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Fig. 1. We propose Complex Wrinkle Fields (CWF s), a new discrete wrinkle model that enables the resolution of highly detailed wrinkle patterns on coarse
base-mesh geometry. The CWF representation consists of a positive number a per vertex encoding the wrinkle amplitude, a one-form ω per edge to model
wrinkle frequency, and a complex number z̃ per vertex to represent wrinkle phase, coupled via a weak variational consistency condition ensuring that z̃
can capture singularities while also being as compatible with ω as possible (§ 3.1). We equip the CWF representation with a novel temporal interpolation
algorithm (§ 4) and a spatial upsampling method (§ 5) that together allow for smooth interpolation between wrinkle patterns represented on surfaces by
CWF s (leftmost and rightmost column), and base-mesh-independent rendering of arbitrarily high-resolution wrinkle patterns. Together these contributions
make it possible to smoothly evolve wrinkle patterns between two prescribed keyframes (middle columns) with automatic merging, splitting, and reconnection
of wrinkles as necessary via smooth sliding of singularities across the surface (zoomed-in figures in middle columns). Please check the Interpolation Results
extra video (00:38–00:53; note this is an additional video separate from the main supplemental video) for the corresponding wrinkle animation.

We propose a new approach for representing wrinkles, designed to cap-
ture complex and detailed wrinkle behavior on coarse triangle meshes,
called Complex Wrinkle Fields. Complex Wrinkle Fields consist of an almost-
everywhere-unit complex-valued phase function over the surface; a fre-
quency one-form; and an amplitude scalar, with a soft compatibility condition
coupling the frequency and phase. We develop algorithms for interpolating
between two such wrinkle fields, for visualizing them as displacements of
a Loop-subdivided refinement of the base mesh, and for making smooth
local edits to the wrinkle amplitude, frequency, and/or orientation. These
algorithms make it possible, for the first time, to create and edit animations
of wrinkles on triangle meshes that are smooth in space, evolve smoothly
through time, include singularities along with their complex interactions,
and that represent frequencies far finer than the surface resolution.
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1 INTRODUCTION
Across widely ranging spatial and temporal scales, wrinkles on
surfaces are a fundamental geometric structure. We encounter these
structures in our daily interactionswith themoving folds and creases
in cloth, skin and films, and likewise, we regularly observe them in
natural phenomena such as the slow evolution of sand dunes and the
rapid rippling of shallow water. Wrinkles on surfaces thus critically
enrich otherwise coarse geometric structures with important visual
details, while manufactured wrinkle patterns enable the design of
complex structures and material behaviors [Chen et al. 2021; Lähner
et al. 2018; Zuenko and Harders 2019].
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Twisting sleeve

Fig. 2. Wrinkles on surfaces are ubiquitous, from sand dunes (top-left) to the
creases and folds on awrinkly dog face (top-middle) and a bean bag chair (top
right). Notice that several key features are evident in all of these examples:
frequency and amplitude that vary smoothly over the surface, punctuated
by singularities (we circle some examples in aqua) where frequency diverges,
amplitude vanishes, and multiple wave crests and troughs commingle in a
Y-like pattern. In the bottom row, we show a sequence of wrinkle patterns
formed during the twisting of a cloth shirtsleeve, where the singularities
appear, merge and slide during the pattern’s evolution.

The real-world examples illustrated in Figure 2 demonstrate the
characteristic and highly complex features of surface wrinkling be-
haviors in the wild. Locally, wrinkles are generally characterized
by a dominant frequency and amplitude, both of which vary in-
homogeneously but smoothly over the surface. At the same time
singularities punctuate wrinkle patterns (see e.g. circled regions in
Figure 2). These singularities are the branch points of the phase field
where multiple peaks and troughs join together. Near these singular-
ities wrinkles are fundamentally non-bandlimited: as we approach a
singularity, circulating an arbitrarily small distance around it results
in an arbitrarily large shift in phase. Figure 2, bottom row, shows
several frames of wrinkle evolution during twisting of a sleeve of
a cloth. Singularities appear, merge, and slide over the surface as
wrinkles shift, split, and reconnect during their evolution.

In the smooth setting (see § 2.1) wrinkles have an appealing
and compact representation as amplitude and phase signals-on-
surface; on the other hand the above characteristic features pose
significant modeling challenges when it comes to discretizing and
evolving wrinkles on triangle meshes. In this work we address these
challenges.

1.1 Contributions
First, because the evolving singularities and high-frequency wrin-
kles in fine wrinkle patterns are generally not captured at practical
mesh resolutions, we construct a discretization of wrinkles called
the Complex Wrinkle Field (CWF ) that captures in-element sin-
gularities and multiple sub-element wrinkling periods (§ 3). The
CWF representation enables mesh-independent resolution of fine
wrinkles.

Second, to enable smooth design, editing, control, animation, and
evolution between wrinkle patterns we construct a mechanics-based

algorithm for continuous and temporally-coherent interpolation
between arbitrary wrinkle patterns on surfaces (§ 4). Our algo-
rithm takes as input two CWF endpoints (“keyframes”) and solves
a boundary value problem approximating a geodesic path in the
space of inextensible shells. The results are complex, shifting wrin-
kle patterns, where singularities evolve automatically to support the
necessary branching and merging of wrinkles needed to interpolate
between the keyframed patterns.

Third, to complement CWF ’s ability to model sub-element wrin-
kle resolution, we derive a new subdivision method that maps CWFs
on triangle meshes to amplitude and phase on vertices generated by
Loop iterates (§ 5). This method resolves arbitrarily fine wrinkled
geometry, including singularities, while avoiding artifacts seen in ex-
isting baselines (see § 5.3) and so provides high-quality upsampling
of wrinkles for rendering and other downstream applications.
We extensively evaluate each of these contributions relative to

state-of-the-art alternatives, and then demonstrate their joint ap-
plication to animating wrinkle evolution on triangle surfaces, and
to smooth, user-in-the-loop wrinkle editing (including both local
and global manipulations). Across these applications we show that
our contributions account for evolving singularities while gener-
ating smooth and intuitive interpolants between wrinkle patterns
(§ 6). For example, in Figure 3 (bottom row), we show that, with
proposed techniques, we can generate wrinkles with the double
frequency and half of amplitude of the simulated results from [Chen
et al. 2021]—effectively replacing thick cloth with thinner, silkier
material without re-simulation. Furthermore, we can swipe through
a smooth interpolation of the wrinkle patterns to select the desired
look.

Despite the prominence of evolving wrinkles in the natural world,
we emphasize that to date there is no model or method that sup-
ports temporal wrinkle interpolation on surfaces (in the sense of
computing a path of spatially- and temporally-continuous wrinkle
patterns between prescribed keyframes). Our CWF representation
and algorithms are the first designed from the ground up to address
the challenges imposed by evolving singularities during wrinkle in-
terpolation. These challenges are generally unavoidable, even when
the underlying surface and the prescribed keyframes are simple. For
example, consider the torus interpolation in Figure 3 (top row) and
in the supplementary Interpolation Results video at 00:02–00:19.
Although neither keyframe contains singularities, it is topologi-
cally impossible to follow a smooth path between them without
introducing (and then annihilating) singularities along the way.

In summary, Complex Wrinkle Fields (CWF ) make it possible, for
the first time, across all wrinkle inputs, to create, edit, and animate
detailed wrinkles on triangle meshes that are smooth in space and
evolve smoothly through time; while, at the same time, implicitly
including the complex interactions of singularities, and resolving
wrinkle frequencies far finer than the surface mesh resolution. Raw
data and a reference implementation of our algorithms, as of the
time of publication, can be found in the ACM Digital Library. The
latest version of the code can also be found on GitHub1.

1https://github.com/zhenchen-jay/Complex-Wrinkle-Field.git
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Fig. 3. Two examples of CWF interpolation between keyframes specified at
t = 0 and 1. Top row: a torus, with wrinkles keyframed to rotate by ninety
degrees; bottom row: a dress example from Chen et al. [2021], where we
emulate replacing the cloth with a thinner material by uniformly doubling
the wrinkle frequency and halving the amplitude. For the rotating torus
example, although neither keyframe contains singularities, it is topologically
impossible to follow a smooth path between them without introducing (and
then annihilating) singularities along the way. Here our CWF interpolation
allows wrinkles to break apart before reconnecting again. The dress demon-
strates the possibility of using our algorithms to reasonably edit physical
wrinkles and generate corresponding smooth animation. Videos of these
two examples can be found in the Interpolation Results supplementary
video at 00:02–00:19 (for the torus) and 03:47–04:03 (for the dress).

2 PRELIMINARIES AND RELATED WORK

2.1 Wrinkles on Surfaces
Smooth Setting. A useful [Knöppel et al. 2013, 2015] representa-

tion of wrinkles on smooth manifoldsM is by a single complex
smooth function z : M → C, where the wrinkle amplitude a is
encoded as |z |, and the associated phase as θ = arg(z). Here we
assume wrinkles are normal displacements ofM with magnitude
a cosθ = ℜ(z). The smoothness of z guarantees a smooth non-
negative amplitude, and a smooth associated phase, except at a set
of singular points where z = 0 and along branch cuts between them.
At these singular points the phase is undefined and the amplitude
vanishes. Away from these singularities, the derivative of phase
yields the (one-form-valued) wave frequency ω = dθ . It is impor-
tant to note that the frequency field singularities are not the usual
ones studied in geometry processing where ω = 0; rather, here
∥ω∥ → ∞ as one approaches a singularity.

