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Fig. 1. Twisting. A stress-test 3D deformation problem. Left: we initialize a 1.5M element tetrahedral mesh bar with a straight rest shape into a tightly
twisted coil, constraining both ends to stay fixed. Right: minimizing the ISO deformation energy to find a constrained equilibrium with (top to bottom)
Projected Newton (PN), Accelerated Quadratic Proxy (AQP) and our Blended Cured quasi-Newton (BCQN) method, we show intermediate shapes at reported
wall-clock time (seconds) and iteration counts at those times (BCQN/AQP/PN). AQP, much slower than BCQN, requires many more iterations to converge

while PN, despite requiring fewer iterations, is well over 25X slower due to per-iteration costs dominated by factorization.

Optimizing distortion energies over a mesh, in two or three dimensions, is a
common and critical problem in physical simulation and geometry processing.
We present three new improvements to the state of the art: a barrier-aware
line-search filter that cures blocked descent steps due to element barrier terms
and so enables rapid progress; an energy proxy model that adaptively blends
the Sobolev (inverse-Laplacian-processed) gradient and L-BFGS descent to
gain the advantages of both, while avoiding L-BFGS’s current limitations in
distortion optimization tasks; and a characteristic gradient norm providing
a robust and largely mesh- and energy-independent convergence criterion
that avoids wrongful termination when algorithms temporarily slow their
progress. Together these improvements form the basis for Blended Cured Quasi-
Newton (BCQN), a new distortion optimization algorithm. Over a wide range
of problems over all scales we show that BCQN is generally the fastest and
most robust method available, making some previously intractable problems
practical while offering up to an order of magnitude improvement in others.
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1 INTRODUCTION

Many fundamental physical and geometric modeling tasks reduce to
minimizing nonlinear measures of distortion over meshes. Simulat-
ing elastic bodies, parametrization, deformation, shape interpolation,
deformable inverse kinematics, and animation all require robust, effi-
cient, and easily automated distortion optimization. By robust we mean
the algorithm should solve every reasonable problem to any accuracy
given commensurate time, and only report success when the accuracy
has truly been achieved. By efficient we mean rapid convergence in
wall-clock time, even if that may mean more (but cheaper) iterations.
By automated we mean the user needn’t adjust algorithm parameters
or tolerances at all to get good results when going between differ-
ent problems. With these three attributes, a distortion optimization
algorithm can be reliably used in production software.

We propose a new algorithm, Blended Cured Quasi-Newton (BCQN),
with three core contributions based on analysis of where prior meth-
ods faced difficulties:

e an adaptively blended quadratic energy proxy for distor-
tion energies that iteratively combines the Sobolev gradient and
a quasi-Newton secant approximation; this allows low cost per
iterate with second-order acceleration while avoiding secant
artifacts where the Laplacian is more robust;

e abarrier-aware filter on search directions, that gains larger
step sizes and so improved convergence progress in line search
for the common case of iterates where individual elements
degenerate towards collapse; and
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e acharacteristic gradient norm convergence criterion, im-
mune to terminating prematurely due to algorithm stagnation,
that is consistent across mesh sizes, scales, and choice of energy
so that per-problem adjustment is unnecessary.

Over a wide range of test cases we show that BCON achieves our
goals for production software: BCQN makes the solution of some
previously intractable problems practical, offers up to an order of
magnitude speed-up in other cases and, in all cases investigated so
far, robustly converges while improving on or closely matching the
performance of the best-in-class optimizers available.

2 PROBLEM STATEMENT AND OVERVIEW

Distortion optimization seeks local minimizers

1

x* = argmin E(x),
xeRdn
for n vertex locations in d-dimensional space stored in vector x, where
the energy E(x) is a measure of distortion, and x is subject to con-
straints.! The energy is expressed as a sum over elements ¢ in a
triangulation T (triangles or tetrahedra depending on dimension),

E(x) = ) wW(F(x),

teT

@

where v; > 0 is the area or volume of the rest shape of element ¢, W
is an energy density function taking the deformation gradient as its
argument, and F; computes the deformation gradient for element t.
This problem may be given as is, or may be the result of a discretization
of a continuum problem with, for example, linear finite elements.

2.1 lterative solvers for nonlinear minimization

Solution methods for distortion optimization generally apply an algo-
rithmic strategy of iterated approximation and stepping [Bertsekas
2016], built from three primary ingredients: an energy approximation,
a line search, and a termination criteria.?

2.1.1 Energy Approximation. At the current iterate x; we form a
local quadratic approximation of the energy, or proxy:

Ei(x) = E(x;) + (x = %) T VE(x;) + 3(x = x) THi(x = xi) ~ (3)

where H; is a symmetric matrix. Near the solution, if H; accurately
approximates the Hessian we can achieve fast convergence optimizing
this proxy, but it is also critical that it be stable — symmetric positive
definite (SPD) — to ensure the proxy optimization is well-posed every-
where; we also want H; to be cheap to solve with, preferring sparser
matrices and ideally not having to refactor at each iteration.

2.1.2  Line Search. Quadratic models allow us to apply linear solvers
to find stationary points x; = argmin,. E;(x) of the local energy ap-
proximation. A step

pi =xi" —xi = —H; 'VE(x;) @

!For simplicity of presentation we restrict our attention here to constraining a subset of
vertex positions to given values, i.e. Dirichlet boundary conditions.

zAltematively, trust-region methods are available, though not considered in the current
work nor as popular within the field.
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towards this stationary point then forms a direction for probable
energy descent. However, quadratic models are only locally accurate
for nonlinear energies in general, thus line-search is used to find an
improved length o; > 0 along p; to update to a new iterate

®)

that provides adequate decrease in nonlinear energy E. Of particular
concern for the distortion problems we face are energies that blow
up to infinity for degenerate (flattened) elements: in a given step, the
elements where this may come close to happening rapidly depart from
the proxy, and the step size @; may have to be very small indeed, see
Figure 2, impeding progress globally.

Xi+1 < Xi + Aipi,

2.1.3 Termination. Iteration continues until we are able to stop
with a “good enough” solution - but this requires a precise computa-
tional definition. Typically we monitor some quantity that approaches
zero if and only if the iterates are approaching a stationary point.
The standard in unconstrained optimization is to check the norm of
the gradient of the energy, which is zero only at a stationary point
and otherwise positive; however, the raw gradient norm depends on
the mesh size, scaling, and choice of energy, which makes finding an
appropriate tolerance to compare against highly problem-dependent
and difficult to automate.

3 RELATED WORK
3.1

A wide range of physical simulation and geometry processing compu-
tations are cast as variational tasks to minimize measures of distortion
over domains.

To simulate elastic solids with large deformations we typically mini-
mize hyper-elastic potentials formed by integrating strain-energy den-
sities over the body. These material models date back to Mooney [1940]
and Rivlin [1948]. Their Mooney-Rivlin and Neo-Hookean materials,
and many subsequent hyperelastic materials, e.g. St. Venant-Kirchoff,
Ogden, Fung [Bonet and Burton 1998], are constructed from empirical
observation and analysis of deforming real-world materials. Unfortu-
nately, all but a few such energy densities are nonconvex w.r.t. strain.3
This makes their minimization highly challenging. Constants in these
models are determined by experiment for scientific computing appli-
cations [Ogden 1972], or alternately are directly set by users in other
cases [Xu et al. 2015], e.g., to meet artistic needs.

