficient, inner initializer with second-
order information. We then insert it within an outer, undecomposed
quasi-Newton step solved on the full mesh. This ensures unneces-
sary effort is not spent pulling interfaces together, and updates our
decomposition with global, full-mesh, curvature information.

4.7 Initializer

We now have all necessary ingredients to construct DOT. We ini-
tialize an L-BFGS update with a single Newton iteration of our
quadratic penalty in (5) as follows. At start of time step ¢ + 1 we
define subdomain variables from current positions x* as ¢ = Sx*.
Here S € R47Xdn jg 4 separation matrix that maps the n full-mesh
vertices x to subdomain coordinates with duplicated copies of inter-
facial vertices. Application of the inverse Hessian is then

DIt = BST (9%L(#!,xf)/02%) 'S e RN, (10)
Here B € R4"%4" g 3 diagonal averaging matrix with diagonal en-
tries corresponding to vertex v set to 1/n,, where n,, is the number

of duplicate copies for the corresponding vertex v in the decompo-
sition. Iteration i of DOT is then applied by application of

pi = Qi(DM xp), (11)

ACM Trans. Graph., Vol. 38, No. 4, Article 70. Publication date: July 2019.

followed by our custom line search and update detailed below.

4.8 Construction

Construction and application of the per time step DOT is efficient.
At start of solve we first compute and store factors of the augmented
Hessians per subdomain,

H] = VZEJ(x]t)+KJ(x]t) (12)

We then observe that
D!*1 = BsTdiag(H ', ..., H; 1)S, (13)
where diag(-) constructs a block diagonal RAMXd matrix. Appli-

cation of Di“ as initializer in L-BFGS is then applied in parallel
computation to any global vector ¢ € R?". We first separate g to
repeated subdomain coordinates (qlT, g7 = Sq € R Then
we independently backsolve subdomains with their factors to obtain
rj = Hj_lq j. Finally, we lift all r; back to full mesh coordinates by

blending with r = BS T(rlT s oo 7T to average duplicate coordinates
appropriately. See Algorithm 1 below for the full DOT pseudocode.

49 Line Search

After our quasi-Newton update we next perform backtracking line
search on p; to ensure sufficient descent. For quasi-Newton methods
rule-of-thumb [Nocedal and Wright 2006] is to always initialize line
search with unit step length, i.e. astart = 1, to ensure large steps will
take advantage of rapid convergence near solutions. In the large
time step, large deformation setting however, we observe that the
situation is nonstandard. We often start far from solutions and so
need to balance large, initial step estimates against costs of repeated
energy evaluations. For this purpose we apply an alternative ini-
tializer for line search. For each search direction p;, DOT initializes
with the optimal length of the one-dimensional quadratic model,

—1 _plTVE(xl) )
pl.TVZE(xt)p,-

Here the lower bound handles the rare instances where this local fit
is too conservative.

(14)

Ostart = Max (10

4.10 Algorithm

Algorithm 1 contains the full DOT algorithm in pseudocode. The
dominant costs for runtime are energy costs: evaluations, gradients,
Hessians, and SVDs; and subdomain augmented Hessian costs: as-
sembly, factorization and backsolves. Otherwise, costs for our quasi-
Newton loop itself are linear (dot products, vector updates, etc).
Memory cost is primarily the once per-timestep Cholesky factoriza-
tion of the subdomain augmented Hessians and their corresponding
backsolves per iteration.

5 EVALUATION
5.1 Implementation and Testing

We implemented a common test-harness code to enable the con-
sistent evaluation of all methods with the same optimizations for
common tasks. In comparisons of our ADMM-PD and LBFGS-PD
implementations with their release codes [Liu et al. 2017; Overby
et al. 2017] we observe an overall 2-3X speed-up across examples.
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ALGORITHM 1: Decomposed Optimization Time Integrator (DOT)

Given: x!,E, S, B, €
Initialize and Precompute:
i=1
Hj‘1 — (VzEj(x;) + Kj(xt))_l, Vj €[1, s] // get Cholesky factors
g1 < VE(x1)
// quasi-Newton loop to solve time step ¢ + 1:
while ||g;|| > eh*(W)||¢|| do
q < —9gi
fora=i-1i-2,.,i—-m
Sa € Xa+1 —Xa» Ya < Ga+1 ~YGa> Pa < 1/(ygsa)
@a — pasiq
9 49— QaYa
end for
(g q])" < Sq
rj — Hj_lqj, Vj €1, s]