Discrete Setting. Frequency and amplitude are the semantically-
meaningful parameters for encoding the wrinkling phenomena dis-
cussed in §1 and shown in Figure 2. Our goal then is to translate the
above spectral representation of wrinkles from the smooth setting to
triangle meshes T = {V ,E, F }. As we motivated in the last section,
a practical discretization of z on a triangulation by a set of discrete
parameters u should satisfy three basic desiderata:

(1) The parameters u must allow for singularities; i.e., it should
be possible to reproduce wrinkle patterns with branch points
as illustrated in Figure 2.

(2) High frequency wrinkling should be representable indepen-
dent of the resolution of the underlying triangle mesh, and
in particular, wrinkles should be allowed much more than a

single period within a triangle. This decoupling (the main mo-
tivation for a spectral representation of wrinkles) is needed
both because fine wrinkle patterns are common in the real
world (as in the skin and cloth images in Figure 2) and because
high frequencies are unavoidable in the vicinity of singulari-
ties.

(3) Wemust be able to render a smoothlywrinkled, high-resolution
surface for all validu, and this surface geometry must change
continuously for continuous changes in u. This requirement
represents aminimum foundation for doing temporally-coherent
wrinkle interpolation.

Surprisingly, given how straightforward it is to represent wrinkles
in the smooth setting, the most direct strategies for discretizing
z (e.g., storing a complex number zi on each vertex) do not meet
the above requirements, as we discuss shortly; constructing the
right discrete representation to support temporal interpolation is
a challenge in its own right. After reviewing related work we will
present our discrete CWF model in §3, and compare with some
natural alternative choices of discretization and demonstrate their
shortcomings.

2.2 Prior Work
Spectral Representations of Wrinkles on Surfaces. Prior work has

recognized the significant challenges in representing wrinkles on
triangle meshes, and has offered a range of partial solutions. A
common approach [Aharoni et al. 2017; Chen et al. 2021; Paulsen
et al. 2016] is to design for the wave frequency without regard to
phase, using vector-field design tools from geometry processing;
when phase is required (e.g., for rendering), it is recovered as a
post-process by solving for the phase whose gradient most closely
matches the frequency: either via least-squares optimization, or
using techniques from the parameterization literature [Diamanti
et al. 2015; Ling et al. 2015; Ray et al. 2006; Zhang et al. 2010].
Knöppel et al. [2015] propose a particularly powerful variation of
this idea: their algorithm solves for a stripe pattern (phase field)
over arbitrary surfaces given a user-provided vector field, where
singularities are placed at the centers of the triangles as needed to
produce topological dislocations in the pattern. Noma et al. [2022]
build on this technique by allowing users to interactively edit the
location of singularities in stripe patterns. Beyond designing stripe
patterns, Knöppel et al.’s algorithm has been applied for real-time
surface parameterization [Lichtenberg et al. 2018] and continuous
fiber design [Boddeti et al. 2020].
While these “frequency-first” strategies can produce beautiful,

high-frequency wrinkle patterns on surfaces, they all suffer from
a key limitation: smooth change in frequency does not yield a
smooth change in phase. These strategies are therefore unsuitable
for smooth animation of wrinkles due to temporal incoherence: they
will produce a temporally discontinuous phase sequence, even when
the input frequency sequence undergoes a smooth temporal evolu-
tion. For example, in themain supplementary video (02:59–03:44)
and the Comparisons video (00:05–00:59), we show an animation
of rotating waves on a torus, where we apply the method described
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by Chen et al. [2021] and Knöppel et al. [2015] to every frame. Al-
though the individual frames are spatially smooth, they are not
temporally coherent.

Vector Field Design. Over decades, many methods have been de-
veloped for vector field design. Vaxman et al. [2016] and de Goes
et al. [2016a] summarize the classical ways to design and discretize
vector fields on triangle meshes. In general, there are several ways
to represent discrete vector fields. One popular approach specifies
each vector with respect to a local Cartesian or polar coordinate
system [Diamanti et al. 2014; Knöppel et al. 2013]. This represen-
tation is agnostic to singularities and well-suited for methods that
automatically place them [Bommes et al. 2009; Diamanti et al. 2015;
Jakob et al. 2015; Panozzo et al. 2014; Ray et al. 2009]. However, en-
forcing global integrability of the vector field in this representation
is difficult and requires non-linear constraints or integer variables.
Another approach represents vector fields implicitly in terms ro-
tation angles on dual edges [Crane et al. 2010; Li et al. 2006; Ray
et al. 2008]. This representation is particularly useful for parameter-
izing vector fields while maintaining full control over singularity
placement and index [Fisher et al. 2007; Solomon and Vaxman 2019;
Zhang et al. 2006] but integrability is even more elusive: two levels of
integrability constraints are required (one for integrating the angles
to well-defined vectors and another for integrating the vectors to
a well-defined scalar field). As we discuss in § 3, neither of these
representations are suited for representing temporally-coherent,
high-frequency wrinkle fields with moving singularities on discrete
triangle meshes.

Vector Field Subdivision. Subdivision operators have been de-
signed that extend Loop subdivision to one-forms on triangle mesh
edges [de Goes et al. 2016b; Wang et al. 2006]. We will use this
scheme as a part of our approach (§ 5.1). Custers and Vaxman [2020]
designed a subdivsion scheme for tangent directional fields on trian-
gle faces. However, these methods do not cover the corresponding
subdivision of amplitude and phase, which are essential for upsam-
pling wrinkles.

Vector Field Temporal Interpolation. Temporally interpolating vec-
tor fields has long been studied in geometry processing. Zavala-
Hidalgo et al. [2003] interpolate high-frequency vector wind fields
by decomposing these fields into a basis of empirically-derived
orthogonal functions, and then interpolating eigenmodes in time.
Chen et al. [2012] propose a framework for designing time-varying
vector fields by solving a spatial-temporal Poisson problem; their
method implicitly generates bifurcations and singularities in the
vector field. Sato et al. [2018] propose an algorithm that takes two
entire time sequences of velocity fields and produces time sequences
that blend between them. Solomon and Vaxman [2019] use opti-
mal transport theory to match the singularities in two input vector
fields, which allows for their direct interpolation. However, vector
field interpolation, on its own, does not solve the problem of in-
terpolating wrinkles, where the phase and amplitude must also be
interpolated, and, as discussed above, there is no obvious way to
recover temporally-coherent phase from frequency.

Spectral Wrinkle Evolution. There are several methods for simu-
lating spectrally-represented wrinkles forwards through time from

an initial state: in a line of work, Jeschke, Wojtan, and collabora-
tors [2018; 2015; 2017] propose several approaches to efficiently
evolve water waves based on Airy wave theory [1842], which uses
a sum of sinusoidal functions to linearly approximate the motion of
surface waves on the body of water. Zuenko and Harders [2019] sim-
ulate wrinkle motion on 3D surfaces via reaction-diffusion [Turk
1991; Witkin and Kass 1991]. Although these approaches gener-
ate animations of wrinkles given initial conditions (initial value
problem), they do not address the wrinkle keyframe interpolation
problem, which is completely different (boundary value problem).

Shell Geodesics. Heeren et al. [2012] propose a way to find the ge-
odesic between two thin shells based on the minimization of strain
dissipation. This idea is further explored for time discretization of ge-
odesic calculus on certain Riemannian manifolds [Rumpf and Wirth
2014], understanding the geometry of the space of shells [Heeren
et al. 2014], or finding geodesics between two general elastic shapes
[Ezuz et al. 2019; Sassen et al. 2020]. Von-Tycowicz et al. [2015] adopt
a similar idea and design a special subspace optimization problem
to interpolate between elastic body poses in real time. Our wrinkle
interpolation algorithm follows in the footsteps of these methods.

Surface Augmentation. Methods have also been proposed to aug-
ment coarse surfaces with fine wrinkles as an alternative to expen-
sive, fine-scale physical simulation. Indirect techniques have been
proposed for upsampling cloth [Bergou et al. 2007; Wang 2021] and
skin [Rémillard and Kry 2013] by simulating a higher-resolution
mesh that is constrained to stay close to an existing, coarse simula-
tion. Rohmer et al. [2010] and Gillette et al. [2015] add fine wrinkle
detail to coarse cloth simulations by tracing compression direction
fields in a temporal coherent manner. Cutler et al. [2005] allow users
to design wrinkle patterns on a set of reference poses, then add
weighted combinations of the designed wrinkles to each frame of
simulation based on local stresses. Data-driven methods for enrich-
ing coarse meshes with fine detail, for example, by representing
wrinkles as normal maps [Lähner et al. 2018] or displacements [Chen
et al. 2018, 2021; Santesteban et al. 2019; Zhang et al. 2021], are like-
wise an active and rapidly evolving area of research but require
significant preprocessing and generally depend on a corpus of data.

3 COMPLEX WRINKLE FIELD DISCRETIZATION
In the smooth setting, a single complex function z suffices to repre-
sent a wrinkle pattern. Unfortunately, z admits no straightforward
discretization that safisfies the properties listed in § 2.1. In this sec-
tion, we introduce our complex wrinkle field (CWF ) representation,
the design decisions that motivate it, and some of the pitfalls with
alternative discretizations. In the following sections we will then dis-
cuss how to both (a) temporally interpolate between CWFs and (b)
upsample (and so render) CWFs while preserving these properties.