In geometry processing a diverse range of energies have been pro-
posed to minimize various mapping distortions, generally focused
on minimizing either measures of isometric [Aigerman et al. 2015;
Chao et al. 2010; Liu et al. 2008; Smith and Schaefer 2015; Sorkine
and Alexa 2007] or conformal [Ben-chen et al. 2008; Desbrun et al.
2002; Hormann and Greiner 2000; Lévy et al. 2002; Mullen et al. 2008;
Weber et al. 2012] distortion. While some of these energies do not pro-
hibit inversion [Chao et al. 2010; Desbrun et al. 2002; Lévy et al. 2002;
Sorkine and Alexa 2007] many others have been explicitly constructed

Energies and applications

3We observe this is distinct from the global energy being nonconvex w.r.t. vertex positions:
ARAP [2007] is an example of a convex energy density that nonetheless can lead to a
nonconvex global energy.



with nonconvex terms that guarantee preservation of local injectiv-
ity [Aigerman et al. 2015; Hormann and Greiner 2000; Smith and
Schaefer 2015]. Other authors have also added constraints to strictly
bound distortion [Bommes et al. 2013; Lipman 2012] for example,
but we restrict attention to unconstrained minimization — and note
constrained optimization often relies on unconstrained algorithms as
an inner kernel.

Our goal here is to provide a tool to minimize arbitrary energy den-
sity functions as-is. We take as input energy functions provided by the
user, irrespective of whether these energies are custom-constructed
for geometry tasks, physical energies extracted from experiment, or
energies hand-crafted by artists. Our work focuses on the better opti-
mization of the important nonconvex energies whose minimization
remains the primary challenging bottleneck in many modern geom-
etry and simulation pipelines. In the following sections, to evaluate
and compare algorithms, we consider a range of challenging non-
convex deformation energies currently critical in physical simulation
and geometry processing: Mooney-Rivlin (MR) [Bower 2009], Neo-
Hookean (NH) [Bower 2009], Symmetric Dirichlet (ISO) [Smith and
Schaefer 2015], Conformal Distortion (CONF) [Aigerman et al. 2015],
and Most-Isometric Parameterizations (MIPS) [Hormann and Greiner
2000].

3.2 Energy approximations

Broadly, existing models for the local energy approximation in (3) fall
into four rough categories that vary in the construction of the proxy*
matrix H;. Newton-type methods exploit expensive second-order de-
rivative information; first-order methods use only first derivatives and
apply lightweight fixed proxies; quasi-Newton methods iteratively up-
date proxies to approximate second derivatives using just differences
in gradients; Geometric Approximation methods use more domain
knowledge to directly construct proxies which relate to key aspects
of the energy, resembling Newton-type methods but not necessarily
taking second derivatives.

Newton-type methods generally can achieve the most rapid con-
vergence but require the costly assembly, factorization and backsolve
of new linear systems per step. At each iterate Newton’s method uses
the energy Hessian, V2E(x;), to form a proxy matrix. This works well
for convex energies but requires modification for nonconvex energies
[Nocedal and Wright 2006] to ensure that the proxy is at least positive
semi-definite (PSD). Composite Majorization (CM), a tight convex ma-
jorizer, was recently proposed as an analytic PSD approximation of the
Hessian [Shtengel et al. 2017]. The CM proxy is efficient to assemble
but is limited to two-dimensional problems and just a trio of ener-
gies: ISO, NH and symmetric ARAP. More general-purpose solutions
include adding small multiples of the identity, and projection of the
Hessian to the PSD cone but these generally damp convergence too
much [Liu et al. 2017; Nocedal and Wright 2006; Shtengel et al. 2017].
More effective is the Projected Newton (PN) method that projects
per-element Hessians to the PSD cone prior to assembly [Teran et al.
2005]; also of interest is Chen and Weber’s analytic Hessian projection
in a reduced basis setting [2017]. Both CM and PN generally converge
rapidly in the nonconvex setting with CM often outperforming PN in
“Names and notations for H; vary across the literature depending on method and appli-

cation. For consistency, here, across all methods we will refer to H; as the proxy matrix —
inclusive of cases where it is the actual Hessian or direct modification thereof.
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the subset of 2D cases where CM can be applied [Shtengel et al. 2017],
while PN is more general purpose for 3D and 2D problems. Both PN
and CM have identical per-element stencils and so identical proxy
structures. Despite low iteration counts they both scale prohibitively
due to per-iteration cost and storage as we attempt increasingly large
optimization problems.

First-order methods build descent steps by preconditioning the
gradient with a fixed proxy matrix. These proxies are generally inex-
pensive to solve and sparse so that cost and storage remain tractable
as we scale to larger systems. However, they often suffer from slower
convergence as we lack higher-order information. Direct gradient
descent, H; < Id, and Jacobi-preconditioned gradient descent, H; «—
diag(VzE(xi)) offer attractive opportunities for parallelization [Fu
et al. 2015; Wang and Yang 2016] but suffer from especially slow
convergence due to poor scaling. The Laplacian matrix, L, forms an
excellent preconditioner, that both smooths and rescales the gradi-
ent [Kovalsky et al. 2016; Martin et al. 2013; Neuberger 1985]. Unlike
the Hessian, the Laplacian is a constant PSD proxy that can be pre-
factorized once and backsolved separately per-coordinate. Iterating
descent with H; « L, is the Sobolev-preconditioned gradient descent
(SGD) method. SGD was first introduced, to our knowledge, by Neu-
berger [1985], but has since been rediscovered in graphics as the local-
global method for minimizing ARAP [Sorkine and Alexa 2007]. As
noted by Kovalsky et al. [2016] local-global for ARAP is exactly SGD.
More recently Kovalsky et al. [2016] developed the highly effective
Accelerated Quadratic Proxy (AQP) method by adding a Nesterov-like
acceleration [Nesterov 1983] step to SGD. This improves AQP’s con-
vergence over SGD. However, as this acceleration is applied after line
search, steps do not guarantee energy decrease and can even contain
collapsed or inverted elements — preventing further progress; see e.g.
Figure 4. More generally, the Laplacian is constant and so ignores
valuable local curvature information — we see this issue in a number
of examples in Section 8 where AQP stagnates and is prohibitively
slow to converge. Curvature can make the critical difference to enable
progress.

Quasi-Newton methods lie in between these two extremes. They
successively, per descent iterate, update approximations of the system
Hessian using a variety of strategies. Quasi-Newton methods employ-
ing sequential gradients to updates proxies, i.e. L-BFGS and variants,
have traditionally been highly successful in scaling up to large sys-
tems [Bertsekas 2016]. Their updates can be performed in a compute
and memory efficient manner and can guarantee the proxy is SPD
even where the exact Hessian is not. While not fully second-order,
they achieve superlinear convergence, regaining much of the advan-
tage of Newton-type methods. L-BFGS convergence can be improved
with the choice of initializer. Initializing with the diagonal of the Hes-
sian [Nocedal and Wright 2006], application-specific structure [Jiang
et al. 2004] or even the Laplacian [Liu et al. 2017] can help. However,
so far, for distortion optimization problems, L-BFGS has consistently
and surprisingly failed to perform competitively irrespective of choice
of initializer [Kovalsky et al. 2016; Rabinovich et al. 2017]. Nocedal
and Wright point out that the secant approximation can implicitly
create a dense proxy, unlike the sparse true Hessian, directly and in-
correctly coupling distant vertices. This is visible as swelling artifacts
for intermediate iterations of the L-BFGS methods in Figure 5.