// termination criteria (§5.2)

r<—BST(r1T,..., rST T

fora=i-mi-m+1,..,i—1
B« paydr
re—r+(ag—p)sa

end for

pier

st max (10, ~(p] VE(x0) / (p] V2E(x")pi) )
a « LineSearch(x;, astart, pi, E)
Xi+1 < X; +ap;
gi+1 < VE(xiy1)
i—i+1
end while

Our code is implemented in C++, parallelizing assembly and eval-
uations with Intel TBB, applying CHOLMOD [Chen et al. 2008] with
AMD reordering for all linear system solves, and METIS [Karypis
and Kumar 1998] for all decompositions. Note that for LBFGS-PD
and ADMM-PD we perform their global Laplacian backsolves in par-
allel, per-dimension, and likewise factorize only the scalar Laplacian,
one-time as a precompute. Following Overby et al. [2017], ADMM-
PD’s per-element energy minimizations are performed in diagonal
space for efficiency. Common energy evaluations and gradients are
optimized with AVX2 parallelization to achieve roughly 4X speedup.
To do so we extended the open-source SIMD SVD library [McAdams
et al. 2011] to support double precision for our framework.

Unless otherwise indicated, all experiments below were performed
on a six-core Intel 3.7GHz CPU and were simulated with times step
sizes of either 10, 25 (majority), or 40 ms (as indicated). For consis-
tent comparison with prior work we focus our analysis on examples
with the implicit Euler using the fixed co-rotational material [Stom-
akhin et al. 2012]. Below in §5.6 we also explore DOT with the Stable
Neo-Hookean material [Smith et al. 2018].

We compile CHOLMOD with MKL LAPACK and BLAS, support-
ing multi-threaded linear solves, and set the number of threads per
linear solver to take full advantage of multi-core architecture per
method. Specifically, the single, full linear systems in each PN and
LBFGS-H iteration are solved with 12 threads per solver, while the
multiple smaller systems in each LBFGS-PD, ADMM-PD, and DOT
iteration are solved simultaneously with 1 thread per solver.

Finally, note that we summarize detailed statistics from all of our
experiments in tables in our supplemental. All tables referred to in
the following are found there.

3507
+
£°9 mELBrGSPD
8 2507 [ DOT (ours)
o 200 [ JLBFGS-H
S 150, HEEPN
-
€ 100
Q
&= 50
%o 5 10 15 20 25 30
103,
102,

1
107 5 10 15 20 25 30
Fig.5. Convergence and Timings. Per-example comparisons of iteration

(top) and timing (bottom) costs, per frame, achieved by each time step solver.
Note that the bars are overlaid, not stacked.

5.2 Termination Criteria

We next focus on the important question of when to stop iterating
an individual time step solve. Clearly, for most simulation applica-
tions, it is not reasonable to manually monitor the quality of each
individual iterate, within every individual time step solve, in or-
der to decide when to stop. Analogously, applying the same fixed
number of iterations for all time steps, no matter the method, will
not suffice as different steps in a simulation will have more or less
nonlinearity involved and so will require correspondingly different
amounts of work to maintain consistent simulation quality. With-
out this simulations can and will accrue inconsistencies, artifacts
and instabilities. Similarly, relative error measures for termination
are not satisfactory because they are fulfilled when an algorithm
is simply unable to make further progress and so has stagnated far

90 -
80 -

=== horse-7K(S)
70 —-—- horse-38K(S)

e horse-79K(S)
3 60 —e— horse-7K(SS)
o —e— horse-38K(SS)
§50 kingkong-18K (SS)
® —6— kingkong-48K (SS)
E 40 | —e— bunny-30K(SS)
- - 0--kongkong-18K (TSS)
30 monkey-18K(TSS)
= 0--elf-23K(TS9)
20 (g =0--hollowCat-24K (TSS)
horse-38K(TSS)
10 \ \ \ \ \ \
0 50 100 150 200 250 300

Number of Blocks

Fig. 6. Subdomain to iteration growth. We plot iterations per DOT
simulation example as the size of the decomposition increases. We observe
a trend of sublinear-growth in iteration count with respect to the number
of subdomains, revealing promising opportunities for parallelization.
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from a working solution. On the other hand, the gradient norm pro-
vides an excellent measure of termination for scientific computing
problems where we seek high-accuracy. However, for animation
and many other applications we seek a way to reliably stop at stable,
good-looking, consistent simulations with reasonably low error, but
not necessarily with vanishingly small gradients. As observed by
Zhu et al [2018], in these cases even gradient norm tolerances are
not suitable for choosing a termination criteria.