High-level Summary. There are three key design decisions that
motivate CWFs:
• To represent high-frequencywrinkles on amesh, unlike in the
smooth setting, a phase-based representation is insufficient.
The discretization must additionally track frequency.
• For the wrinkle representation to capture singularities, the fre-
quency field cannot be globally integrable in the usual sense

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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of being the derivative of a real-valued function, and cannot
even be locally integrable near singularities. We therefore
eschew integrability entirely and allow arbitrary frequencies.
• Since frequency is not integrable, we cannot and should not
exactly enforce that frequency is the derivative of phase. But
we also do not want phase and frequency to be incompat-
ible. We therefore require soft compatibility of phase and
frequency, in a way that is well-defined at singularities and
enforces d arg(z) ≈ ω away from singularities.

A CWF therefore consists of three sets of degrees of freedom: (1) a
one-form ωjk on the edges of T (representing the wrinkle pattern
frequency); (2) a real scalar aj per mesh vertex (representing the
wrinkle amplitude); and (3) a complex number z̃j per vertex (en-
coding the wrinkle phase). There are no constraints on the ωjk and
aj , but z̃ is required to be approximately unit and to satisfy a weak
compatibility condition with respect to ω. The reader immediately
interested in the formal definition of a CWF may skip to § 3.1; in
what follows we motivate and justify each of the above decisions.

Need for Both Frequency and Phase. The most direct way to dis-
cretize z is as a discrete function on the mesh vertices. The strength
of this approach is that it uniquely pins down the wrinkle amplitude
|z | and wrinkle phase arg(z) at each vertex. However, z alone is
unable to represent wrinkles with high frequencies, as illustrated in
Figure 4: at most one wrinkle period per edge is possible, since the
phase change arg(zj ) − arg(zi ) across the edge is bounded by 2π .
By contrast, a frequency one-form ω can encode arbitrarily high
frequencies independent of mesh resolution; however, a discrete
representation based on frequency alone is unsuitable for applica-
tions like ours requiring temporal coherence, since wrinkle phase is
underdetermined given frequency alone.
A mixed representation that tracks both phase and frequency

simultaneously combines their advantages, and eliminates their
disadvantages. This observation motivates a discrete representation
that includes both a real-valued one-formωi j on themesh edges, and
a complex number zj per mesh vertex. (In the CWF representation,
we further decompose zj into parts as zj = aj z̃j with aj , z̃j as our
DOFs rather than zj itself, for reasons we cover below.)

No Integrability Constraints on Frequency. In the smooth setting,
frequency is defined as the derivative of phase. A natural question
when discretizing frequency is whether to require it, by analogy, to
be (discretely) integrable. Several important subtleties make doing
so impractical. Note that, in the smooth setting, ω is not globally in-
tegrable in the usual sense:ω is the exterior derivative of a section of
an S1-bundle overM-with-singularities-removed. The line integral
of ω around a singularity does not necessarily vanish and is instead
a multiple of 2π . Requiring

∮
ω = 0 around every closed curve inM

would constrain the wrinkle pattern to have no singularities. Simi-
larly, in the discrete setting, if a triangle jkℓ contains a singularity,
the discrete curl on that triangle ωjk + ωkℓ + ωℓj does not vanish.
Rather than selectively enforcing integrability of ω on only some
triangles (which would require explicitly tracking which triangles
contain singularities of which index using integer variables, etc.) we
instead follow in the footsteps of previous work [Knöppel et al. 2015;
Zuenko and Harders 2019] and allow arbitrary ω. The singularities

(a) Smooth wrinkles (b) Coarse arg z

(c) Upsampled coarse z (d) Incompatible CWF (e) Compatible CWF

Fig. 4. We show different discretizations of a plane wave associated with
z = exp(3π ix ). (a): the exact wrinkle pattern z , visualized as a normal
displacement with magnitudeℜ(z ). (b): we sample z onto a coarse mesh
and plot arg(zj ); the discrete phase is badly aliased. (c): attempting to
visualize the wrinkles by displacing each vertex byℜ(zj ) yields a surface
that bears no resemblance to the expected wrinkle pattern in subfigure (a).
(d): the result whenwe apply our subdivision algorithm from § 5 to visualize a
CWF with zj = exp(3π ix j ) and the unrelated, incompatibleωjk = (0, 3π ) ·
(vk −vj ). Although the rendered wrinkled mesh is smooth, it is riddled
with mesh-dependent singularities, and ω has little semantic relationship to
the waves in the resulting pattern. We insist on soft compatibility betweenω
and z̃ to avoid such artifacts. (e): this time, we useωjk = (3π , 0) · (vk −vj ),
a compatible frequency that gives us a valid CWF . When rendered, this
discrete CWF is indistinguishable from the exact pattern.

in the wrinkle pattern are then implicitly determined by where ω
fails to be integrable.

Frequency-Phase Consistency. Since we do not require ω to be
integrable, ω cannot in general be exactly the derivative of phase.
Recall, however, that the motivation for including frequency in our
discrete representation is so that it can supply the information miss-
ing from zj (alone) about the jump in phase across a mesh edge. For
this purpose, frequency is only useful if, far away from singulari-
ties, we do have ω ≈ d arg(z). (See Figure 4d for an example where
frequency and phase are totally uncorrelated.) We therefore require
the phase variables in a CWF to be “as compatible as possible” with
the frequency, (a) given that frequency is not necessarily integrable
and (b) accounting for the necessary presence of singularities.

In the smooth setting, one formulation of the above soft compati-
bility condition is to require z to be compatible in a least-squares
sense by minimizing an energy similar to∫

M



d arg(z) − ω

2 dA. (1)

We cannot use this energy as-is, as it is formally undefined near sin-
gularities and at branch cuts. To avoid the discontinuity in arg(z) at
branch cuts, we rewrite the constraint in terms of z̃ = z/|z | [Knöppel
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et al. 2015],

z̃ = argmin
z̃

∫
M

∥ (d − iω)z̃∥2 dA (2)

s .t . |z̃ | = 1,

which has the added benefit of eliminating some of the nullspace
from Equation (1) (which is invariant under rescalings of z).

Singularity Handling. Equation (2) remains ill-posed at singular-
ities (where neither z̃ nor ω are well-defined) and ill-conditioned
close to the singularities, where ∥ω∥ → ∞.
There are many potential strategies for relaxing Equation (2) to

regularize the behavior at singularities. Our approach is to relax
the unit-norm constraint, so as to allow z̃ to vanish at singularities,
using a Ginzburg-Landau-type term [Kohn 2006; Viertel and Osting
2019]:

z̃ ∈ Optω = argmin
z̃

∫
M

[
∥ (d − iω)z̃∥2 +

(��z̃��2 − 1)2] dA. (3)

For later reference, we define:

Ecompat (z̃,ω) =
∫
M

∥ (d − iω)z̃∥2 dA,

Eunit (z̃) =
∫
M

(��z̃��2 − 1)2 dA.
(4)

We next discretize this variational characterization of z̃ to define
the final, discrete soft compatibility conditions we impose to our
CWF representation.

3.1 Complex Wrinkle Field Representation
Motivated by the above discussion, we define CWF to consist of the
following degrees of freedom:

(1) a (not necessarily integrable) frequency one-form, encoded
as a real number ωjk on each directed edge of the mesh (with
ωjk = −ωk j );

(2) a real number aj and complex number z̃j on each vertex of
the base triangle mesh T , which together encode the approx-
imate amplitude and direction of zj = aj z̃j discretizing the
smooth setting’s amplitude-phase field z;

(3) with the zj constrained to be softly compatible with the fre-
quency one-form, d arg(z) ≈ ω, via discretization of Equa-
tion (3) on the base triangle mesh.

To discretize the first, least-squares, compatability term of Equa-
tion (3), we apply the formulation proposed by Knöppel et al. [2015],
as it is designed to be robust in the case that ωjk is larger than 2π
on an edge jk ,

Êcompat (z̃,ω) =
∑

edges kℓ
Akℓ ��z̃k exp(iωkℓ ) − z̃ℓ ��2 , (5)

and directly apply piecewise-constant discretization for the second,
unit-length penalty term,

Êunit (z̃) =
∑

vertices j
Aj

(���z̃j ���2 − 1)2 , (6)

where the Akℓ and Aj are edge and vertex barycentric area weights,
respectively. We then require

z̃ ∈ Ôptω = argmin
z̃

[
Êcompat (z̃,ω) + Êunit (z̃)

]
, (7)

where Ôptω defines our discretized consistency conditions.

Remarks. Note that in Equations (4) and (7) we have made an
implicit choice to weight the compatibility and unit-norm terms
equally. For regions away from the singularities, Ecompat ≈ 0, so
that Equation (4) gives us unit z̃ for any positive scaling of Eunit.
For regions near the singularities, Ecompat → ∞ unless z̃ → 0 so
that, for any scaling of Eunit, the least-squares energy Ecompat is
the dominant term, which ensures that z̃ ≈ 0. These observations
show that Optω is largely invariant to the relative scaling of the two
constraint terms, and we make the simplest choice to weight them
equally. Note also that Optω is a nontrivial subspace and contains
more than a single element. At minimum, if z̃ ∈ Optω , then so is its
global phase shift exp(iθ )z̃ for every θ ∈ [0, 2π ).