ACM Trans. Graph., Vol. 37, No. 4, Article 40. Publication date: August 2018.
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Line Search

Descent Direction Step After Line Search

BCQN

AQP

Embedding

Fig. 2. Line-search filtering. Barrier terms in nonconvex energies (here we
use I1SO) of the form 1/g(o) can severely restrict step sizes in line searches
even when expensive, high-quality methods such as Newton-type methods are
applied. Left column: descent-direction vector fields, per vertex, in a descent
step generated by BCQN, PN and AQP with potential blocking triangles
rendered in red. Right column, bottom rows: after line-search, close to
collapsing elements have restricted the global step size for AQP and PN that
block progress. Right column, top row: BCQN’s barrier-aware line-search
filtering cures the descent direction enabling progress with significant descent.

Geometric Approximation methods for distortion optimization have
also been developed recently: SLIM [Rabinovich et al. 2017] and the
AKAP preconditioner [Claici et al. 2017]. SLIM extends the local-global
strategy to a wide range of distortion energies while AKAP applies an
approximate Killing vector field operator as the proxy matrix. Both
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require re-assembly and factorization of their proxies for each iterate.
SLIM and AKAP convergence are generally well improved over SGD
and AQP [Claici et al. 2017; Rabinovich et al. 2017]. However, they do
not match the convergence quality of the second-order, Newton-type
methods, CM and PN [Shtengel et al. 2017]. SLIM falls well short of
both CM and PN [Shtengel et al. 2017]. AKAP is more competitive
than SLIM but remains generally slower to converge than PN in our
testing, and is much slower than CM. At the same time SLIM and
AKAP stencils, and so their fill-in, match CM’s and PN’s; see Figure 8.
SLIM and AKAP thus require the same per-iteration compute cost and
storage for linear solutions as PN and CM without the same degree of
convergence benefit [Shtengel et al. 2017].

In summary, for smaller systems Newton-type methods have been,
till now, our likely best choice for distortion optimization, while as
we scale we have inevitably needed to move to first-order methods to
remain tractable, while accepting reduced convergence rates and even
the possibility of nonconvergence altogether. We develop a new quasi-
Newton method, BCQN, that adaptively blends gradient information
with the matrix Laplacian at each iterate to regain improved and
robust convergence with efficient per-iterate storage and computation
across scales while avoiding the current pitfalls of L-BFGS methods.

3.3 Line search

Once we have applied the effort to compute a search direction we
would like to maximize its effectiveness by taking as large a step
along it as possible. Because the energies we treat are nonlinear, too
large a step size will actually make things worse by accidentally in-
creasing energy. A wide range of line-search methods are thus em-
ployed that search along the step direction for sufficient decrease [No-
cedal and Wright 2006]. However, when we seek to minimize non-
convex energies on meshes the situation is more challenging. Most
(although not all) popular and important nonlinear energies, both
in geometry processing and physics, are composed by the sum of
rational fractions of singular values, o, of the deformation gradient
W(F) = W(o) = f(0)/g(c) where the denominator g(c) — 0 as
o; — 0,Vi € [1,d]. Notice that these 1/g(c) barrier functions block
element inversion. Irrespective of their source, these blocking noncon-
vex energies rapidly increase energy along any search direction that
would collapse elements. To prevent this (and likewise the possibility
of getting stuck in an inverted state) search directions are capped to
prevent inversion of every element in the mesh. This is codified by
Smith and Schaeffer’s [2015] line-search filter, applied before tradi-
tional line search, that computes the maximal step size that guarantees
no inversions anywhere.

Unfortunately, this has some serious consequences for progress.
Notice that if even a single element is close to inversion this can
amputate the full descent step so much that almost no progress can be
made at all; see Figure 2, bottom and middle rows. This, in many senses
seems unfair as we should expect to be able to make progress in other
regions where elements may be both far from inversion and yet also far
from optimality. To address these barrier issues we develop an efficient
barrier-aware filter that allows us to avoid blocking contributions
from individual elements close to collapse while still taking large
steps elsewhere in the mesh, see Figure 2, top row.



3.4 Termination

Naturally we want to take as few iterates as possible while being sure
that when we stop, we have arrived at an accurate solution according
to some easily specified tolerance. The gold-standard in optimization
is to iterate until the gradient is small |VE|| < e, for a specified
tolerance € > 0. This is robust as VE is zero only at stationary points,
and with a bound on Hessian conditioning near the solution can even
provide an estimate on the distance of x to the solution.

However, an appropriate value Tolerance
of e for a given application is
highly dependent on the mesh,
its dimensions, degree of refine-
ment, energy, etc. A common en-
gineering rule of thumb to deal
with refinement consistency is
to instead divide the L2-norm of
VE by the number of mesh ver-
tices. However, as we see in the
inset figure, this normalization
does not help significantly, for
example here across changes in
mesh resolution for the 2D swirl
test; see Section 8.2 for more ex-
periments.

To avoid problem dependence, recent distortion optimization codes
generally either take a fixed (small) number of iterations [Rabinovich
et al. 2017] or iterate until an absolute or relative error in energy
|Ei+1 — E;| and/or position ||x;+1 — x;|| are small [Kovalsky et al.
2016; Shtengel et al. 2017]. However, experiments underscore there
is not yet any method which always converges satisfactorily in the
same fixed number of iterations across varying boundary conditions,
shape difficulty, mesh resolution, and choice of energy. Measuring
the change in energy or position, absolutely or in relative terms,
unfortunately cannot distinguish between an algorithm converging
and simply stagnating in its progress far from the solution; again, there
is not yet any method which can provably guarantee any degree of
progress at every iterate before true convergence. Figure 4 illustrates
on the swirl example how a reference AQP implementation declares
convergence well before it reaches a satisfactory solution, when early
on it hits a difficult configuration where it makes little local progress.

To provide reassuring termination criteria in practice and to en-
able fair comparisons of current and future distortion optimization
problems we develop a gradient-based stopping criterion that remains
consistent for optimization problems even as we vary scale, mesh
resolution and energy type. This allows us, and future users, to set
a default convergence tolerance in our solver once and leave it un-
changed, independent of scale, mesh and energy. This likewise enables
us to compare algorithms without the false positives given by non-
converged algorithms that have halted due to lack of progress.

1e-4

Coarse mesh

Fine mesh 8 @

Fig. 3. Standard termination measures,
e.g. the vertex-scaled gradient norm
above, are inconsistent across mesh, en-
ergy and scale changes.