To address this problem for minimizing deformation energies in
statics problems, Zhu and colleagues propose a dimensional analysis
of the deformation energy gradient. They derive a characteristic
value for the norm of the deformation gradient over the mesh. Then,
applying it as a scaling factor to the gradient norm obtains consistent
quality solutions across a wide range of problems, object shapes
and energies. Here we observe that a small modification of this
analysis gives a corresponding scaling factor for the incremental
potential. We begin with the base case of the characteristic value
for the norm of the deformation gradient over the mesh as (W)||]||.
Here (W) is the norm of the deformation energy Hessian of a single
element at rest, € is a vector in R” with each entry the surface
area of each simulation node’s one-ring stencil. For dynamic time
stepping we are then minimizing with the incremental potential
(3) and so have a weighted sum of discrete kinetic and deformation
energies. At stationarity of (3) we then have M(x — x* — xP) +
h?VW(x) = 0. We then have proportional measures —#M(x -
x! — xP) at corresponding scale with VW (x), and similarly #M (x—
xt — xP ) + VW. Then, for consistent convergence checks across
examples and methods at each iteration we simply check the rescaled
incremental potential

IVEI| < en®(W)l|€ll. (15)

In the following evaluations we refer to this measure as the charac-
teristic gradient norm (CN). After extensive experimentation across
a wide range of examples, using Projected Newton (PN) as a baseline,
we find consistent quality solutions across methods using (15) at
increments of €; see our supplemental videos. Moreover, we find that
solutions satisfying € = 107> are the first to avoid visual artifacts
that we consistently observe below this tolerance, including variable
material softening, damping, jittering and explosions. For all experi-
ments in the remainder of this section, unless otherwise indicated,
we thus set our termination criteria with e = 107> using (15). All CN
convergence measures thus apply rescaling of the gradient norm.
Convergence in CN per method then confirms convergence to the
same (reference) solution provided, e.g., by Newton’s method.

5.3 lteration Growth with Domain Size

We next investigate the scalability of DOT as the number of subdo-
mains in the decomposition grows. We apply DOT across thirteen
simulation examples ranging in mesh resolution from 7K to 136K
vertices with a range of moderate to extreme deformation test scenes.
Each scene is solved to generate ten simulated seconds, time stepped
at h = 25ms. For each simulation example we create a sequence of
decompositions by requesting target subdomain sizes starting at 16K
vertices (where possible) down by halves to 256 vertices. We then
simulate all of the resulting decompositions, spanning from 2 to 309
subdomains, with DOT. In figure 6 we plot the the number of DOT
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iterations per simulation example as the size of its decomposition
increases. We observe a trend of sublinear-growth in iteration count
(per simulation) as the number of subdomains increases, revealing
promising opportunities for parallelization of DOT.

5.4 Performance

Fig. 6 suggests parallelization opportunities for DOT across a wide
range of decomposition sizes. Of course, how to best exploit these
opportunities will vary greatly with platform. Here we begin with
two modest exercises starting with a six-core Intel 3.7GHz CPU,
64GB memory. We script a set of increasingly challenging dynamic
deformation stress-test scenarios across a range of mesh shapes and
resolutions. See, for example, Fig.s 1 and 4, our supplemental and
video for example details. For each simulation we target DOT to
simply utilize available cores and so set the number of subdomains
in all simulations in this first exercise to six. In Fig. 5 and Tables 1-3
(supplemental) we summarize runtime statistics for these examples
with DOT, PN, LBFGS-H, and LBFGS-PD across the full set of these
examples. We also test ADMM-PD on the full set of examples but
find it unable to converge on any in the set. See our convergence
analysis below for more details on ADMM-PD’s behavior here.