4 INTERPOLATION
In this section we present an algorithm for temporal interpolation
of CWFs: given two CWFs as boundary conditions,

(
ω0,a0, z̃0

)
and(

ω1,a1, z̃1
)
, we seek a smooth interpolant γ (t ) = (ω[t],a[t], z̃[t])

through the space of CWFs which matches the prescribed boundary
conditions at t = 0, 1 and which approximates the behavior of
real-world wrinkled materials deforming over time.

The challenge with computing such an interpolation is that while
there are many smooth choices of interpolant γ (t ), they are often
qualitatively unacceptable. For physically-based wrinkle evolution,
wrinkles should slide over the surface rather than disappear in one
location and then reappear at a target location, and singularities
should slide smoothly over the surface. Otherwise plausible-seeming
interpolants that are not specifically designed to promote physical
fairness of the wrinkle motion regularly produce obvious visual
artifacts that are unacceptable for many applications such as an-
imation or editing. For many examples please see § 4.3 and the
Interpolation Results video.

4.1 Our Approach
To compute physics-inspired, smooth paths between boundary con-
ditions in the space of CWFs, we begin with the closely-related
problem of computing geodesics in the space of thin shells (see e.g.
the work of Heeren et al. [2012]). For our application, the key idea
from this work boils down to defining a metric on shell space that
measures the length of a path between configurations in terms of the
integrated norm of strain-rate along that path. A shortest geodesic
in this space is then, effectively, the path that requires doing the
least work on the system when deforming the shell along that path.
To compute comparable wrinkling geodesics for CWFs we mea-

sure a bending strain2 given in terms of the combined geometry
2We make the simplest assumption that the stretching strains in the wrinkled surface
represented by a CWF are negligible. This decision is justified as compressive stresses
should be mostly absorbed by wrinkling. That said, unless both CWF keyframes of an
interpolation represent isometric deformations of the same underlying surface, there
must be some amount of stretching involved and so it should be interesting to consider
inclusion of stretching measures as well in future work.
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of the underlying wrinkle-free base surface M and the wrinkle
displacements [Chen et al. 2021],

ϵ = I−1
(
II − ĪI − a cosθωTω

)
(8)

= I−1
(
II − ĪI −ℜ(z)[d argz]T [d argz]

)
, (9)

where I and II are the first and second fundamental forms of the
base surface and ĪI is the second fundamental form of the shell’s
assumed rest state. Following Heeren et al. [2012], we can then
define our distance on paths γ (t ) by

d (γ ) =

∫ 1

0

∫
M

∥ϵ̇[z (t )]∥2dA dt , (10)

where, assuming a hyperelastic homogeneous and isotropic ma-
terial, we apply the StVK material norm for ∥ · ∥; please see the
supplemental document (§ 1) for details.

Computing Geodesics. Geodesics are then constrained minimizers
γ of Equation (10) satisfying z̃ (t ) ∈ Optω (t ) . However, computing
these geodesics by directly minimizing Equation (10) is difficult. In
the supplemental document (§ 1.2) we derive, after a sequence of
approximations and additional simplifying assumptions, an approx-
imate solution to Equation (10) given by

a(t ) = (1 − t )a0 + ta1 (11)
z̃ (t ) = argmin Esmooth (z̃) + cEopt (z̃,ω) (12)

and an explicit formula for ω (t ) given in Equation (34) (§ 1.2 in the
supplemental document), where

Esmooth (z̃) =
1
2

∫
M

дbd

∫ 1

0
���
˙̃z���
2 dtdA (13)

дbd =

(
a0
)2 


ω0




4
+
(
a1
)2 


ω1




4

2 (14)

approximates Equation (10) after a and ω are substituted in and
simplified—effectively giving a weighted Dirichlet energy in space-
time promoting smoothness of wrinkle phase; and

Eopt (z̃,ω) =
∫ 1

0

[
Ecompat (z̃[t],ω[t]) + Eunit (z̃[t])

]
dt (15)

provides a penalty term, with stiffness c , for the constraint z̃ ∈ Optω
that z̃ and ω are approximately compatible. We use c = 103дave in
all of our examples, where

дave =
∫ 1

0

∫
M

a2∥ω∥4 dAdt (16)

is the spacetime averaged amplitude squared times frequency quar-
tic, in order to make the cEopt unit consistent. If c is too low, the
interpolant γ (t ) fails to satisfy the CWF compatibility constraint,
yielding noisy wrinkle pattern evolution and many extra singu-
larities. If c is too high, the optimization problem (12) becomes
numerically unstable and does not converge to a smooth solution.
Please see § 7.2 in the supplemental document for some experiments
probing the effect of the choice of c on our results and the suitability
of our empirically selected value.

Discretization. Given two CWF boundary conditions
(
ω0,a0, z̃0

)
and
(
ω1,a1, z̃1

)
and a desired number of intermediate frames N ,

we discretize time into N steps of size δt = 1/N and minimize a
discretization of Equation (12) over the base triangle mesh T with
a globalized Newton solve. Please see § 1.3 in the supplemental
document for additional details, including the full formulas for all
our discrete analogues of the above energy terms used in our final
solve. Within our Newton implementation we use SuiteSparse’s
parallel implementation of supernodal sparse Cholesky decompo-
sition [Chen et al. 2008] as our linear solver, and terminate when
converged to an objective gradient norm smaller than 10−6.

Linear Substepping. The cost of computingN interpolating frames
using our algorithm is dominated by the cost of solving Equa-
tion (12), which scales roughly linearly in N . When many frames
are needed, for example when rendering videos, this computation
is wasteful, since consecutive frames will be almost identical. For
large N , we suggest using our algorithm to compute N ′ = N /k
guide frames instead, and then linearly interpolating the CWF vari-
ables for k steps between each guide frame. As a rule of thumb,
linear interpolation is an adequate approximation to a geodesic path
between guide frames if the distance traveled by wrinkles during
that time does not exceed the average mesh edge length. We use
N = 200, with N ′ = 50 and k = 4 in all of our videos, and pro-
vide timing information for the examples in the paper in Table 1
(supplemental document). We further provide some experiments
showing the effect of the choice of N ′ on the interpolant quality in
the supplemental document (§ 7.1).

Handling Incompatible Boundary Conditions. The above algorithm
assumes that provided boundary conditions are valid CWFs. If ap-
plied to boundary conditions that severely violate CWF soft com-
patibility, our interpolant will move abruptly near t = 0 and 1
(since Equation (15) will enforce the soft compatibility condition
everywhere except at the infeasible, prescribed endpoints). Since
in applications these boundary conditions will often be provided
by the user (as keyframes for animation, e.g.) we propose pre- and
post-processing steps that allows use of our algorithm even when
the boundary conditions have incompatible frequency and phase.

In particular, notice that the discrete compatibility term in Equa-
tion (5) implies the constraint per edge

z̃k exp(iωkℓ ) = z̃ℓ . (17)

This allows us to decompose any frequency one-form ω into a
consistent, constraint-satisfying portion, ωcom, and a residual δω;
that is, there is a unique one-form δω, with −π ≤ (δω)jk < π
on each edge jk , such that ωcom = ω − δω and z̃ exactly satisfy
Equation (17) on every edge. To handle non-CWF boundary condi-
tions, we decompose the frequenciesω0 andω1 into their consistent
and inconsistent parts, and apply interpolation to the CWFs bound-
ary conditions (ω0

com,a
0, z̃0) and (ω1

com,a
1, z̃1) instead. We then

interpolate δω using the same explicit interpolation applied for
ω (t ) given in Equation (34) (§ 1.2 in the supplemental document),
and add this frequency component back into the final interpolant:
γ (t ) = (ω (t ) + δω (t ),a(t ), z̃ (t )).
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4.2 Results
We demonstrate that our interpolation algorithm yields high-quality
wrinkle evolution given a variety of keyframes pairs. Even more
interpolation examples, with keyframes created by local edits to
wrinkle patterns, are discussed in § 6. Important note: it is difficult
to assess the quality of the interpolant, and especially temporal
coherence, from a sparse set of stills. Please see the Comparisons
supplemental video for animations of these examples.

Change in Wrinkle Frequency. Increasing the frequency of a wrin-
kle pattern on a compact surface like the fertility model (Figures 5
and 6), though conceptually simple, involves a complex path through
the space of wrinkle fields since it is impossible to have “fractional”
numbers of wrinkles. New wrinkles must be born as the frequency
increases, with singularities appearing in pairs and sliding over the
surface to “unzip” a new wrinkle.

Change in Wrinkle Direction. We also show several examples of
interpolation between wrinkle patterns that have been globally or
locally rotated by ninety degrees relative to each other in Figures 1
and 7. The amplitude and phase plots show singularities appearing,
splitting, and merging in a complex dance in both cases.

Ours

Linear

t=0 t=0.25 t=0.5 t=0.75 t=1

Fig. 8. Failure of linear interpolation given boundary conditions z0 = exp ix
and z1 = exp iy . We show the phase patterns at several intermediate frames
using linear interpolation (top row) and our proposed interpolant (bottom
row). Notice that linear interpolation introduces severe artifacts in the
wrinkle pattern: wrinkles shear and degenerate along a sharp line midway
through the interpolation.