4 BLENDED QUASI-NEWTON

In this section we construct a new quadratic energy proxy which
adaptively blends the Sobolev gradient with L-BFGS-style updates to
capture curvature information, avoiding the troubles previous quasi-
Newton methods have encountered in distortion optimization. Apart
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Fig. 4. In the 2D swirl example, BCQN with our reliable termination criterion
(right) only stops once it has actually reached a satisfactory solution. The
reference AQP implementation (left) erroneously declares success early on
when it finds two iterates have barely changed, but this is due only to hitting
a difficult configuration where AQP struggles to make progress.

from the aforementioned issue of a dense proxy incorrectly coupling
distant vertices in L-BFGS, we also find that the gradients for non-
convex energies with barriers can have highly disparate scales, causing
further trouble for L-BFGS. The much smoother Sobolev gradient dif-
fuses large entries from highly distorted elements to the neighborhood,
giving a much better scaling. The Laplacian also provides essentially
the correct structure for the proxy, only directly coupling neighboring
elements in the mesh, and is well-behaved initially when far from the
solution, thus we seek to stay close to the Sobolev gradient, as much
as possible, while still capturing valuable curvature information from
gradient history.

The standard (L-)BFGS approach exploits the secant approximation
from the difference in successive gradients, y; = VE(xj+1) — VE(x;)
compared to the difference in positions s; = xj+1 — x;,

VZE(xit1)si
= VZE(xir1) 'yi

R

Yi

= Si,

(6)

to update an inverse proxy matrix D; = Hl._l (approximating V2E~!
in some sense) so that D;;1y; = s;. The BFGS quasi-Newton update
is generically
T SisiT zsT
QN;(z. D) = Vi(2) DVi(2) + —, Vilz) =1~ 3.
iz

i

™)
1

We can understand this as using a projection matrix V; to annihilate

the old D’s action on z, then adding a positive semi-definite symmetric

rank-one matrix to enforce QN;(z, D)z = s;. Classic BFGS uses Dj11 =

ON;(y;, D;), whereas L-BFGS uses

Diy1 = QN;(yi, Dy), (®)

where D; has the oldest QN update removed, and crucially represents
each D as a product of linear operators, rather than an explicit full
matrix. Only the last m {s,y} vector pairs (we use m = 5) along
with the initial D1 (we use the inverse Laplacian, storing only its
Cholesky factor) are stored; application of D is then just a few vector
dot-products and updates along with backsolves for the Laplacian.

4.1

Experiments show that far from the solution, the Laplacian is often
(although not always) a much more effective proxy than the L-BFGS
secant version: see AQP/SGD vs. L-BFGS in Figure 5. In particular,
the difference in energies y may introduce spurious coupling or have
badly scaled entries near distorted triangles. In this case if the energy
were based on the Laplacian itself (the Dirichlet energy), the difference

Greedy Laplacian blending
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Fig. 5. A 2D shearing deformation stress test with MIPS energy, comparing
methods by plotting iteration vs. energy. Both L-BFGS as well as Laplacian ini-
tialized L-BFGS (SL-BFGS) have slow convergence as previously reported [Ko-
valsky et al. 2016] — especially when compared to SGD and AQP which use
just the Laplacian. At iteration 240 the visualized deformations show both
L-BFGS-based methods suffering from swelling due to inaccurate coupling
of distant elements. Applying our blending model alone (Blended) is highly
effective, while our full BCQN method gives the best results overall.

in gradients would be the better behaved Ls. This motivates trying to
update with Ls instead of y,

Di+1 = QN;(Lsi, Dy). ©

This would keep us consistent with Sobolev preconditioning, which
is often very effective in initial iterations. However, to achieve the
superlinear convergence L-BFGS offers, near solutions we wish to
come closer to satisfying the secant equation, and so aim to move
towards using y instead. More generally we seek to balance between
gradient information and the action of the Laplacian.

We thus propose an adaptive blending strategy that updates the
proxy per iterate using

zi = (1= Pi)yi + PiLsi (10)

in QN(z;, D;), with a blending parameter f; € [0, 1] constructed below.
Towards our goals we first derive here a greedy blending that is “as
Laplacian as possible” to approximate the energy gradient. Then, below
in Section 4.2, we present our final, empirically derived variant that
we have experimentally determined to so far work best. As we will
soon see this blend is highly effective; however, further work remains
to find and confirm optimal blending terms.

We begin by greedily selecting a f§; to scale Ls; to be as close to y;
as possible,

Bi = argmin ||y; — BLs; |, (11)

pelo1]

in other words using the projection of y; onto Ls;. This comes as close
as possible to satisfying the secant equation with Ls; and then makes

up the remainder with y;. Solving (11) gives
Bi = projpg 1 (@) :

LS 12
Observe that when Ls is roughly aligned with the gradient jump y ,
but y is as large or larger, f grows and Laplacian smoothing increases

(12)
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— as we might hope for initially when far from the solution, where
the Sobolev gradient is most effective. When the energy Hessian
diverges strongly from the Laplacian approximation, perhaps when
the cross-terms between coordinates missing from the scalar Laplacian
are important, then f will decrease, so that contributions from y;
again grow. Finally, as the gradient magnitudes decreases close to
the solution, § will similarly decay, ideally regaining the superlinear
convergence of L-BFGS near local minima.

4.2 Blended quasi-Newton

With the blending projection (12) in place we experimented with
a range of rescalings in hopes of further improving efficiency and
robustness. After extensive testing we have so far found the following
scaling to offer the best performance:

, normest(L)y; ! Ls;
Bi = prOJ[O,l](T)’
2(d-1) (13)
with B(T) = (Z vt) !
teT

Here normest(L) is an efficient estimate of the matrix 2-norm using
power iteration [Higham 1992], and B(T) is a constant normalizing
term with appropriate dimensions and so no longer has the same
potential concern for sensitivity in the denominator when Ls is small
but s is not. Both terms are computed just once before iterations begin
and reused throughout.

As mentioned, we initialize the inverse proxy with D; = L™}, thus
starting with Laplacian preconditioning. With line search satisfying
Wolfe conditions our proxy remains SPD across all steps [Nocedal
and Wright 2006] and so delivers descent directions. Each step jointly
updates D; using the standard two-loop recursion and finds the next
descent direction s; = —D; VE(x;). Figure 5 illustrates the gains possi-
ble from blended quasi-Newton compared to both standard L-BFGS
and Sobolev gradient algorithms, while then applying our barrier-
aware filter, derived in the next section gives best results with our full
BCON algorithm.

5 BARRIER-AWARE LINE SEARCH FILTERING

As discussed in Section 3.3 and shown in Figure 2, barrier factors
1/¢9(o) in nonconvex energies typically dominate step size in line
search. Even a single element that is brought close to collapse by the
descent direction, p;, can restrict the line search step size severely.
The computed step size «; then scales p; globally so that all elements,
not just those that are going to collapse along p;, are prevented from
making progress. To avoid this, a natural strategy suggests itself: when
the descent direction would cause elements to degenerate towards
collapse along the full step, rather than simply truncating line search
as in Smith and Schaefer [2015], we filter collapsing contributions
from the search direction prior to line search. We call this strategy
barrier-aware line search filtering.

5.1

Figure 6 illustrates how simple, direct filters that zero out contributions
from nearly-inverted elements in either the search direction (6a) or
the gradient before Laplacian smoothing (6b) fail. We must be able to
make progress in nearly-inverted elements when the search direction

Curing line search
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Fig. 6. Direct filtering does not work. Zeroing out inverting components
of descent directions or gradients makes the search direction inconsistent
with the objective and so prevents convergence, leading to termination at poor
solutions (a) and (b). Left: we initialize a 2D shear deformation, constraining
the top of a bar to slide rightwards. Middle: direct filtering of the descent
direction (a) and the gradient (b) allow large descent steps forward unblocked
from the contributions of close-to-collapsed elements. However, this results
in termination at shapes that that do not satisfy optimality of the original
minimization. Right: compare to a locally optimal solution for this problem
(c) obtained with BCQN.

can help, or there is no hope for reaching the actual solution; simple
zeroing fails to converge, which is no surprise as it in essence is
arbitrarily manipulating the target energy, changing the problem
being solved. We instead seek to augment the original optimization
problem in a way that does not change the solution, but gives us a
tool to safely deal with problem elements so that the resulting search
direction p; does not cause them to collapse or invert, ideally with a
small fixed cost per iteration.