Timings. Across this set we observe DOT has the fastest runtimes,
for all but three examples (see below for discussion of these), over
the best timing for each example across all converging methods: PN,
LBFGS-H, and LBFGS-PD. In general DOT ranges from 10X to 1.1X
faster than PN, from 2.5X to 1X faster than LBFGS-H, and from 11.4X
to 1.6X faster than LBFGS-PD. The one exception we observe is in
the three smallest meshes of the horse stretch scalability example
where the deformation is slow, so that the solves are close to statics.
Here we observe that LBFGS-H is, on average 1.3X faster than DOT
on smaller meshes up to 79K vertices. Then, as mesh size increases
to 136K and beyond, here too DOT becomes faster. Finally, for even
larger meshes LBFGS-H can not fit in memory; see Scaling below.
Importantly, across examples, we observe that PN, LBFGS-PD and
LBFGS-H alternate as fastest as we change simulation example.
Here PN ranges from 2X slower to 4.6X faster than LBFGS-PD,
while LBFGS-H often seems to be a best choice among the three, but
also can be slowest, i.e., ranging from 1.1X to 1.7X slower. Trends
here suggest that LBFGS-PD tends to do better for more moderate
deformations while PN and LBFGS-H often pull ahead for more
extreme deformations but this is not entirely consistent and it is
challenging to know which will be the better method per example, a
priori. Finally, as we see below, both PN and LBFGS-H do not scale
well to larger systems.

Scaling. To examine scaling we successively increase mesh res-
olution for the horse TSS example. On this machine (recall 64GB
memory) both PN and LBFGS-H can not run models beyond 308K
vertices while DOT and LBFGS-PD can continue for examples up to
and including 754K vertices. We compare the performance among
methods at these two extremes and find that DOT is 1.9X faster than
LBFGS-H at 308K nodes, while it is 2.7X faster than LBFGS-PD at
754K nodes, where both PN and LBFGS-H can not run.

Changing Machines. Next, in Table 4, we report statistics as we
exercise DOT on both our six-core machine and a sixteen-core Xeon
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Fig. 7. Convergence comparisons. Top: We compare the convergence of
methods for a single time step midway through a stretch script with a 138K
vertex mesh; measuring error with the characteristic gradient norm (CN)
see §5.2. Middle: We observe DOT’s super-linear convergence matches
LBGHS-H and closely approaches Project Newton’s (PN), while LBFGS-PD
lags well behind and ADMM-PD does not converge. Bottom: comparing
timing, DOT pulls ahead of PN and LBFGS-H, with lower per-iteration costs.

2.4GHz CPU. Here we correspondingly set the number of subdo-
mains in all simulations to six and sixteen respectively. Although
overall timings of course change, we see that DOT similarly main-
tains the fastest runtimes across both machines, over the best timing
for each example between PN, LBFGS-H and LBFGS-PD. Here these
three latter methods again swap one another in speeds per example.

Changing Decompositions. Then, to confirm that there is a wide
range of viable subdomains settings for DOT, we examine perfor-
mance as we vary subdomain sizes using the same simulation exam-
ple set from §5.3 above. In Table 5 we summarize statistics for these
simulations and observe that all simulations match or out-perform
the best result timing between PN, LBFGS-H and LBFGS-PD; the
only exceptions being the smallest 7K mesh horse simulations are
slightly outperformed by PN and LBFGS-H.

5.5 Convergence

DOT balances efficient, local second-order updates with global cur-
vature information from gradient history. In Fig. 7 we compare
convergence rates and timings across methods for a single time step
midway through the large stretch example of the 138K vertex horse
mesh. We observe super-linear convergence for DOT, matching
LBFGS-H’s and closely approaching PN’s, while LBFGS-PD lags
well behind, and ADMM-PD characteristically does not converge
to even a much lower tolerance than the one requested. In turn,
comparing timings, DOT out-performs PN and LBFGS-H with lower

1073
104
105
(a) (b) (©)
106
iteration 1 iteration 9 iteration 17 iteration 25

Fig. 8. Residual Visualization. With a decomposition (a), current defor-
mation in (b), and starting error in (c), we visualize DOT’s characteristic
convergence process. In the first few iterations error is concentrated at
interfaces and is then rapidly smoothed by the successive iterations.

per-iteration cost. In Fig. 8 we visualize DOT’s characteristic pro-
cess: in the first few iterations error is concentrated at interfaces
and is then quickly smoothed out by the successive iterations.