4.3 Comparison to Other Approaches
We compare our method against some baselines.

Linear Interpolation. It is natural to try to temporally interpolate
between CWF boundary conditions by linearly interpolating the
constituent variables:
a(t ) = (1−t )a0+ta1; ω (t ) = (1−t )ω0+tω1; z̃ (t ) = (1−t )z̃0+tz̃1.
Such an interpolant lacks physical meaning and moreover does not
staywithin the space ofCWFs, since there is no reason to expectω (t )
and z̃ (t ) to stay approximately compatible during the interpolation.
See Figure 10 and Figures 9, 10 in the supplemental document (§
6) for some examples of artifacts that arise when using this linear
scheme. Note that replacing linear interpolation of z̃ and ω with
a more complicated non-linear interpolant would not help resolve
this incompatibility issue.

For comparison on a more didactic example, consider the simple
case of a plane wave rotating by ninety degrees, z0 = exp(ix ) and
z1 = exp(iy). On a sufficiently small patch centered at the origin, we
expect interpolation to rotate the plane wave, with an interpolant
resembling z (t ) = exp(i[x cos π t

2 + y sin
π t
2 ]). In Figure 8 we see

that when using our proposed interpolation algorithm, the inter-
polant is indeed rigid rotation of the wrinkles. On the other hand,
linear interpolation shears the wrinkles, which midway through the
interpolation degenerate along a singular line.

Knöppel et al. [2015]. In their paper, Knöppel et al. propose a
method to extract vertex phase information from a provided fre-
quency one-form by solving an eigenvalue problem. They also pro-
pose a spatial interpolation scheme for extending phase into tri-
angles by placing singularities at their centers as needed. While
well-suited for generating individual, static geometries, Knöppel
et al.’s method is not designed to give temporally coherent motion
when run on a sequence of frames with smoothly-changing fre-
quency. Indeed, if we apply their method to ω (t ) (computed using
Equation (34) in the supplemental document § 1.2) to generate a
phase interpolant z (t ), we get beautiful individual frames, as ex-
pected (Figure 10) but see that the frames are discontinuous in time
(see the main supplemental video at timestamp 03:44–04:04).

Moreover, Knöppel et al. focus exclusively on phase fields and
do not discuss wrinkles with amplitude. We make a good-faith
attempt to incorporate amplitude in the method (See Figure 9) by
linearly interpolating the keyframe vertex amplitudes in time and
then barycentrically blending them into each triangle. The resulting
artifacts are due to a mismatch between where Knöppel et al. places
phase singularities (at centers of triangles) and where amplitude
vanishes (which can only be at vertices).

Chen et al. [2021]. In their recent work, Chen et al. describe a
method for rendering high-resolution wrinkled surfaces given fre-
quency and amplitude fields on the surface. To compare against this
work, we again use Equations (12), Equation (34) (in the supplemen-
tal document § 1.2) to compute a(t ) and ω (t ) and apply Chen et
al. to each frame of the interpolation. See Figure 10 and the Com-
parisons supplemental video for the results. Unlike Knöppel et al.
[2015], Chen et al.’s method does consider wrinkle amplitude, and
so can produce smooth wrinkled surface geometry. However, their
approach again suffers from temporal incoherence. Moreover, we
observe their method also can fail to capture the sliding of singu-
larities over the surface, instead producing degenerate, noisy phase
fields; see e.g., Figure 10 around t = 0.5.

Keyframes from Physical Simulation. Finally, we compare the be-
havior of our interpolant to the results of physically simulated wrin-
kle evolution. We start by simulating the twisting of a 1-meter-high
(diameter 0.25 meters, thickness 0.318 mm, Young’s Modulus 0.821
MPa, density 472.6 kg/m3, and Poisson’s ratio 0.243), 88k-vertex
cylinder mesh, by 80 degrees with C-IPC’s [Li et al. 2021] open-
source implementation of shell finite elements. The cylinder’s top
and bottom boundaries are pinned to rotate (time-stepped at 0.04
seconds/frame) in opposite directions at 10 degrees/s without grav-
ity or external forces. To avoid simulating the transient dynamics
before wrinkles appear, we initialize the cylinder slightly twisted
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 5. CWF interpolation between two wrinkle patterns on the fertility model, where the second keyframe (last column) has triple the frequency and one-third
the amplitude of the first keyframe (first column). We show, from top to bottom, the amplitude, phase, and rendered wrinkles for several intermediate frames
during interpolation. On the amplitude plot, blue indicates |z | = 0 (singularities) and red indicates larger amplitude. For the animation, please check the
Interpolation Results video in the supplementary material at timestamp 01:46–02:01.

3 × frequency, 1/3 × amplitude

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 6. CWF interpolation of two wrinkle patterns on the fertility model, where the second keyframe’s wrinkles are triple the frequency of the first keyframe,
and their amplitude shrinks by one-third on a local patch of surface (the red region on the mesh up top). We design an interface region (the green region; see
§ 6) to ensure a smooth transition between the red edited region and the unchanged white region. In the supplementary Interpolation Results video at
timestamp 02:02–02:20, we show the corresponding wrinkle animation for a better temporal visualization.

(by 8 degrees in both direction) and run the simulation for 80 frames
(so that cylinder ends are twisted by 40 degrees in both directions
at the last frame). During this motion, wrinkles rotate and merge;
see Figure 11, top, and the Comparisons supplemental video.

To compare these simulated results with corresponding interme-
diate frames computed using CWF interpolation, we take the first
and last frame of the simulation as interpolation inputs. Specifically,
we decimate the cylinder mesh to 688 vertices and then apply a

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:10 • Chen et al.

Rotate 90 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 7. CWF interpolation of two wrinkle patterns on the Stanford bunny, where the user has locally rotated the frequency field by ninety degree (red region
of the top mesh). Top row: the user-specified keyframes. Second row: the upsampled amplitudes |z | = a |z̃ | of the CWF , ranging from blue at singularities
( |z | = 0) to red where the amplitude attains its maximum. Third row: the upsampled phase of the CWF . Bottom row: the rendered wrinkle patterns. We see
nontrivial wave mergers via singularities sliding. Please check the Interpolation Results video in the supplementary material at timestamp 01:29–01:45 for
the corresponding animation.

tension-field-theory-based static solver [Skouras et al. 2014], im-
plemented by Chen at al. [2021], to compute a wrinkle-free base
mesh for every frame. We then manually set the frequency at the
two endpoint keyframes by counting the number of wrinkles in the
corresponding frames of the C-IPC simulation, and scale the wrinkle
amplitude to preserve surface area of the cylinder. In Figure 11, bot-
tom, we see that the CWF interpolated frames then well-align with
the input keyframes and, in-between, obtain qualitatively similar
merging and deformation to the simulation results. That said, these
interpolated frames do have expected and notable differences from
the simulated results: deformation paths differ (e.g., with wrinkles
merging at different times) and, of course, the CWF model (as it
considers only a single primary frequency) does not capture the
secondary wrinkles observable in the simulation results.

5 WRINKLE UPSAMPLING
Representing fine wrinkle patterns on coarse meshes is only useful
if there is a way to actually see them. Given a triangle mesh T
and a CWF on that mesh, rendering the wrinkled surface requires
both upsampling T itself (yielding a smooth canvas on which to
place wrinkles, free of meshing artifacts) and turning the CWF into
a displacement map that can be applied to the upsampled mesh.
To that end, we propose the following upsampling strategy:

Linearly blended amplitude Knöppel’s phase Wrinkled mesh CWF wrinkled mesh

Fig. 9. Knöppel et al. [2015]’s algorithm is designed only for stripe patterns
(phase fields), not wrinkles with amplitude. Naively combining the phase
field produced by Knöppel et al’s method with linearly-interpolated ampli-
tude (through barycentric blending from triangle corners) yields artifacts
near wrinkle singularities (the red zoomed-in region). In this case, the coarse
mesh has a constant amplitude on each vertex. Moreover, without our CWF
subdivision algorithm, meshing artifacts are apparent in the rendered result
(the black zoomed-in region).

• For upsampling T , we focus exclusively on Loop subdivi-
sion [1987], as it is the most commonly-used triangle mesh
subdivision scheme.
• In the remainder of this section, we will describe a rule for
mapping per-vertex complex numbers z and per-edge fre-
quencies ω from T k , the input mesh after k levels of Loop
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Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 10. We compare our interpolation algorithm to several baselines on an example of wrinkles rotating by ninety degrees on the Stanford bunny. Linear
interpolation leaves the space of CWF s and consequently produces severe artifacts. Both Knöppel et al. [2015] and Chen et al. [2021] produce temporally
incoherent results, though these discontinuities are hard to see in static frames and much more obvious in themain supplementary video (at 03:44–04:04) and
the Comparisons supplementary video (at 01:00–01:56). Additionally, Chen et al.’s phase field becomes noisy midway through the interpolation. Note that
the Chen et al. phase field differs from the others at t = 1 since their method recomputed phase from the provided frequency input.
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Frame 0

C-IPC

Ours

Frame 10 Frame 20 Frame 30 Frame 40 Frame 50 Frame 60 Frame 70 Frame 80

Fig. 11. We compare CWF interpolation to the results of physically simulated wrinkle evolution. We simulate the twisting of a cylinder by 64 degrees (from
16 to 80 degrees) with C-IPC [Li et al. 2021] (top) and compare its results with CWF interpolation using the the first and last simulated frame (bottom) as
boundary conditions. CWF smoothly interpolates the given keyframes with qualitatively-similar wrinkle merging and deformation (though it does not capture
secondary wrinkles that emerge during simulation). See the Comparisons supplemental video (at 02:57–03:13) for an animated comparison.

refinement, to T k+1. The quantities on T 0 can be read di-
rectly from the CWF (zi = ai z̃i on the vertices), and then
upsampled to any desired level of refinement.
• To materialize the wrinkled mesh at subdivision level k , we
apply the displacement |zi |n̂i cos argzi to vertex Vi , where
n̂i is the vertex normal.