5.2 One-sided barriers in distortion optimization

Element ¢ € T is inverted at positions x precisely when the orientation
function a;(x) = det(F;(x)) is negative. Concatenating over T, the
global vector-valued function for element orientations is then

a() = (a10): sam() "
As long as a(x) > 0, no element is collapsed or inverted, and the
energy remains finite. Note, however, many energies are also finite for
inverted elements a;(x) < 0, only blowing up at collapse a;(x) = 0,
so technically there may exist local minima where VE(x*) = 0 yet
some elements are inverted. Generally, practitioners wish to rule these
potential solutions out. However, this is done with two implicit, but so
far informal assumptions of locality: the initial guess is not inverted,
i.e. a(x1) > 0, and that the solver employed must follow a path which
never jumps through the barrier to inversion.

We formalize these requirements in distortion optimization as

mxin{E(x) : a(x) > 0}.

(14)

(15)

Adding the constraint a(x) > 0 now explicitly restricts our optimiza-
tion to noninverting deformations but otherwise leaves the desired
solution unchanged. (See our Supplement for proof.)

5.3

With problem statement (15) in place, we now exploit it in curing the
search direction from collapsing elements. At each iterate i, form the
projection

Iterating away from collapse

min {llp + DiVEG)} ¢ aGxp) + Va(x)"pz of  (16)
of the “uncured” predicted descent direction —D; VE(x;) onto the sub-
set satisfying a linearization of the no-collapse condition. Satisfying
(16) exactly would ensure that projected directions would not violate
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Fig. 7. Line search filtering. Bottom: We optimize a UV parameterization
for a range of methods with the MIPS energy to consider line search filtering
behavior, plotting energy (y-axis) against iteration counts. Just adding our
barrier-aware line search filtering alone to SGD improves its convergence by
well over an order of magnitude, and almost an order of magnitude over AQP
as well as plain L-BFGS and SL-BFGS. BCQN with blending and line search
filtering improves convergence even further. Top: a comparison between the
embeddings and texture-maps gained by AQP and barrier-aware filtered SGD
at the 40" iterate.

linear collapse conditions and likewise preserve symmetry [Smith
et al. 2012]. However, its exact solution is neither necessary nor effi-
cient. Instead, we construct an approximate solution to (16) as a filter
that helps avoid collapse, preserves symmetry, and guarantees a low
cost for computation for all descent steps.
Strict convexity of the projection guarantees that a minimizer p*
of (16) is given by the KKT® conditions [Bertsekas 2016]
p* + D;VE(x;) — Va(x;)A* = 0, (17)
(18)

Setting C; = Va(x;), M; = Va(x;)T Va(x;), and b; = a(x;), we form
the Schur complement of the above system to arrive at the equivalent
Linear Complementarity Problem (LCP) [Cottle et al. 2009]

0< A" L MA* +Clps +b; > 0.

0<A* La(x)+ Va(xi)Tp* > 0.

(19)

We then form a damped Jacobi splitting M; = 0™ 1S; + (M; — 0™ 'S;),
with diagonal S; = diag(M;) and damping parameter w € (0, 1). This
gives us an iterated LCP process ranging over iteration superscripts j,

0 <NV Lo ISV e MV — 0 SV + Clpi+b; 2 0. (20)

5.4 Line search filtering
Each iteration of the splitting (20) simplifies to the damped projected
Jacobi (DPJ) update®

P [Aj —wSTH(CT(CV) + ci)r, (21)

with constant ¢; = Cl.Tpi +b;. Here each of the m entries in J*! can be
updated in parallel (unlike Gauss-Seidel iterations). As M; is PSD this
SHere and in the following A = (A4, .., A;;)T € R™ is the vector of Lagrange multipliers

and x L y is the complementarity condition x;y; = 0, Vt.
%We use the convention [-]* = max]0, -].
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iteration process converges to (19) [Cottle et al. 2009] and so to (16).
We do not seek a tight solution. Instead, we just want to be sure the
worst blocks to line search are filtered away. Thus we initialize with
Al = 0 to avoid unnecessary perturbation, use a coarse termination
tolerance for DPJ (see below), and never apply more than a maximum
of 20 DP]J iterations.

At each DPJ iteration j we check for termination with an LCP
specialized measure, the Fischer-Burmeister function [Fischer 1992]

FB(M, M;M + ¢;) evaluated as
2
(ak + by — ,[ai +b12c) .

k E[Zl,:m]
As we initialize with A! = 0, when p; is non-collapsing FB = 0, and
thus no line search filtering iterations will be applied. Likewise, we
stop iterations whenever the FB measure is roughly satisfied by either
a relative error of < 1072 or an absolute error < 107°.

Filtering thus applies a fixed maximum upper limit on computation
and performs no iterations when not necessary. Upon termination of
DP]J iterations, plugging our final A into (17) we obtain our update to
form the line search filtered descent direction

FB(a,b) = (22)

Pl =pi+Cil. (23)

As illustrated in Figures 2 and 7 the filter’s small number of applied
iterations can make a dramatic difference in line search and so con-
vergence.

6 TERMINATION CRITERIA

Every iterative method for minimizing an objective function E(x) must
incorporate stopping criteria: when should an approximate solution
be considered good enough to stop and claim success? Clearly, in the
usual case, where the actual local minimum value of E(x) is unknown,
basing the test on the current value of E(x;) is futile. As noted in
Section 3.4, stopping when successive iterates are closer than some
tolerance is vulnerable to false positives (halting far from a solution),
as is using a fixed number of iterations. Although monitoring || VE||
is robust, each individual problem may need a different tolerance to
define a satisfactory solution even when normalized by number of
vertices or total volume/area: see Figures 3 and 11. We thus propose a
new way to derive and construct an appropriate, roughly problem-
independent, relative scale for a gradient-based measure for a stopping
criterion.

6.1

All energies we consider are summations of per-element energy densi-
ties W(-) computed from the deformation gradient F;(x) and weights
v, in each element ¢, as per equation (2). To simplify the following
we can then evaluate energy densities on the vectorized deformation
gradient as W (vec(F;)) = W(G;x), where Gy is the linear gradient
operator for element ¢. The full energy gradient is then

VE(x) = ) wiG/ VW(Gx).
teT

Characteristic gradient norm

(24)

We wish to generate a characteristic value we can compare this gradi-
ent to meaningfully, with the same dimensions; we will do this with
each component of the above summation separately.
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Fig. 8. Sparsity Differences in Proxies. Left: The scalar Laplacian (top) is
smaller and sparser than the Hessian and its approximations (bottom) used in
CM, PN, SLIM and AKAP. Right: This results in a much cheaper factorization
and solve for the Laplacian; it is applied in both BCQN and AQP independently
to each coordinate where only a one-time factorization precompute is required;
CM, PN, SLIM and AKAP require factorization at each iterate.