In addition to PN, LBFGS-PD, LBFGS-H and ADMM-PD, we also
investigated standard Jacobi and Gauss-Seidel decomposition meth-
ods [Quarteroni et al. 1999], and experimented with applying incom-
plete Cholesky as initializer for L-BFGS. Convergence rates for the
former two methods are slow, making them impractical compared
to the above methods. The latter method, interestingly, sometimes
performs well, but is inconsistent as it also can be slow and even
fails to converge in other cases; see our supplemental for details.

5.6 Varying Time Step, Material Parameters and Model

Here we compare behavior as we change material parameters and
vary over a range of frame-size time steps. We apply a twist, stretch
and squash (TSS) script to an 18K vertex monkey mesh. For the same
example we apply time step sizes of 10, 25 and 40 ms respectively
and vary material parameters comparing across a range of Young’s
modulus and Poisson ratio. As summarized in Table 2, across all
examples DOT obtains the fastest runtimes with trends showing
timings increasing for all methods as we increase time step size and
Poisson ratio. For varying stiffness, timings for DOT stay largely
flat, while here PN, LBFGS-H, and LBFGS-PD become slower with
softer materials. Finally, we consider changing the material model.
We apply the Stable Neo-Hookean model to run the monkey TSS
example. Relative timings stays consistent as with the FCR model,
where DOT ranges from 1.5X to 2.4X faster than all alternatives.

6 CONCLUSION

In this work we developed DOT, a new time step solver that en-
ables efficient, accurate and consistent frame-size time stepping for
challenging large and/or high-speed deformations with nonlinear
materials. So far we have focused on CPU parallelization on moder-
ate commodity machines with medium-scale meshes ranging from
31K to 4.2M tetrahedra. However, as we see in §5.3 above, DOT’s
sub-linear scaling of iterations for more decompositions makes ex-
tensions of DOT to large-scale systems exceedingly promising to
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pursue. Concurrently for meshes at all scales we observe that while
rule-of-thumb matching domain count to available cores already
exposes significant speed-up and robustness we have also seen in
§5 that across a wide range of decomposition sizes we maintain
a significant and consistent advantage. Thus we are also excited
to explore DOT with recent advances in batch-processed factor-
izations and solves on the GPU, e.g., with MAGMA [Abdelfattah
et al. 2017], where L-BFGS low-rank updates can be efficiently per-
formed via map reduce. Likewise, while DOT offers speed and ro-
bust convergence at large time step, decomposition also offers other
promising opportunities. One exciting direction is applying recent
mesh-adaptation strategies [Schneider et al. 2018] which can now
be performed on-the-fly, independently per subdomain.

When deformations are mild, uniformly distributed, at slow speeds
and/or on small meshes we see that the win for DOT is sometimes
not as significant. If such cases are to be expected then certainly
alternatives such as PN, LBFGS-H, LBFGS-PD and ADMM-PD may
be reasonable choices as well. Our experience suggests that most
scenarios are not likely to limit the scope of a simulation tool to
these cases. If so, then we propose DOT as a one-size-fits-all method
that improves or closely matches performance in these easier and
gentler cases and then shines for the challenging scenarios were
previous methods become stuck and/or exceedingly slow.

Our evaluation of DOT has so far focused on invertible energies.
Efficiency with noninverting energies, e.g., Neo-Hookean, may re-
quire custom-handling of the elasticity barrier, e.g, by line search
curing [Zhu et al. 2018], and is an interesting future direction.

DOT solves elastodynamics for both rapidly moving and fixed
boundary conditions over a wide range of simulation conditions. As
in ADMM-PD and LBFGS-PD, integrating standard collision reso-
lution methods using penalty or hard-constraints, can be directly
encorporated in DOT. However, custom-leveraging DOT’s structure
for efficient contact processing remains exciting future work.

Finally, while our decompositions from METIS have been effective
they are certainly not optimal for optimization-based time stepping.
It would be interesting to explore custom decompositions which
specifically take advantage of the incremental potential’s structure
and even adaptive decompositions per-time step. Likewise, while
the simple strategy of matching subdomain count to cores already
enables simple and easy-to-implement advantages, it is of course in
no way optimal. An exciting future investigation is exploring per-
task custom decompositions based on compute resources available.
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