We use this approach to render all smooth wrinkled surfaces in
the paper (we apply 4 or 5 levels of subdivision, depending on the
frequency of wrinkles in each example). We have not analyzed this
process to prove that the limit surfaces belong to some smoothness
class, though in practice all of our results are visually smooth, includ-
ing near singularities. Although the above procedure is designed
to render CWFs, it can also be used to visualize z,ω pairs that do
not obey approximate compatibility. We have observed that the re-
sulting upsampled wrinkles are also smooth, although they include
extraneous singularities not reflected in z or ω (see Figure 4d).

Preliminaries. We now describe the upsampling maps zk → zk+1

and ωk → ωk+1. To avoid cumbersome superscripts we will write
T for T k and T ′ for T k+1, and similarly use primes to denote
quantities on T k+1.We writeV for the vertices of T and S0 for the
Loop subdivision mask, so that V ′j = [S0V ]j .

5.1 Upsampling ω
Research in geometry processing [de Goes et al. 2016b; Wang et al.
2006] has established a subdivision mask S1 on one-forms that is
compatible with the Loop subdivision mask and the discrete differen-
tial operator, in the sense that for any function f on T , S1df = dS0 f .
On closed meshes, we use this operator directly, and set ω ′ = S1ω.
On meshes with boundary, we modified the standard Loop formula

and de Goes et al.’s formula slightly to keep boundary corners sharp
(see § 2 of the supplemental document for details).

5.2 Upsampling z
There are two obvious ideas for how to upsample the z values:
either by subdividing z’s real and imaginary parts separately, or its
magnitude and phase. Neither approach works, for essentially the
same reasons discussed in § 3 as motivating the use of frequencies
in addition to phase in the CWF representation: in regions where
the frequency is high, phase values at vertices undersample the
wrinkles. Computing z′ by averaging these aliased samples yields
an equally-aliased z′. We show a comparison between our approach
(described below) and these two naive baselines in Figure 12.

Subdivision of |z |, arg z Subdivision ofℜ(z ), ℑ(z ) Our upsampling

Fig. 12. A comparison of our z → z ′ upsampling algorithm (right) to naively
applying the Loop subdivision mask to z ’s amplitude and phase (left), and
to z ’s real and imaginary parts (middle). Neither baseline preserves the
frequency of the wrinkles in the original CWF .
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5.2.1 Our Approach. To upsample z without aliasing the wrinkles,
we need to incorporate frequency information from ω into the up-
sampling procedure.We build up to the final formulas for computing
z′ on the vertices of T ′ by first examining some simpler special
cases. We will use the following assumption as our guiding principle
for deriving our subdivision rules: in a local patch of the surface, the
phase of z might change quickly, but the frequency does not. This
assumption allows to extrapolate and interpolate frequency values
away from the edges on which they are defined.

Upsampling on a Line Segment. Let us first consider the case of a
line segment with vertices V0 and V1, whose z-values are z0 and z1,
and whose edge frequency is ω. Suppose we need to estimate z at a
pointP = (1−α )V0+αV1. Sincewe assume frequency changes slowly,
we can extrapolate z at P from z0 by z (P ) ≈ z0 exp(iαω); similarly
from z1 by z1 exp(i (1−α )ω). These formula do not necessarily agree
unless |z0 | = |z1 | and ω and z are exactly compatible. We reconcile
the two votes by barycentrically blending them:

z (P ) = (1 − α )z0 exp(iαω) + αz1 exp(i (1 − α )ω). (18)

Notice that z (P ) interpolates z0 and z1.

Upsampling in a Triangle. We use a similar strategy for evaluating
z at any point P = ∑3

j=0 α jVj within a triangle {V0,V1,V2}, whose
corresponding z values are z0, z1 and z2, and whose edges have
frequencies ω01, ω12, and ω20. Similar to the line segment case, we
can estimate z (P ) by extrapolating from a triangle corner Vj by
z (P ) ≈ zj exp

(
iωj→P

)
, where

ωj→P := α j+1ωj (j+1) + α j+2ωj (j+2)

is the frequency on the segmentVjP , as measured at vertexVj using
ωj (j+1) and ωj (j+2) as a basis for evaluating ω in any direction.
Barycentrically blending this formula from three corners gives us:

z (P ) =
3∑
j=1

α jzj exp
[
i
(
α j+1ωj (j+1) + α j+2ωj (j+2)

)]
. (19)

This triangle interpolant is similar to the one proposed by Zuenko
and Harders [2019] with one key difference: they formulate Equa-
tion (19) purely for phase and propose barycentrically interpolating
amplitude separately. The Zuenko and Harders approach is unsuit-
able for triangles containing singularities, since upsampled ampli-
tude does not neccessarily vanish at the singularites, creating visual
artifacts (Figure 16).

5.2.2 Loop Subdivision Rules forz. Wenowgeneralize Equation (19)
to compute z′i on the Loop-upsampled vertexV ′i of T ′. Wemust con-
sider two cases: V ′i might be a repositioned vertex already present
in T (an even vertex), or an entirely new vertex that came from
splitting an edge of T (an odd vertex). We separately describe how
to compute z′ in each case; see Figure 13 for a visual summary of
all the rules.

Odd Rule. For an odd vertex, the standard Loop mask is

V
′

j =
1
8 (V0 +V1) +

3
8 (V2 +V3)

on a “diamond” with common edgeV2V3. This mask can be rewitten

V
′

j =
1
2P0 +

1
2P1

P0 =
1
4V0 +

3
8V2 +

3
8V3

P1 =
1
4V1 +

3
8V2 +

3
8V3.

(20)

Notice that these formula combine barycentric sampling within a
triangle (to compute P0 and P1) followed by sampling the midpoint
of a line segment (to compute V ′j .) We can convert this interpo-
lation into two single triangle interpolations at P0, w.r.t. triangle
{V0,V2,V3} and P1, w.r.t. triangle {V1,V2,V3}, together with line seg-
ment interpolation atV ′j , w.r.t. {P0, P1}. We can transform these rules
for computing V ′j into rules for computing z′j by applying the for-
mulas from the special cases discussed above: we use Equation (19)
to compute z at P0 and P1. Next, we would like to use Equation (18)
to compute z′j . There are two obstacles: first, we need the frequency
evaluated on the line segment P0P1. Second, this line segment gen-
erally does not lie on T , but rather cuts through ambient space,
whereas frequencies are intrinsic to T ’s cotangent space.

We therefore modify the approach of Equation (18) to account
for these differences. First, we sample ω at P0 by interpolating the
values of ω at the edges of triangle V0V2V3 into the interior (see
§ 3 of the supplemental document for more details; in particular
note that ω (P0) is a cotangent vector and not a scalar). We use this
frequency to extrapolate z (P0) to V ′j along the intrinsic edge from
P0 to P1:

zP0→V ′j
= z (P0) exp

(
iω (P0) (P

∗
1 − P0)/2

)
, (21)

where P∗1 is the location of P1 after rigidly unfolding triangleV1V2V3
along the common edge V2V3 to lie in triangle V0V2V3’s tangent
plane. We compute zP1→V ′j

analogously.
Then the final z′j is the average of the corresponding contributions

from P0 and P1:

z′j =
1
2 (zP0→V ′j

+ zP1→V ′j
). (22)

Even Rule. Next, we consider an even vertexV ′0 corresponding to
V0 on T , with neighbors V1, . . . ,Vn . V ′0 has position

V ′0 = (1 − αn)V0 +
n∑
j=1

αVj , (23)

where α is the traditional even-neighbor Loop weight and depends
on the valence n of V0 [Loop 1987]. As in the odd case, we can
refactor Equation (23) as a convex combination of points linearly
interpolated within a single triangle:

V ′0 =
n−1∑
j=0

1
n
Pj , Pj = (1 − 2γ )V0 + γVj+1 + γVj+2, (24)

for γ = nα
2 . We now follow the same recipe as in the odd case: we

compute z (Pj ) using Equation (19), and write z′0 as the average of
contributions extrapolated from each Pj .
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Mesh Boundaries. For even verticesV0 on the mesh boundary with
neighbors V1 and V2, we can once again write the Loop subdivision
mask in terms of an average of linear interpolations along mesh
edges, and apply the same recipe as in the even and odd interior
cases above. In this case V ′0 = (P0 + P1)/2, where P0 = 1

4V1 +
3
4V0

and P1 = 1
4V2 +

3
4V0. The odd boundary case involves sampling z

on a mesh edge and so Equation (18) can be applied directly.