First observe that the deformation gradient, F;, the argument to
W, is dimensionless and therefore VW has the same dimensions as
W, and even as the element Hessian V2W. For the simplest quadratic
energy densities, this Hessian has the attractive property of being
constant; we thus choose to use the 2-norm of the Hessian, evaluated
about the deformation gradient at rest (F; = I), to get a representative
value for VW:

W) = [V W(D)l2. (25)

Second, note that the i part of G; for a triangle (respectively
tetrahedra) t containing vertex i will attain its maximum value for
fields which are constant along the opposing edge (triangle) and that
value will be the reciprocal of the altitude. Up to a factor of 2 (3), this
is the length (area) of the opposing edge (triangle) divided by the
rest area (volume), of the element, i.e. v;. Summing over all incident
elements, weighted by v;, we arrive at a characteristic value for vertex
i of ¢; equalling the perimeter (surface area) of the one-ring of vertex
i. We compute this value ¢;, for all vertices, giving us the vector
O(T) = (£1,..es fn)T € R™, with one scalar entry per vertex.

The product of our energy and mesh values together form the
characteristic value for the norm of the gradient

WHIEDII,

where we take the same vector norm as that with which we evaluate
[|[VE(x)||; we use the 2-norm in all our experiments. For all methods
we stop iterating when

IVEGO)I < e(WH [IE(D)I,

(26)

(27)

given a dimensionless tolerance € from the user, which is now essen-
tially mesh- and energy-independent. See Figures 3, 10 and 11 as well
as our experimental analysis in Section 8 for evaluation.



7 THE BCQN ALGORTHIM

Algorithm 1 contains our full BCQN algorithm in pseudocode. The
dominant cost, for both memory and runtime, is the Laplacian solve
embedded in the application of D, which again is not stored as a
single matrix, but rather is a linear transformation involving a few
sparse triangular solves with the Laplacian’s Cholesky factor and
outer-product updates with a small fixed number of L-BFGS history
vectors. Recall that we separately solve for each coordinate with a
scalar Laplacian, not using a larger vector Laplacian on all coordinates
simultaneously; this also exposes some trivial parallelism. Apart from
the Laplacian, all steps are either linear (dot-products, vector updates,
gradient evaluations, etc.) or typically sublinear (DPJ assembly and
iterations, which only operate on the small number of collapsing
triangles, and again are easily parallelized).

As Lipton et al. proved [1979], the lower bounds for Cholesky
factorization on a two-dimensional mesh problem with n degrees of
freedom are O(nlog n) space and on/?) sequential time, and in three-
dimensional problems where vertex separators are at least o(n?/3),
their Theorem 10 shows the lower bounds are O(n4/ 3) space and
O(n?) sequential time. On moderate size problems running on current
computers, the cost to transfer memory tends to dominate arithmetic,
so the space bound is more critical until very large problem sizes are
reached.

7.1

The per-iterate performance profile of AQP is most similar to BCQN: it
too is dominated by a Laplacian solve. The only difference is the extra
linear and sublinear work which BCQN does for the quasi-Newton
update and the barrier-aware filtering; even on small problems, this
overhead is usually well under half the time BCQN spends, and as
the next section will show, the improved convergence properties of
BCON render it faster.

The second-order methods we compare against, PN and CM, as
well as the more approximate proxy methods, SLIM and AKAP, all
use a fuller stencil which couples coordinates. The same asymptotics
for Cholesky apply, but whereas AQP and BCQN can solve a scalar
n X n Laplacian d times (once for each coordinate, independently),
these other methods must solve a single denser nd X nd matrix, with
d? times more nonzeros: see Figure 8. Moreover, for all these methods
the proxy matrix changes at each iteration and must be refactored,
adding substantially to the cost: factorizations are significantly slower
than backsolves.

Comparison with other algorithms

8 EVALUATION
8.1

We implemented a common test-harness code to enable the consistent
evaluation of the comparative performance and convergence behavior
of SGD, PN, CM, AQP, L-BFGS and BCQN across a range of energies
and distortion optimization tasks including parameterization as well
as 2D and 3D deformations, where these methods allow. For AQP this
extends the number of energies it can be tested with, while more gen-
erally providing a consistent environment for evaluating all methods.
We hope that this code will also help support the future evaluation
and development of new methods for distortion optimization.

Implementation
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ALGORITHM 1: Blended Cured Quasi-Newton (BCQN)
Given: x1, E, e, T
Initialize and Precompute:
r=e(W)||&(T)|| // Characteristic termination value (§6)
L, D« L7! // Initialize blend model (§4)
g1 = VE(x)), i=1
while ||g;|| > r do  // Termination criteria (§6)
p < —Dg; //Precondition gradient (§4)
// Assemble for DPJ iterations (§5):
C « Va(x;)
M« CTC, ¢« CTp+a(x;)
S « diag(M)™,, 10
fb«—FB(A, MA +c) //LCP residual (Equation (22) in §5)

for j =1to 20 //Line-search filtering (§5)
if fb < 107 then break endif
fb « fbnext

A [A=1S(CT(CA) + c)]* // Parallel project (§5)
fbnext «— FB(A, MA + ¢)

if [fb— fbpey|/fb < 1072 then break end if
end for
p€ «— p+CA //Line-search filtered search direction (§5)

@ « LineSearch(x;, p’, E)  // Line search (§4)
Xit1 = Xi + ap( // Descent step (§4)
gi+1 = VE(xi41)
D « Blend(D, L, xj+1, Xi, gi+1, i)
i—i+1

end while

// BCON blending update (§4)

The main body of the test code is in MATLAB to support rapid proto-
typing. All linear system solves are performed with MATLAB’s native
calls to CHOLMOD [Chen et al. 2008] with additional computational-
heavy modules, primarily common energy, gradient and iterative LCP
evaluations, implemented in C++. As linear solves are the bottleneck
in all methods covered here, an additional speed-up to all methods
is possible with Pardiso [Petra et al. 2014a,b] in place of CHOLMOD;
however, as discussed in Section 8.4 this does not change the relative
merits of the methods, and would add an additional external depen-
dency to the test code. For verification we also confirm that iterations
in the test-harness AQP and CM implementations match the official
AQP [Kovalsky et al. 2016] and CM [Shtengel et al. 2017] codes.

All experiments were timed on a four-core Intel 3.50GHz CPU. We
have parallelized the damped Jacobi LCP iterations with Intel TBB;
with more cores the overhead reported below for LCP iterations is
expected to diminish rapidly. For all UV parameterization problems we
follow Kovalsky et al. [2016] and compute an initial, locally injective
embedding via a single linear solve with the cotan Laplacian; if it
fails (is not locally injective), we then fall back to plain Tutte, so that
robustness is maintained. For all constrained deformation examples,
with the exception of the Armadillo in Figure 14, we begin with an
initially injective mapping. For the Armadillo deformation example
only, we apply the LBD method [Kovalsky et al. 2015] to create a
rough, locally injective initialization from the initial constrained non-
injective deformation and pass this to both compared methods. To
enforce Dirichlet boundary conditions, i.e. positional constraints, we
use a standard subspace projection [Nocedal and Wright 2006], i.e.
removing those degrees of freedom from the problem. For constrained
problems we apply the standard approach of projecting gradients
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Fig.9. Termination criteria comparison. Left to right: We find key points
in the sequential progress of the optimized mesh in the Swirl optimization
(ISO energy) example at regular intervals of 10x decrease in our characteristic

norm. We compare with the relative error measures at these same points.

to the null-space of constraints: a stationary point is then reached
only if the (projected) gradient vanishes, just as in the unconstrained
setting. When line search is employed we first find a maximal non-
inverting step size with Smith and Schaefer’s method [2015], followed
by standard line search with Armijo and curvature conditions.

8.2 Termination

To evaluate termination criteria behavior we first instrumented two ge-
ometry optimization stress-test examples: the Swirl deformation [Chen
et al. 2013] and the Hilbert curve UV parametrization [Smith and
Schaefer 2015]. We run both examples to convergence (¢ = 1075 using
our characteristic gradient) reaching the final target shapes for each.
Within these optimizations we record the 2-norm of gradient, the
vertex-normalized 2-norm of gradient, the relative error measure [Ko-
valsky et al. 2016; Shtengel et al. 2017] and our characteristic gradient
norm for all iterations.

Figure 9 shows the Swirl mesh obtained during BCQN iteration at
regular intervals of 10X decrease in our characteristic norm. Observe
that they correspond to natural points of progress; see our supple-
mental video of the entire optimization sequence for reference. For
comparison we also provide the corresponding relative error measures,
which varies much less steadily.

In Figure 10 we compare termination criteria more closely for a UV
parametrization problem, the Hilbert curve example. We plot our char-
acteristic gradient norm (blue) and the relative energy error [Kovalsky
et al. 2016; Shtengel et al. 2017] (orange) as BCON proceeds. Note that
the characteristic gradient norm provides consistent decrease corre-
sponding to improved shapes and so provides a practical measure of
improvement. The local error in energy, on the other hand, varies
greatly, making it impossible to judge how much global progress has
been made towards the optimum.

Figure 11 illustrates consistency across changing tolerance values,
mesh resolutions, and scales. example. We show the iterates at mea-
sures 1073, 10~*and 10™> for both our characteristic gradient norm
and the raw gradient norm, for meshes with varying refinement and
varying dimension (rescaling coordinates by a large factor). Similar
to Figure 3 comparing the vertex-normalized gradient norm, there
are large disparities for the raw gradient norm, but our characteristic
gradient norm is consistent.

Tolerances. The Swirl and Hilbert curve examples are both extreme
stress tests that require passing through low curvature regions to tran-
sition from unfolding to folding; see e.g., Figure 9 above and our videos.
For these extreme tests we used a tolerance of 107° for our characteris-
tic gradient norm to consistently reach the final target shape. However,
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for most practical distortion optimization tasks such a tolerance is
excessively precise. In experiments across a wide range of energies
and UV parametrization, 2D and 3D deformation tasks, including
those detailed below, we found that |[VE(x)|| < 107 3(W)|[&(V, T)||
consistently obtained good-looking solutions with essentially no fur-
ther visible (or energy value) improvement possible. We argue this is
a sensible default except in pathological examples. For all examples
discussed here and below, with the exception of the Swirl and the
Hilbert curve tests, we thus use € = 107> for testing termination.

8.3 Newton-type methods

While Newton’s method, on its own, handles energies like ARAP rea-
sonably well [Chao et al. 2010] it is insufficient for strongly nonconvex
energies: modification of the Hessian is required [Nocedal and Wright
2006; Shtengel et al. 2017]. Here we examine the convergence, per-
formance and scalability of PN [Teran et al. 2005], a general-purpose
modification for nonconvex energies, and CM [Shtengel et al. 2017], a
more recent convex majorizer currently restricted to 2D problems and
a trio of energies (ISO, Symmetric ARAP and NH), and compare them
with AQP and BCQN. For the 2D parameterization problems in Fig-
ure 12 we can compare all four methods while for the 3D deformation
problems in Figures 13 and 14 CM is not applicable.

Figures 12, 13, and 14 examine the scaling behavior of the various
methods under mesh refinement, for 2D parameterization and 3D
deformation. The Newton-type methods PN and CM (when applicable)
maintain low iteration counts that only grow slowly with increasing
mesh size; from the outset BCQN and AQP require more iterations,
though the iteration count also grows slowly for BCON. Nonetheless,
BCON is the fastest across all scales in each test as its overall cost
per iteration remains much lower. BCQN iterations require no re-
factorizations (which scales poorly, particularly in 3D, as discussed
in Section 7) and only solves smaller and sparser scalar Laplacian
problems per coordinate compared to the larger and denser system of
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Fig. 10. Measuring improvement. Solving a UV parametrization of the
Hilbert curve with BCQN, we plot our characteristic gradient norm in blue and
the relative energy error in orange as the method proceeds, on a logarithmic
scale. Iterates are shown at decreases in the characteristic gradient norm by
factors of 10, illustrating its efficacy as a global measure of progress, while
the relative energy error measures only local changes with little overall trend.
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Fig. 11. Termination criteria comparison across mesh refinement and
scale. Left and right: we show the Swirl optimization when our characteristic
norm (left) and the standard gradient norm (right) reach 1073, 107 and 107°.
Top to bottom: the rows show optimization with a coarse mesh, a fine mesh,
and the same fine mesh uniformly scaled in dimension by 100x. Note the
consistency across mesh resolution and scaling for our characteristic norm
and the disparity across the standard gradient norm.

CM and PN. This advantage for BCQN only increases as problem size
grows; indeed, for the largest problems BCON succeeded where CM
and PN ran out of memory for factorization.

8.4 A note on solving proxies and Pardiso

Recent methods including CM have taken advantage of the efficien-
cies and optimizations provided by the Pardiso solver. While this can
improve runtime of the factorization and backsolves by a constant
factor, it cannot change the asymptotic lower bounds on complexity;
the sparse matrix orderings in both CHOLMOD and Pardiso already
appear to achieve the bound on typical mesh problems. In tests on our
computer, across a large range of scales in two and three dimensions,
we found Pardiso was occasionally slower than CHOLMOD but usu-
ally 1.4 to 3 times faster, and at most 8.1 times faster (for backsolving
with a 3D scalar Laplacian).

Individual iterates of AQP have the same overall efficiency as BCQN
(dominated by the linear solves); switching to Pardiso leaves the rela-
tive performance of the two methods unchanged. While CM and PN
are even more dependent on the efficiency of the linear solver, due
to more costly refactorization each step, the same speed-ups possible
with Pardiso also apply to BCON, so again there is no significant
change in relative performance between the methods.

8.5 First-order methods

Among existing first-order methods for distortion optimization AQP
has so far shown best efficiency [Kovalsky et al. 2016] with improved
convergence over SGD as well as standard L-BFGS. Likewise, as we see
in Figures 12, 13 and 14, when we scale to increasingly larger problems
AQP will dominate over Newton-type methods and so potentially
offers the promise of reliability across applications. Finally, BQCN
performs a small, fixed amount of extra work per-iteration in the line-
search filter and quasi-Newton update. Thus in Figures 12, 13, 15, 16
and 17 we compare AQP and BCON over a range of practical distortion
optimization applications, UV-parameterization, 2D deformation, and
3D deformation, with nonconvex energies from geometry processing
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and physics. Throughout we note three key features distinguishing
BCOQN as follows.