(a) Even rules (b) Odd rules

Old vertices Updated vertices New vertices Auxiliary points

V0 ( 12 )

V ′j

V1 ( 12 )

V1 ( 14 )

V2 ( 14 )

V0 ( 34 )
P0 ( 12 )

P1 ( 12 )

V0 ( 14 )

V1 ( 14 )

V3 ( 38 )V2 ( 38 ) V ′j

P0 ( 12 )

P1 ( 12 )

V0
(1 − 2γ )

( 1n )P0

P1 ( 1n )

P2 ( 1n )

P3 ( 1n )( 1n )Pn−1V1 (γ )

V2 (γ )

Vn (γ )

V4 (γ )

V3 (γ )

V5 (γ )

Fig. 13. Subdivision rules for even and odd interior and boundary vertices.
First, sample ω and z (using Equation (19)) at the red points Pi , using the
barycentric weights specified in parentheses next to the vertices. Finally,
extrapolate z (Pi ) to the upsampled vertex (blue or yellow) using an analo-
gous approach to Equation (21), and average these extrapolations using the
weights in parentheses next to the Pi .

Remark. Notice that the upsampling strategy explained above has
the following useful property: it exactly reproduces plane waves, in
the sense that if T is a piece of the plane, ω is the differential of a
linear function θ (P ) = v · P , and z (= z̃) is consistent with ω, then
under refinement the CWF (ω, 1, z̃) converges to (a phase shift of)
the smooth plane waveψ (P ) = cos(v · P ).

5.3 Results and Comparisons
We show successive upsampling of a CWF on the Stanford bunny in
Figure 14. Wrinkles appear as soon as the subdivided mesh has high
enough resolution to resolve their frequency. See all other figures of
rendered wrinkles in the paper for more examples of our subdivision
algorithm at work.

Triangle Interpolation Alternatives. Several alternative formulas
have been proposed for interpolating phase into a triangle from
samples at its corners; in Figure 15 we compare our choice of Equa-
tion (19) to several potential alternatives: the side-vertex scheme
used in Jeschke et al’s work [2015], and the nine-parameter Clough-
Tocher cubic scheme [Farin 1986]. Notice that away from the sin-
gularities, all of these three approaches achieve reasonable results;
however the side-vertex and Clough-Tocher cubic scheme fail to
resolve neighborhoods of singularities. The reason for this failure
is that both schemes express phase at interior points in terms of a
rational or polynomial function of phase at the triangle vertices. It is
mathematically impossible for such functions to produce singulari-
ties (where phase must have a branch point where it’s undefined).

No singularity No singularity Captures singularity

Clough Tocher scheme Jeschke and Wojtan [2015] Equation (19)

Fig. 15. A comparison where we replace Equation (18) in our upsampling al-
gorithm with some alternatives, for a CWF on the Stanford bunny. From left
to right: the nine-parameter Clough Tocher cubic scheme [Farin 1986], the
side-vertex scheme used by Jeschke and Wojtan [2015], and Equation (19).
Only Equation (19) successfully resolves the phase behavior near singulari-
ties (zoomed-in regions).

Other Upsampling Methods. In Figure 16, we compare our upsam-
pling algorithm against two baselines from the literature [Chen
et al. 2021; Zuenko and Harders 2019]. Zuenko and Harders render
fine wrinkles on coarse meshes by first linearly subdividing the
mesh, interpolating phase onto the fine mesh using a variant of
Equation (19) and amplitude using barycentric interpolation, and
then smoothing the result with SPHERIGON [Volino and Thalmann
1998] as a post-process to remove some of the artifacts from the
wrinkled mesh geometry. Since they separately upsample wrinkle
amplitude and phase, there is no guarantee that amplitude vanishes
at phase singularities, leading to noticable noise (in the red and
black zoomed-in regions, for instance). Moreover the use of linear
subdivision on T means that the edges of the coarse mesh remain
noticeable in the final rendered image, despite the post-processing.
Like in our approach, Chen et al. [2021] use Loop subdivision

to upsample T , as well as the wrinkle amplitude and phase, but
their method requires that the input frequency and phase are ex-
actly compatible. This restriction makes their approach unsuitable
for rendering CWFs. In Figure 16 we make a best-effort compar-
ison by projecting ω to the closest globally-integrable frequency
using mixed-integer programming, but doing so severely distorts
the wrinkle pattern, and many singularities are missing from the
final rendered image.

6 WRINKLE DESIGN
In this section, we demonstrate applications of our CWF algorithms
for user-based design and editing of wrinkled surfaces via interpo-
lation. We first develop tools for the creation and editing of CWF
keyframes and then show their application. Please also see ourmain
and Interpolation Results videos for more details and results.

6.1 Adding Wrinkles to Surfaces
For adding wrinkles to a surface a user first provides a mesh T =
{V ,E, F } and selects k vertices as source points s (green points in
Figure 17a) and at each of those points a desired wrinkle frequency
vectorvs (the yellow arrow). A user then also specifies a region of
influence ins ⊂ V for each source point (the white and red regions
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Level 0 Level 1 Level 2 Level 3 Level 4

Fig. 14. We successively Loop-upsample the Stanford bunny, alongside the z and ω of a CWF on the bunny, and render the resulting displaced surface. After
several rounds of subdivision, the wrinkle pattern appears and is stable under additional iterations of subdivision.

Zuenko and Harders [2019] Chen et al. [2021] CWF

Fig. 16. We compare our upsampling algorithm against two baselines from
previous work [Chen et al. 2021; Zuenko and Harders 2019]. Zuenko and
Harders perform linear subdivision of T and separately upsample ampli-
tude and phase in a way that produces noticeable meshing artifacts and
discontinuities near the singularities (see zoomed-in regions). Chen et al.
[2021]’s upsampling scheme only works for curl-free frequency fields. To
use their method, we project ω onto the space of globally integrable one-
forms, but doing so distorts the wrinkle pattern, which is missing many
singularities.

Designed sources Extended (a, ω ) Wrinkled surface Amplitude Phase

Fig. 17. Adding wrinkles to the Spot cow. From left to right: The user speci-
fies desired wrinkle directions (yellow vectors) and regions of influence for
each chosen direction (red regions). The user also assigns an amplitude to
each region. We extend a and ω from the user input to the entire mesh.
Finally, we solve for z̃ and apply our upsampling algorithm to materialize
high-resolution wrinkled geometry. We show the amplitude and phase of
the final wrinkle pattern, after upsampling, on the right.

in Figure 17a)3 and a target amplitude as for the wrinkles within
the region of influence.

Let S be the set of all source points {si }ki=1. We call the set of all ver-
tices in any region of influence the influenced vertices inV =

⋃ insi .
The influenced faces inF are those with at least one influenced
vertex, and likewise for the influenced edges inE .

From this input we solve for a wrinkle pattern on T . The process
can be divided into two parts: (1) input extension, where we extend
3For simplicity we compute the region of influence as the n-ring neighborhood of the
chosen points, for a user-specified n; one could also compute a geodesic disk.

the user-provided amplitude and frequency samples to an a and ω
on the entire mesh, and (2) wrinkle synthesis, where we compute z̃
from a and ω and use the upsampling technique introduced in § 5
to export the final wrinkled geometry.

We first apply the vector heat method [Sharp et al. 2019] to extend
the user-provided frequenciesvsi to a vertex-based vector fieldvi
on V . Then for any influenced edge Ei j ∈ inE we set

ωi j =
1
2 (vi · Ei j +vj · Ei j ),

and for any edge that is not influenced, we set ωi j = 0.
We compute per-vertex amplitudes by solving

argmin
a

E (a) s.t.



ai = 0, Vi < inV
asi = csi , ∀si ∈ S

(25)

where

E (a) =
1
2a

T La +
k∑
i=1

∑
Vj ∈insi

(aj − asi )
2Aj

+
∑

Fℓmn ∈inF

a2
ℓ
+ a2m + a

2
n

3 (ωℓm + ωmn + ωnℓ )
2

and L is the positive semi-definite cotangent Laplacian matrix, Aj is
the vertex barycentric area, and ωℓm + ωmn + ωnℓ is the discrete
curl. The first term promotes smoothness of a; the second term
measures agreement with the user-specified amplitudes in the af-
fected regions, and the final term couples the a to the ω to ensure
that amplitude goes to 0 at the singularities of ω. Finally, for the
wrinkle synthesis step, we solve the eigenvalue problem proposed
by Knöppel et al. [2015] to determine z̃ and then directly apply the
subdivision algorithm from § 5 to (ω,a, z̃).

Remarks. The procedure above is used to create local wrinkle
patterns. If global patterns are desired instead (such as the wrin-
kle patterns on the bunny in Figure 7), we first compute ω using
Knöppel et al. [2013]’s algorithm, and globally scale the frequency
and set a global constant amplitude to achieve the desired wrinkle
characteristics. Then we find the consistent z̃ values on the vertices
and upsample the result using the wrinkle field synthesis algorithm
described above.
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6.2 Editing Wrinkles
Next, we describe a tool for editing wrinkles, given an existing mesh
T and CWF (z̃0,a0,ω0). There are four steps in the editing pipeline:
• The user picks a region of the mesh to edit (red in Figure 7).
• The user edits the wrinkles in that region. Options we imple-
mented are: rotating the frequency, changing the frequency
magnitude, and changing the wrinkle amplitude.
• We blend the new wrinkle pattern in the edited region with
the existing one inside an interface region around the chosen
region (green region in Figure 7). Wrinkles away from the
edited region and its interface do not change.
• We interpolate between the original CWF and the edited one,
using our interpolation algorithm.

The third step requires some elaboration. Let Fedit ⊆ F be the
set of faces where the user has chosen to make edits, and let ω1

and a1 be the requested frequency and amplitude in that region. We
need to construct a new z̃1, which satisfies (1) z̃1 = z̃0 far away
from Fedit; and (2) z̃1 is consistent with ω1 within Fedit. To avoid a
discontinuity in frequency and amplitude on the edited surface, we
create an interface region Finter of user-specified size around Fedit.
The remaining mesh faces will not change; we call them Ffixed.