Reliability and robustness: AQP will fail to converge in some cases,
see e.g. Figure 4, while BCON reliably converges. In our testing AQP
fails to converge in over 40% of our tests with nonconvex energies; see
e.g. Figures 15 and 16. This behavior is duplicated in our test-harness
code and AQP’s reference implementation.

Convergence speed: when AQP is able to converge, BCQN consis-
tently provides faster convergence rates for nonconvex energies. In
our experiments convergence rates range up to well over 10X with
respect to AQP.

Performance: BCQN is efficient. When AQP is able to converge,
BCON remains fast with up to a well over 7X speedup over AQP on
nonconvex energies.

8.6 Across-the-board comparisons

Here we compare the performance and memory usage of BCON with
best-in-class distortion optimization methods across the board: AQP,
PN and CM for both 2D parameterization and 3D deformation tasks.
Results are summarized in Figures 12, 13 and 14. Note that CM does
not extend to 3D.

In Figures 12 and 13 we examine the scaling of AQP, PN, CM and
BCON to larger meshes and thus to larger problem sizes in both 2D
parametrization (up to 23.9M triangles) and 3D deformation (up to
7.8M tetrahedra). As noted above: from the outset, BCON requires
more iterations than CM and PN; however, BCQN’s overall low cost
per iteration makes it faster in performance across problem sizes
when compared to both CM and PN. We then note that AQP, on
the other hand, has slower convergence and so, at smaller sizes it
often does not compete with CM and PN. However, once we reach
larger mesh problems, e.g. ~> 6M triangles in Figure 12, the cost of
factorization and backsolve of the denser linear systems of CM and PN
becomes significant so that even AQP’s slower convergence results
in improvement. This is the intended domain for which first-order
methods are designed but here too, as we see in Figure 12, BCQN
continues to outperform both AQP as well as CM and PN across all
scales. Please see our supplemental video for visual comparisons of
the relative progress of PN, CM, AQP and BCON.

9 CONCLUSION

In this work we have taken new steps to both advance the state of the
art for optimizing challenging nonconvex deformation energies and to
better evaluate new and improved methods as they are subsequently
developed. Looking forward these minimization tasks are likely to re-
main fundamental bottlenecks in practical codes and so advancement
here is critical. Our three primary contributions together form the
BCON algorithm which pushes current limits in optimizing distortion
forward in terms of speed, reliability, and automatability. At the same
time, looking ahead we also expect that each contribution individually
should lead to even more improvements in the near future.

9.1 Limitations and future work

While our focus is on recent challenging nonconvex energies not
addressed by the popular local-global framework, similar to AQP we
have observed significant speedup for energies that are convex in
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Vertices Triangles . .B.CQN S . " /-.\QP s . Proje.cte-d Newton . -Compo‘site.Majorization. .
Iteration  Timing(s) Fill-in Iteration  Timing(s) Fill-in Iteration  Timing(s) Fill-in Iteration  Timing(s) Fill-in

1.9K 3.1K 95 0.98 0.02M 126 1.25 0.02M 19 1.01 0.07M 19 0.84 0.07M
3.5K 6.3K 86 1.44 0.05M 148 2.30 0.05M 17 1.86 0.79M 19 1.57 0.19M
6.6K 12.5K 78 2.18 0.11M 153 4,67 0.11M 27 6.01 0.45M 19 3.26 0.45M
12.9K 25.0K 118 6.51 0.27M 197 10.27 0.27M 26 12.81 1.02M 19 7.82 1.02M
25.4K 50.0K 110 11.21 0.60M 223 25.23 0.60M 19 19.83 2.38M 20 18.02 2.38M
50.4K 100.0K 101 224 1.41M 177 39.41 1.41M 25 56.10 5.56M 20 40.89 5.56M
100.4K 200.0K 104 48.10 3.24M 249 115.06 3.24M 19 95.58 12.55M 20 99.43 12.55M
197.9K 394.6K 12 111.08 6.14M 225 213.04 6.14M 28 290.26 24.13M 20 208.83 24.13M
435.5K 869.2K 119 355.44 15.37M 261 758.92 15.37M 29 757.01 56.94M 20 593.88 56.94M
880.3K 1,758.1K 138 758.12 36.59M 341 1,750.50 36.59M 36 2,160.40 125.89M 21 1,306.64 125.89M
1,650.4K 3,297.5K 151 1,532.10 75.05M 377 3,767.20 75.05M 27 4,461.30 395.71M 21 3,500.21 395.71M
3,221.7K 6,438.7K 107 3,584.80 176.55M 354 7,304.90 176.55M 44 40,788.00 709.36M 21 13,024.00 709.36M
6,386.2K  12,765.6K 145 19,209.00 347.87M 317 42,895.00 347.87M * 1,385.60M * 1,385.60M
11,969.0K  23,928.4K 138 54,550.00 727.61M 452 169,460.00 727.61M * 3,771.30M * 3,771.30M

Fig. 12. UV Parameterization Scaling, Timing and Sparsity. Performance statistics and memory use for increasing mesh sizes up to 23.9M triangles,
comparing BCQN with AQP, PN and CM. For the Gorilla UV parametrization with ISO energy we repeatedly double the mesh resolution and, for each
method, report number of iterations to convergence (characteristic norm < 1073), wall-clock time (seconds) to convergence, and the nonzero fill-in for the
linear systems solved by each method. We use * to indicate out-of-memory failure for matrix factorization; see §8 for discussion. Also note that stencils for
CM and PN are identical (differing only by actual entries) while AQP and BCQN both solve with the same smaller scalar Laplacian.

singular values, e.g. ARAP, as well. Currently, in comparing AQP and
BCON on the same set of 2D and 3D tasks with the ARAP energy we
observe a generally modest improvement in convergence, up to a little
over 4X, which is somewhat balanced by the small additional overhead
of BCON iterations. Note for energies like ARAP there is no barrier,
hence no need for our line search filtering, but other opportunities
for improvement may be available in future research.

While our current blending model works well in our extensive test-
ing, it is empirically constructed; it is in no sense proven optimal. We
believe that further analysis, better understanding and additional im-
provements in quasi-Newton blending are all exciting and promising
avenues of future investigation.

Our focus has been on unconstrained optimization, such as prob-
lems where linear constraints (e.g. pinned vertices) have already been
removed from the degrees of freedom. As stated earlier, unconstrained
optimization is also often a crucial inner step in constrained opti-
mization methods such as Augmented Lagrangian or Interior Point.
However, we caution that while our filtering step, based on linearized
constraints to prevent element inversion, is a sound and effective
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means to improve the subsequent line search, it is not a general-
purpose tool to handle even just linear constraints: it relies crucially
on the fact that the no-inversion constraints we add should already
be satisfied by the unconstrained solution, i.e. ultimately are inactive.
We leave the question of incorporating active constraints directly
into filtering and blending BFGS for future work and, as a starting
point, observe that linear constraints can be directly added with a
KKT formulation.

Finally, we note that while we have focused here on optimizing
distortion energies defined on meshes, there is a wide range of critical
optimization problems that take a similar general structure: minimiz-
ing separable nonlinear energies on graphs. Further extensions are
thus exciting directions of ongoing investigation.
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