Let Eedit be the edges of the triangles in Fedit, and Efixed andVfixed
the edges and vertices of Ffixed, respectively. The above requirements
can be written as follows:
• z̃1j = z̃0j , for any Vj ∈ Vfixed.
• |z̃1j | = 1, for any Vj ∈ V \Vfixed.
• z̃1k exp(iωk j ) − z̃

1
j = 0 for any edge Ejk ∈ Eedit.

• The interface frequency and amplitude fields are smooth.
We first interpolate ω1 into the interface region. To get a fre-

quency field that is as smooth as possible, we minimize the Dirichlet
energy of that field with Dirichlet boundary conditions:

argmin
ω

∑
Fℓmn

(ωℓm + ωmn + ωnℓ )
2 +
∑
Vm

*.
,

∑
Emn

cmnωmn
+/
-

2

s.t



ωjk = ω
0
jk , Ejk ∈ Efixed

ωjk = ω
1
jk , Ejk ∈ Eedit,

(26)

where cmn is the cotangent weight w.r.t. edge Emn , and the first
and second term are the discrete curl and divergence respectively.

Once we have the frequency field, the amplitude field is the opti-
mal solution of the following modified Dirichlet energy:

argmin
a

1
2a

T La +
∑
Fℓmn

a2
ℓ
+ a2m + a

2
n

3 (ωℓm + ωmn + ωnℓ )
2

s.t



aj = a0j , Vj ∈ Vfixed
aj = a1j , Vj ∈ Vedit,

(27)

which asks for an amplitude that is as smooth as possible while en-
suring (via the first term) that the amplitude vanishes at singularities.
Here L is the positive semi-definite cotangent Laplacian.
Finally, we compute an approximately-consistent z̃ inside the

interface and edited regions by solving an optimization problem

generalizing the strategy from Knöppel et al. [2015]:

min
ũ,s

Ecompat (Pũ + su
0,ω) s.t. 


Pũ + su

0



2
M0
= 1 (28)

where ũ is a vector of size |V | − |Vfixed | representing the unknown
values of z̃ in the non-fixed region,u0j = z̃0j for anyVj ∈ Vfixed (with
other entries zero), M0 is the mesh barycentric mass matrix, and
P is the inclusion matrix that extends ũ to the whole domain by
inserting zeros for vertices in the fixed region. The single scalar
value s allows for rescaling (but no other changes) within the fixed
region. The inclusion of s in the optimization is required since the
more straightforward restriction of Knöppel et al. [2015]’s method
to the non-fixed region,

min
ũ

Ecompat (Pũ +u
0,ω) s.t. 


Pũ +u

0



2
M0
= 1, (29)

enforces an average scaling of ũ within the non-fixed region sep-
arate from, and generally inconsistent with, the scaling of u0 in
the fixed region.To transform Equation (28) so that it is once again
an eigenvalue problem, we make the substitutions v = [ũ, s] and
M ′0 = PTM0P . From ũ we compute u = Pũ/s + u0 and then set
z̃1j = uj/|uj |. Notice that (ω

1,a1, z̃1) is not necessarily a valid CWF
since z̃1 may not satisfy the soft compatibility condition exactly
(and it is not generally possible to satisfy themwithout changing the
z̃j within the fixed region). We can render the wrinkle field nonethe-
less, and use it as a keyframe for wrinkle evolution by projecting it
to a CWF using the pre-processing described in § 4.

6.3 Results
We perform a variety of local edits to wrinkles on surfaces and
visualize the wrinkle evolution during the editing process. Figures 6
and 19 illustrate local frequency increase, with a corresponding
decrease in amplitude in the former example. In Figure 7 a user
demands a local rotation of the wrinkles by 90 degrees, while main-
taining the frequency magnitude and amplitude. We also support
different types of edits on different patches. In Figure 18, we enlarge
the frequency of the patch on Spot’s body by 2.5 times, while at
the same time rotating the direction of wrinkles on the head by
90 degrees. These examples show that we can interpolate between
extreme frequency or direction differences, and the singularities
nevertheless slide smoothly over the surface without temporal dis-
continuities or other artifacts seen in results from previous work.
Please see the Interpolation Results supplemental video, and

the supplemental document (§ 5), for more examples of editing wrin-
kles, including some examples of modifying the output of wrinkles
computed via physical simulation.

7 LIMITATIONS AND FUTURE WORK
In this paper we made several design decisions that could be fruit-
fully revisited in future work in order to generalize CWFs and our
interpolation or upsampling algorithms, such as restricting wrinkles
to waves with a single (but spatially-varying) frequency, rather than
a superposition of frequencies [Rémillard and Kry 2013]; and limit-
ing refinement to Loop subdivision. The comparison to wrinkled
materials (e.g., the simulated cloth in Figure 11) indicates signif-
icant potential value in extending this work to model additional,
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Rotate 90 degrees

2.5 × frequency, 0.4 × amplitude

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 18. CWF interpolation of two wrinkle patterns on Spot. Please refer to the Interpolation Results video in the supplementary materials for the
corresponding wrinkle animation (timestamp 02:21-02:37).

secondary, higher-frequency wrinkle fields superimposed upon the
first. Another particularly interesting direction of future work is to
study the use of CWFs for solving PDEs involving waves other than
the interpolation boundary value problem: for example, we believe
that it’s likely that cloth dynamics would benefit from CWF kinemat-
ics as it would allow simulation of wrinkles that have much higher
frequency than the base mesh. Finally, complex wrinkle fields could
be used to model skin wrinkles or fingerprints; though as argued
by Zuenko et al. [2019], high-quality skin wrinkles would likely
require extending CWFs to waves with non-sinusoidal profile.

Interpolation Performance. Interpolating CWFs is currently far
from real-time (please refer the time table in the supplemental docu-
ment for more details); our implementation took 4 minutes to com-
pute keyframe interpolation on average, with 32 seconds minimum
and 12 minutes maximum among all the examples. One problem
is that our optimization problem is not a convex optimization: al-
though the other two terms (Esmooth and Ecompat) in Equation (12)
are quadratic, Eunit is nonlinear and not convex, and this nonlin-
earity is enough to cause Newton’s method difficulty. Performance
could be improved by refactoring the optimization problem (in-
cluding perhaps by improving the initial guess) or parallelizing the
linear solver on the GPU. Note that the size of the linear system
(in terms of number of non-zeroes) grows linearily in the number
of requested frames N . To improve the efficiency, we proposed the
use of guide frames (§ 4.1). We study the performance vs. quality

tradeoff of the choice of number of guide frames in the supplemental
document (§ 7.1); careful tuning of this parameter could achieve a
bettter tradeoff than our (conservative) use of N ′ = 50.

Preventing Collisions. When amplitudes are large, it is possible
for neighboring wrinkle periods to collide, or for wrinkles to “poke
through” distant portions of the base mesh. Our work currently
does not detect or prevent such collisions in any way.

Alternative Incompatibility Norm. When definingOptω , we choose
to use the L2 norm to measure the incompatibllity between ω and z̃
(Equation (2)). Given that singularies are usually sparsely distributed
on a wrinkled surface, a promising alternative is the L1 norm, which
promotes such sparsity, but is more difficult to optimize.

More General Wrinkle Parameterization. Several of our editing
examples take as input wrinkle geometry computed by spectral
wrinkle simulators [Chen et al. 2021; Zuenko and Harders 2019]. In
these cases we could directly convert the output of the simulators
into CWF variables. For more general wrinkled surfaces (computed
by a finite element simulator [Narain et al. 2012], for instance), a
missing step is how to decompose a high-resolution, wrinkled mesh
into the coarse but smooth base mesh T and the CWF variables.
It’s unclear how to best perform this decomposition, especially
when wrinkles are complex, aliased, and contain many singularities.
In addition to optimization-based approaches, another promising
avenue is training a neural network to perform the decomposition.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:18 • Chen et al.

5× frequency

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Fig. 19. CWF interpolation of two wrinkle patterns on the Phantasma model, where the user has locally increased wrinkle frequency by 5×. Our algorithm
successfully generates a smooth path between these challenging keyframes. For the corresponding wrinkle animation, please watch the Interpolation
Results video at timestamp 00:54–01:11 in the supplementary materials.

Improved Wrinkle Physics. Our interpolation is physics-inspired,
but due to simplifying assumptions in the derivation such as neglect-
ing the inertia of wrinkles and the effect of base mesh stretching
on the wrinkle evolution, our interpolant is not guaranteed to ex-
hibit fully realistic wrinkle dynamics. One possible improvement is
to rederive the interpolation formula using the full reduced-order
elastic energy derived by Chen et al. [2021] instead of assuming
inextensible shells. Additionally, the current model interpolates the
CWF variables completely independently of any movement or de-
formation of the base mesh. A scheme that jointly optimizes for a
coupled base mesh and CWF interpolant could result in wrinkle
evolution with higher physical realism. Along similar lines, our cur-
rent model does not consider inhomogeneities or special features
of the base mesh, such as hems or seams, which significantly affect
fabric wrinkling in the real world. A possible direction for further
exploration is to extend our work by imposing spatial boundary
conditions on the CWF variables at the locations of stiff seams.
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